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Abstract: The chemical modification of electrode surfaces has attracted significant attention for
lowering the limit of detection or for improving the recognition of biomolecules; however, the
chemical processes are complex, dangerous, and difficult to control. Therefore, instead of the
chemical process, we physically modified the surface of carbon-nanotube/polydimethylsiloxane
composite electrodes by dip coating them with functionalized multi-walled carbon nanotubes (F-
MWCNTs). These electrodes are used as working electrodes in electrochemistry, where they act as
a recognition layer for sequence-specific DNA sensing through π–π interactions. The F-MWCNT-
modified electrodes showed a limit of detection of 19.9 fM, which was 1250 times lower than that
of pristine carbon/polydimethylsiloxane electrodes in a previous study, with a broad linear range
of 1–1000 pM. The physically modified electrode was very stable during the electrode regeneration
process after DNA detection. Our method paves the way for utilizing physical modification to
significantly lower the limit of detection of a biosensor system as an alternative to chemical processes.

Keywords: biosensor; physical surface modification; dip coating; functionalized carbon nanotube;
electrochemical impedance spectroscopy

1. Introduction

Highly sensitive and selective detection of specific DNA sequences is crucial for
biotechnological applications such as clinical diagnosis [1,2] and environmental [3,4] and
food monitoring [5]. Therefore, extensive efforts have been devoted to developing tech-
niques for detecting highly sensitive sequence-specific DNA sensors based on optical [6,7],
electrical [8,9] and electrochemical [1,3,10,11] methods. Among these techniques, elec-
trochemical methods have received considerable attention because they can be used to
fabricate fast, simple, highly sensitive, and miniature DNA sensors [12,13]. Electrochemical
impedance spectroscopy (EIS) is a very accurate electrochemical method, which is sensitive
to changes on the electrode surface and is suitable for label-free DNA detection [14,15].
In several studies, EIS-based sensors have been fabricated using a gold electrode as the
working electrode [16–18]. However, gold is very expensive and a laborious and ineffi-
cient process for immobilizing the probe is usually required for gold electrodes, which is
unfavorable for commercialization.

Additionally, as an alternative to glassy carbon electrodes (GCEs), Au electrodes
are extensively used as working electrodes in electrochemical DNA detection. How-
ever, because GCEs themselves do not recognize DNA molecules, chemical processes
for immobilizing probes, which are more complicated than those for Au electrodes, are
required when GCEs are used for electrochemical DNA detection [19–21]. Moreover, to
further reduce the limit of detection (LOD), chemical surface modification can involve
other nanomaterials, such as carbon nanotubes [22] and graphene [23]. In these cases,
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the chemical surface modifications consist of multiple steps that link probe DNA and
nanomaterials to the electrode surfaces [24–26] and require several reagents. To avoid
the complexity of chemical processes, in previous studies, multi-walled carbon nanotube
(MWCNT)/polydimethylsiloxane (PDMS) composite electrodes were fabricated for DNA
detection, and MWCNTs were used as the main material for the electrode [27,28]. In
contrast to GCE, the electrode can behave as a recognition layer for DNA sensors without
chemical modification; in addition, it is flexible and easy to fabricate. However, the LOD
for DNA is 25 pM, which is higher (32–350 fM) than those of some chemically treated
GCE-based sensors [29,30] and lower (38–275 pM) than those of other chemically treated
GCE-based sensors [31,32].

In this study, to further decrease the LOD of a MWCNT/PDMS electrode, we modified
the physical surface of MWCNT/PDMS composite electrodes using functionalized MWC-
NTs (henceforth called F-MWCNTs) using a dip-coating process. This electrode was used as
the working electrode for the electrochemical DNA sensor. Compared to previous sensors
based on pristine MWCNT/PDMS electrodes [27,28], the LOD decreased by approximately
1250 times, from 25 pM to 20 fM. The electrode was stably regenerated by ethanol and
water cleaning, which indicated that the physical modification method was highly stable.
Our results suggest that physical modification using F-MWCNT and dip-coating process
could be a good alternative to chemical surface modifications for attaching nanomaterials
to the electrode surfaces and that the F-MWCNT-modified electrode is a good alternative
to expensive Au electrodes.

