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Abstract: Accurate and reliable non-contact temperature sensors are imperative for industrial pro-
duction and scientific research. Here, Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors were studied
as an optical thermometry material. The typical hydrothermal method was used to synthesize
hexagonal Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors and the morphology was approximately
rod-like. The up-conversion emissions of the samples were located at 475, 520, 550, 650, 692 and
800 nm. Thermo-responsive emissions from the samples were monitored to evaluate the relative
sensing sensitivity. The thermal coupled energy level- and non-thermal coupled energy level-based
luminescence intensity ratio thermometry of the sample demonstrated that these two methods can
be used to test temperature. Two green emissions (520 and 550 nm), radiated from 2H11/2/4S3/2

levels, were monitored, and the maximum relative sensing sensitivities reached to 0.013 K−1 at 297 K.
The emissions located in the first biological window (650, 692 and 800 nm) were monitored and the
maximum relative sensing sensitivities reached to 0.027 (R692/650) and 0.028 K−1 (R692/800) at 297 K,
respectively. These results indicate that Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors have potential
applications for temperature determination in the visible and the first biological window ranges.

Keywords: luminescent materials; rare earth doped materials; optical thermometry; luminescence
intensity ratio

1. Introduction

Temperature (T) is an important physical parameter in many fields, like scientific research,
industrial production and biotherapy. Accurate T can usually be detected via contacting
the temperature sensors, such as with thermal resistance, thermocouples and semiconduc-
tor temperature sensors. However, these temperature sensors limit their applications in
temperature exploration when the measured objects are displayed in electromagnetic noise
environments or beings. Thus, it is crucial to explore non-contact temperature sensors, such as
IR thermography, Raman spectroscopy, and luminescence [1–6]. The non-contact temperature
sensor based on temperature-dependent luminescence properties has drawn a lot of attention
for its high resolution, stability and repeatability [7].

For lanthanide ion-doped materials, their luminescence intensity, peak position, emis-
sion band width, emission lifetime and luminescence intensity ratio (LIR) have been
extensive researched for non-contact optical thermometry [7–11]. One of the most interest-
ing developments is LIR-based temperature sensing as it is not influenced by pressure, light
source and/or atmosphere [12]. Er3+ doped nanomaterials are promising in LIR-based
temperature sensing for their evident green emissions from 2H11/2/4S3/2 and excellent
thermal coupling properties [13–16]. Thus, we choose Er3+ as one of the doped rare earth
ions and the green emissions can be used as the detected signal in the visible range for
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thermometry. However, the green emissions have obvious absorption and limited penetra-
tion depth in biological tissues [17,18]. Therefore, the selected emissions shall be located in
biological windows when the object is located in biological tissues [18]. Under 980 nm laser
excitation, Tm3+ can emit red (650 nm) and near-infrared emissions (692 and 800 nm) [19],
which can be used as the detected signal in the first biological window (650–1000 nm).

The non-thermal coupled levels have also been used in LIR thermometry because
of their high sensing sensitivity [20–22]. For example, high relative sensing sensitivity
(0.0034 K−1) was obtained in NaLuF4:Yb/Er/Ho nano-rods at 503 K, which is based
on the emissions at 659 and 547 nm [23]. Therefore, non-thermal coupled level-based
LIR thermometry is an excellent method for temperature measuring, which can promote
relative sensing sensitivity and select suitable wavebands.

Herein, Er3+/Tm3+/Yb3+ were selected as the doped ions, with which Er3+/Tm3+

acted as the emitting centers and Yb3+ acted as the sensitizer. In this study, we selected
hexagonal phase NaYF4 as the host matrix due to its relatively excellent chemical and
thermal stabilities and its low phonon energy (~370 cm−1) [24]. The rod-like NaYF4: Er3+,
Tm3+, and Yb3+ phosphors were prepared through the hydrothermal method. The emis-
sions (450–850 nm) from Er3+/Tm3+/Yb3+ co-doped NaYF4 phosphors were systemically
investigated. High relative temperature sensitivity was achieved via choosing suitable
LIR of green emissions and the emissions located in the first biological window. We can
take advantages of this multi-band noninvasive thermometry in harsh environments or
biological tissues.

2. Experimental Details
2.1. Sample Preparation
2.1.1. Materials

Y(NO3)3·6H2O (99.9%), Yb(NO3)3·6H2O (99.9%), Tm(NO3)3·6H2O (99.9%), Er(NO3)3·6H2O
(99.9%) were all purchased from the Jining Zhong Kai New Type Material Science Co.,
Ltd, Jining, China. Ammonium fluoride (AR), sodium hydroxide (AR), oleic acid (AR)
and cyclohexane (AR) were purchased from the Tianjin Tianli Chemical reagent Co. Ltd,
Tianjin, China. All the chemicals were used directly without further purification.