2. Materials and Methods
2.1. Materials and Reagents

The MWCNTs (diameter: 10–15 nm; length: 30–40 µm) were obtained from Han-
wha Chemical (Daejeon, Korea) and the DNA samples, including probe DNA (P), com-
plementary target DNA (T1), one base non-complementary target DNA (T2), and non-
complementary target DNA (T3), were obtained from Bionics (Seoul, Korea) (Table 1). Nitric
acid (HNO3, purity 69%) was obtained from Avantor (Radnor, PA, USA) and sulfuric acid
(H2SO4, purity 98%) was obtained from Daejung (Siheung, Korea). The polydimethylsilox-
ane (PDMS) and potassium ferrocyanide (K4Fe(CN)6) were obtained from Sigma-Aldrich
(St. Louis, MO, USA). The potassium ferricyanide (K3Fe(CN)6) was obtained from Junsei
Chemical Co., Ltd. (Tokyo, Japan), membrane filters were obtained from Sigma-Aldrich
(St. Louis, MO, USA) and 1 × phosphate-buffered saline (1 × PBS) solution (pH = 7.4) was
obtained from Tech and Innovation Corporation (Chuncheon, Korea). Absolute ethanol
was obtained from Fisher Scientific Inc. (Hampton, NH, USA) and isopropyl alcohol
(IPA) solution was obtained from Sigma-Aldrich (St. Louis, MO, USA). The resistivity of
deionized water (DI water) used throughout this study was 18.2 MΩ·cm. The Ag/AgCl
reference electrode, with a potential of 0.197 V vs. SHE, and platinum wire, which was
used as a counter electrode, was obtained from Princeton Applied Research (Oak Ridge,
TN, USA). All other chemicals were of analytical reagent grade. To prepare a sample
solution for the DNA detection experiments, target DNA with a specific concentration
was added to the PBS solution containing 1000 nM probe DNA and 4 mM potassium
ferrocyanide/potassium ferricyanide.

Table 1. Probe and target nucleotide sequences. The bases leading to the mismatches are underlined.

Type Name Sequence

Probe DNA P 5′-GTG TTG TCT CCT AGG TTG GCT CTG-3′

Complementary target DNA T1 5′-CAG AGC CAA CCT AGG AGA CAA CAC-3′

One base-non-complementary target DNA T2 5′-CAG AGC CAA CCT CGG AGA CAA CAC-3′

Non-complementary target DNA T3 5′-ATA TCG ACC TTG GCC GAG ACG GTG-3′
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2.2. Instruments

All electrochemical methods, including EIS, cyclic voltammetry (CV), and differential
pulse voltammetry (DPV) were measured using a CHI622D (CH Instruments, Inc., Austin,
TX, USA). A tip sonicator (HD 2070, Bandelin sonopuls, Berlin, Germany) was utilized to
disperse the MWCNT solvent. A dip coater (PTL-UMB, MTI Co., Richmond, CA, USA)
was used to modify the MWCNT/PDMS electrode surface with the F-MWCNT solution
and a UV-visible spectrophotometer (Cary 50, Varian, Mulgrave, Australia) was used
to measure ultraviolet (UV) absorption spectroscopy. A scanning electron microscope
(SEM; S4800, Hitachi, Tokyo, Japan) was used to obtain cross-sectional images and surface
morphology of the F-MWCNT/MWCNT/PDMS electrodes and Fourier-transform infrared
spectroscopy (FTIR) was used to obtain an infrared spectrum of transmittance of the F-
MWCNT solution (L160000A, PerkinElmer, Waltham, MI, USA).

2.3. Procedures
2.3.1. Preparation of Functionalized CNTs

The preparation of the functionalized CNTs is summarized in Figure S1a. First, the
MWCNTs (0.2 g) were sonicated in a 3:1 (v/v) mixture of nitric acid and sulfuric acid
solution [33]. Subsequently, the MWCNTs were filtered and rinsed with DI water using
vacuum filtration until the pH of the filtrate was neutral. Finally, the filtrate was dried
in an oven (Figure S1b) and sonicated for 5 min with 60 mL of DI water to make the
F-MWCNT solution. As shown in Figure S1c, our F-MWCNTs were uniformly dispersed in
DI water because they have better dispersion than MWCNTs in water [34]. The FTIR spectra
(Figure 1), showed that there were O-H, C=O, and C-O vibrations at 3372.11, 1642.21, and
1226.28 cm−1, respectively, which clearly indicated that carboxylic and hydroxyl groups
had been successfully attached to the surface of the MWCNTs.
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Figure 1. FTIR spectra of MWCNT modified with COOH.

2.3.2. Process Method of the F-MWCNT/MWCNT/PDMS Electrode

A schematic representation of the technique used to fabricate the F-MWCNT/MWCNT/
PDMS composite electrode is shown in Figure 2. First, the MWCNT composite electrode
layer was fabricated according to a previous study’s methodology [28], which is explained
in detail in Section 1 of the Supplementary Materials. Next, we coated the MWCNT/PDMS
film with F-MWCNT solution according to the preparation method described above. Finally,
the film was dip-coated at a dipping speed of 500 µm/s. In our experiments, the optimum
repetition number for the same dip coating was found to be 60.
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Figure 2. Fabrication process for the F-MWCNT/MWCNT/PDMS composite electrode.

2.3.3. Measurement Using EIS

Before the DNA detection experiment using EIS measurement, a sample solution was
prepared by including one of the DNA targets (T1, T2, and T3) with a specific concentration
of 1 nM DNA probe (P) and 4 mM [Fe(CN)6]3−/4− in 1mL of PBS solution. The sample
solvent was maintained at 25 ◦C for 7 min because the UV absorption of the sample solution
was saturated after 7 min (Figure S2), which indicated that the DNA reaction in the solution
had stabilized. After starting the EIS measurements, 9 min and 0.26 V were required
to obtain the stabilized value of the charge transfer resistance (Rct) (Figure S3). Thus,
a preparation time of 16 min was needed for EIS-based DNA detection in our experiments.
Our three-electrode system, which consisted of an Ag/AgCl reference electrode, platinum
counter electrode, and 5 mm× 5 mm F-MWCNT/MWCNT/PDMS working electrode, was
placed in sample solutions, as shown in Figure S4. The EIS measurements were performed
in the frequency range of 0.1 Hz to 10000 Hz, with an AC (alternating current) amplitude
of 5mV and a DC (direct current) bias of 0.26 V for DNA detection.

3. Results and Discussion
3.1. SEM Measurments of the Composite Electrode

The cross-section and surface morphology of the F-MWCNT-modified and pristine
MWCNT/PDMS electrodes were characterized using SEM. For the pristine MWCNT/PDMS
electrode, most MWCNTs were buried in PDMS and only a few tubular structures of
MWCNTs were visible near the electrode surface, as shown in Figure 3a. After 60 dip-
coating cycles with the F-MWCNT solution, many F-MWCNTs were observed on the
surface of the F-MWCNT-modified MWCNT/PDMS electrode (see Figure 3b). These
may act as active centers for DNA interactions. Figure 3c shows the cross-section of the
F-MWCNT/MWCNT composite electrode. The results indicate that the mean thickness
of the PDMS layers was approximately 430 µm. In addition, the mean thickness of the
recognition layer was 15 µm, which increased by approximately 5 nm after the deposition
of F-MWCNTs on the surface.
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3.2. Characterization of the F-MWCNT-Modified Electrodes

Figure 4a showed how the EIS characteristic of the electrode was changed for different
numbers of dip coating. Rct for 0, 20, 40, and 60 dip coating cycles (Figure 4b) were obtained
by fitting the Nyquist plots using F-MWCNT-modified electrodes in PBS solvent containing
4 mM [Fe(CN)6]3−/4−, with the equivalent circuit shown in Figure 4a. The circuit model is
widely used for describing processes at the electrochemical interfaces [35,36], consisting
of the active electrolyte resistance (RΩ), double-layer capacitance (Cd), charge transfer
resistance (Rct), and Warburg impedance (Zw). Rct and Zw describe the electron transfer
and the mass transport of the electroactive species near the solution–electrode interface,
respectively [37]. The Rct of the film decreased when increasing the number of dip coating
cycles, as shown in Figure 4b; as compared to Rct for no dip coating (5500 Ω), that for
60 dip coatings (200 Ω) was about 27.5 times smaller. When the number of dip coatings
was over 60, we found that the F-MWCNT/MWCNT layers were easily peeled off from
the electrode during the electrochemical analysis. Thus, the number of dip coating cycles
in the standard fabrication process was set to 60.
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We think these results were obtained for two reasons. First, the charge transfer
resistance might be associated with the number of MWCNTs on the electrode surface. In the
MWCNT electrode, only a small number of MWCNTs and active area were exposed because
some of the MWCNTs were buried in the PDMS. However, after depositing F-MWCNTs,
the number of MWCNTs and the active area of the electrode were increased. Second, we
think the energy barrier of the redox species reaching the electrode was lowered due to
Coulomb or steric interactions [38]. We speculate that the energy barrier of [Fe(CN)6]3−/4−

approaching the electrode surface is lowered by hydrogen bonding affinity to carboxylic
and hydroxyl groups in F-MWCNTs.