2.1.2. Preparation of NaYF4: 2 mol% Er3+, 20 mol% Yb3+ and NaYF4: 2 mol% Er3+,
0.5 mol% Tm3+, 20 mol% Yb3+ Phosphors

The Er/Yb co-doped NaYF4 phosphors were prepared using the hydrothermal method.
The preparation processes are described below. First, calculated amounts of sodium
hydroxide were dissolved into 2 mL deionized water. Second, 10 mL absolute ethyl alcohol
and 18 mL oleic acid were added to the nitrate solution and then stirred for 5 min at room
temperature to form a faint yellow solution. Third, 5 mL aqueous solution which contained
calculated amount of Y(NO3)3·6H2O, Yb(NO3)3·6H2O and Er(NO3)3·6H2O was added.
Then 5 mL ammonium fluoride aqueous was immediately added. After stirring for 30 min
at room temperature, the mixed solution was transferred into a 50 mL autoclave and heated
at 180 ◦C for 12 h in a vacuum drying oven. After cooling down to room temperature
and adding a certain percentage of ethanol and cyclohexane, the khaki suspension was
centrifuged (8000 rpm, 2 min) for collection and washed three times with ethanol and
deionized water. Finally, the phosphors were obtained after drying at 60 ◦C for 10 h. The
Er/Tm/Yb co-doped NaYF4 phosphors were prepared using the same method, except for
the amount of Y(NO3)3·6H2O, Yb(NO3)3·6H2O, Tm(NO3)3·6H2O and Er(NO3)3·6H2O.

2.2. Instruments

X-ray diffraction (XRD) patterns of the sample were tested using an X-ray diffrac-
tometer (D8–02, BrukerAXS, Karlsruhe, Germany). The morphology was tested using a
transmission electron microscope (TEM: Tecnai G2 F20, FEI, Hillsboro, OR, USA). The spec-
tra of the samples were tested through the iHR550 grating spectrograph (iHR550, Horiba,
Paris, France). The 980 nm laser used to excite the sample was purchased from the Beijing
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Kipling Photoelectric technology Co., Ltd, Beijing, China. (model: K980F14CC-10.00 W).
For the thermometry experiments, we introduced a Linkam THMS 600 heating stage to
heat the sample. Then the temperature of the sample was measured by thermocouple.
The spectra of the sample at certain temperatures were acquired using the iHR550 grating
spectrometer (iHR550, Horiba, Paris, France).

3. Results and Discussions
3.1. XRD Analysis

The XRD patterns of NaYF4: Er/Yb and NaYF4: Er/Tm/Yb phosphors are presented
in Figure 1a. The XRD patterns of the samples can be indexed to hexagonal NaYF4 crystal
(the JCPDS standard card no. 16-0334), indicating that the dopants (Er, Tm and Yb ions)
are successfully incorporated into the host lattice and do not cause significant changes
to the crystal structure. Figure 1b,c show the TEM images of the samples. Two samples’
morphologies are approximately rod-like. The lengths of the rods are ~890 nm and the
length–diameter ratios are ~3.3.
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Figure 1. (a) XRD patterns of NaYF4: Er/Yb and NaYF4: Er/Tm/Yb phosphors; TEM images of
(b) NaYF4: Er/Yb and (c) NaYF4: Er/Tm/Yb phosphors (the scale bare is 1 µm).

3.2. Power Dependent Up-Conversion Luminescence

To investigate the emission spectra of the synthesized Er/Yb and Er/Tm/Yb co-
doped NaYF4 phosphors, the samples were excited under a 980 nm semiconductor
laser. As shown in Figure 2, the emissions radiated from Er/Yb co-doped NaYF4 phos-
phors are located at 520, 550, 650 and 820 nm, which originated from the transitions
of 2H11/2 → 4I15/2 (Er3+: 525 nm), 4S3/2 → 4I15/2 (Er3+: 550 nm), 4F9/2 → 4I15/2(Er3+:
650 nm) and 4S3/2 → 4I13/2 (Er3+: 820 nm), respectively. The emissions radiated from
Er/Tm/Yb co-doped NaYF4 phosphors are located at 475, 520, 550, 650, 692 and 800 nm.
The extra emissions are derived from the transitions of 1G4 → 3H6 (Tm3+: 475 nm),
1G4 → 3F4 (Tm3+: 650 nm), 3F2 → 3H6 (Tm3+: 692 nm) and 3H4 → 3H6 (Tm3+: 800 nm).
It can be found from the emission spectrum of Er/Tm/Yb co-doped NaYF4 phosphors
that the 820 nm emission is almost invisible because of the intense 800 nm emission peak.
The detailed energy levels and the possible up-conversion processes in Er3+, Tm3+, Yb3+