Cyclic voltammetry (CV) is one voltammetry technique for measuring the current response
of a redox active solution to a linearly cycled potential sweep. To investigate whether the
reactions near the electrodes are diffusion-controlled, we performed CV measurements with
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F-MWCNT/MWCNT/PDMS electrodes for 4mM [Fe(CN)6]3−/4− in the PBS solution, varying
the scan rate from 0.05 to 0.6 V/s (see Figure 5a). Figure 5b indicates that the anodic and cathodic
peak currents (Ipa and Ipc, respectively) increased linearly with the square root of the scan rate

(ν). The linear equations can be described as; Ipa(A) =
(
8.598× 10−4)× ν

1
2 + 1.311× 10−4

with an R2 = 0.9953 and Ipc(A) = −0.001× ν
1
2 − 1.006× 10−4 with an R2 = 0.9989. These

results indicate that the oxidation–reduction reactions were diffusion controlled, indicating
that the composite electrode is appropriate for quantitative electrochemical analysis [39,40].
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3.3. DNA Detection Using F-MWCNT-Modified Electrodes

As discussed above, a F-MWCNT/MWCNT/PDMS electrode could be used as
a DNA sensor. The schematic of the DNA detection mechanism is described in Figure 6.
It is well known that single-stranded DNA (s-DNA) is adsorbed on the surfaces of F-
MWCNT or MWCNT through π–π interactions, whereas double-stranded DNA (d-DNA)
is not [4,41–45]. For target T3 and probe DNA, the sequences of the probe and target are
all mismatched, so that the single-stranded target and probe DNA might be adsorbed
onto the recognition layer (F-MWCNT/MWCNT) of the electrode through π–π interac-
tions [4,43,44]. The adsorbed s-DNA can act as the barrier of charge transfer between the
oxidation–reduction couple ([Fe(CN)6]3−/4−) and the MWCNTs, increasing Rct, whereas
for target T1 and probe DNA, d-DNA can form through hybridization between T1 and
probe DNA because their sequences match completely. The vast majority of d-DNA re-
mains far from the electrode rather than being adsorbed onto the recognition layer [45].
Thus, because d-DNA does not behave as a charge transfer barrier, Rct is expected to
be lower than that for the former case with s-DNA adsorbed on the electrode. In the
case of T2, the probe and target DNA have a one-base mismatch. Because the level of
sequence mismatch is between those for T1 and T3, resistance might also be between those
of T1 and T3.

We performed EIS measurements for the sample solutions described in the experi-
mental section, which include probe DNA (P) and one target DNA (T1, T2, or T3), with
the target as shown in Figure 7a. Rct was calculated from the fitting of the Nyquist plots
in Figure 7a, the values of which were about 940, 1190, and 2000 Ω for the T1, T2, and T3
targets, respectively, as shown in Figure 7b. The highest Rct values were obtained for probe
and T3, whereas the lowest were for probe and T1, as expected due to the mechanism
discussed above. We defined the DNA detection sensitivity, г, by the equation г= ∆R/R◦,
where R◦ is the Rct when hybridized with T3 and ∆R is the difference between the Rct
for the present target and R◦. According to this equation, the sensitivities for perfectly
matched and one-base mismatched targets (T1 and T2) were 52.5% and 40.4%, respectively;
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the sensitivity differs by 12.1% even for a one-base mismatch, indicating the good sequence
selectivity of our system.
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3.4. Detection Limit of the DNA Sensor

As shown in Figure 8b, Rct in the EIS analysis with target T1 was linearly dependent on
the logarithm of the T1 concentration in the range of 1–1000 pM in the sample solutions. In
Figure 8a, a decrease in the Rct is clearly observed alongside an increase in the concentration
of T1. The reason might be that as the concentration of T1 increases, the amount of DNA
attached to the active site increases, which increases the current and reduces Rct. The
linear regression equation was determined to be Rct = −2.17× 102·logC1 + 1.58× 103 with
an R2 = 0.992, where C1 is the concentration of T1 ranging from 1 to 1000 pM, as shown
in Figure 8b. The LOD was extrapolated to be 19.9 fM using a signal-to-noise ratio of
3:1. Our LOD decreased by 1250 times compared to that obtained in a previous study,
wherein a MWCNT electrode was used as a working electrode for DNA detection in
EIS [27]. The 27.5 times reduction in Rct by F-MWCNT modification to the MWCNT/PDMS
electrode surface might be an important reason for the drastic decrease in LOD. The
change in the adsorption/desorption characteristics of the s-DNA and d-DNA on the
electrode surface by F-MWCNT modification may also have contributed to lowering the
LOD. Furthermore, F-MWCNTs can interact with DNA through hydrogen bonding and
electrostatic interactions, as well as π–π stacking interactions, and these interactions are
more complicated than the interactions in MWCNTs. Although a comprehensive study of
DNA adsorption characteristics on F-MWCNTs was beyond the scope of this study, it is
known that graphene oxide, which has a chemical structure similar to that of F-MWCNT,
absorbs s-DNA well, but does not efficiently absorb d-DNA [46]. Graphene-oxide-based
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DNA sensing can be performed in less than 30 min, whereas it takes several hours to
achieve a similar detection rate with carbon nanotubes, which do not have functional
groups [47]. Based on these results, we speculate that F-MWCNTs are more efficient for
discriminating s-DNA and d-DNA than MWCNTs owing to their additional interactions,
such as hydrogen bonding.
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3.5. Stability of the Modified Electrode

The stability of the fabricated DNA sensor over 7 days was investigated by measuring
the average Rct daily (Figure 9 and Figure S5). For the experiment, 2 mL of sample solvent
containing 1 nM P and T1 DNA was poured into the modified electrode. It was first
stored at room temperature for 1 week and then examined via its EIS response (Figure 9a)
after hybridization in 4 mM [Fe(CN)6]3−/4− solution with 1× PBS buffer. Between every
experiment, the electrode was cleaned by ultrasonication in absolute ethanol for 3 min
and DI water for 3 min. Figure 9b shows the charge transfer resistance (Rct) and the
relative standard deviation of Rct is 2.31%, indicating the good stability of the fabricated
electrode. The CV curves of the fabricated electrode are shown in Figure S5 (one cycle and
100 cycles). Even after 100 cycles, the results show that there was no significant change.
This indicates that our physical surface modification using F-MWCNTs is very stable
during the regeneration process. It is important to note that our electrode method is not
a chemical but a physical process; therefore, it is easy to control, thereby reducing LOD,
and is applicable to other carbon sensors.
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4. Summary

We investigated the physical surface modification of multi-walled carbon-nanotube/polymer
electrodes treated using F-MWCNTs and a dip-coating process. The F-MWCNTs could be
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successfully deposited using solution-based physical processes, such as dip coating, be-
cause of their high dispersibility in water. The electrode surface can be used as a recognition
layer, enabling the simple fabrication of DNA sensors. The vital properties of our structure
are that by modifying it with F-MWCNTs, the active area of the electrode was increased,
which resulted in a low charge transfer resistance. Compared to EIS-based DNA sensors
that use electrodes chemically modified with nanomaterials, our electrode has a simpler
and more controllable fabrication process with a very low LOD of 19.9 fM. The physically
modified electrodes were stable during the regeneration process. Our results indicate
that the physical surface modification of electrodes is a promising alternative approach to
chemical surface.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102661/s1, Figure S1: (a) Fabrication process for the functionalized MWCNT (MWCNT-
COOH). (b) Membrane filter remaining after processing by vacuum filtration and (c) after sonicating
with DI water.; Figure S2: Determination of hybridization time. (a) Sixteen UV absorption curves
measured every 30 s for 480 s. (b) Absorbance at a wavelength of 260 nm as a function of time;
Figure S3: (a) Nyquist plot for the different accumulation times at 0.26 V from 1 min to 15 min.
(b) Rct value as a function of time. The sample PBS solutions contained 1 nM probe DNA and
4 mM [Fe(CN)6]3−/4−.; Figure S4: (a) Schematic and (b) image showing the integration of the three
electrodes platform.; Figure S5: Cyclic voltammetry responses of the F-MWCNT/MWCNT/PDMS
electrode after 1 cycle and after 100 cycles. The electrode was immersed in PBS solution containing
4 mM [Fe(CN)6]3−/4−. Table S1: Fitted values of the equivalent circuit parameters from dark Nyquist
plots of devices without and with 5% Cs.
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