co-doped materials are displayed in Figure 3. Under the excitation of a 980 nm laser,
the energy level Yb3+: 2F5/2 is populated through ground state absorption (GSA). The
energy level Er3+: 4I13/2 is populated through the energy transferred from Yb3+ (4I15/2
(Er3+) +2F5/2 (Yb3+)→ 4I11/2 (Er3+) +2F7/2 (Yb3+)). The energy level Er3+: 4F7/2 is pop-
ulated via the energy transferred from Yb3+ (4I11/2 (Er3+) +2F5/2 (Yb3+)→ 4F7/2 (Er3+)
+2F7/2 (Yb3+)). After non-radiative relaxation from energy level 4F7/2 to 2H11/2, 4S3/2,
and further to 4F9/2, green (2H11/2,4S3/2 → 4I15/2) red (4F9/2 → 4I15/2) and the emissions
located at 820 nm (4S3/2 → 4I13/2) occur. In addition, the population of 4F9/2 state can
be obtained via another process: 4I13/2(Er3+) +2F5/2 (Yb3+)→ 4F9/2 (Er3+) +2F7/2 (Yb3+),
where the energy level Er3+: 4I13/2 is accumulated from Er3+: 4I11/2 through non-radiative
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relaxation. The energy level Tm3+: 3H5 is populated through the energy transferred
from Yb3+ (3H6 (Tm3+) +2F5/2 (Yb3+)→ 3H5 (Tm3+) +2F7/2 (Yb3+)). The energy levels
Tm3+: 3F2 and 1G4 are populated via the energy transferred from Yb3+ (3F4 (Tm3+)
+2F5/2 (Yb3+)→ 3F2 (Tm3+) +2F7/2 (Yb3+) and 3H4 (Tm3+) +2F5/2 (Yb3+)→ 1G4 (Tm3+)
+2F7/2 (Yb3+)). Blue and red, the emissions located at 692 and 800 nm, are radiated
from the transitions 1G4 → 3H6, 1G4 → 3F4, 3F2 → 3H6 and 3H4 → 3H6, respectively.
Apart from the up-conversion processes between Er-Yb and Tm-Yb, the energy transfer
(ET: 4F9/2 (Er3+)→ 3F2(Tm3+)) and cross relaxation (CR: 3F4 (Tm3+) + 4I11/2 (Er3+)→ 3H6
(Tm3+) + 4F9/2 (Er3+)) occur. The ET and CR can increase the emission intensities at 692
and 650 nm, respectively. The decrease of the green emission is caused by CR, which can
reduce the energy excited to 4F7/2 (Er3+).

Nanomaterials 2021, 11, 2660 4 of 9 
 

 

lated through the energy transferred from Yb3+ (4I15/2 (Er3+) +2F5/2 (Yb3+) → 4I11/2 (Er3+) +2F7/2 

(Yb3+)). The energy level Er3+: 4F7/2 is populated via the energy transferred from Yb3+ (4I11/2 

(Er3+) +2F5/2 (Yb3+) → 4F7/2 (Er3+) +2F7/2 (Yb3+)). After non-radiative relaxation from energy 

level 4F7/2 to 2H11/2, 4S3/2, and further to 4F9/2, green (2H11/2,4S3/2 → 4I15/2) red (4F9/2 → 4I15/2) 

and the emissions located at 820 nm (4S3/2 → 4I13/2) occur. In addition, the population of 
4F9/2 state can be obtained via another process: 4I13/2(Er3+) +2F5/2 (Yb3+) → 4F9/2 (Er3+) +2F7/2 

(Yb3+), where the energy level Er3+: 4I13/2 is accumulated from Er3+: 4I11/2 through 

non-radiative relaxation. The energy level Tm3+: 3H5 is populated through the energy 

transferred from Yb3+ (3H6 (Tm3+) +2F5/2 (Yb3+) → 3H5 (Tm3+) +2F7/2 (Yb3+)). The energy lev-

els Tm3+: 3F2 and 1G4 are populated via the energy transferred from Yb3+ (3F4 (Tm3+) +2F5/2 

(Yb3+) → 3F2 (Tm3+) +2F7/2 (Yb3+) and 3H4 (Tm3+) +2F5/2 (Yb3+) → 1G4 (Tm3+) +2F7/2 (Yb3+)). 

Blue and red, the emissions located at 692 and 800 nm, are radiated from the transitions 
1G4 →  3H6, 1G4 →  3F4, 3F2 →  3H6 and 3H4 →  3H6, respectively. Apart from the 

up-conversion processes between Er-Yb and Tm-Yb, the energy transfer (ET: 4F9/2 (Er3+) 

→ 3F2(Tm3+)) and cross relaxation (CR: 3F4 (Tm3+) + 4I11/2 (Er3+) → 3H6 (Tm3+) + 4F9/2 (Er3+)) 

occur. The ET and CR can increase the emission intensities at 692 and 650 nm, respec-

tively. The decrease of the green emission is caused by CR, which can reduce the energy 

excited to 4F7/2 (Er3+). 

 

Figure 2. Up-conversion spectra of the samples under 980 nm laser excitation (5 W/cm2)  

 
Figure 3. Schematic energy levels and the possible up-conversion processes in Er3+, Tm3+, Yb3+ 

co-doped materials. 

In order to obtain the number of photons required for up-conversion processes, the 

variation law (I∝Pn) of excitation power (p) dependent emission intensity (I) is shown in 

Figure 2. Up-conversion spectra of the samples under 980 nm laser excitation (5 W/cm2).

Nanomaterials 2021, 11, 2660 4 of 9 
 

 

lated through the energy transferred from Yb3+ (4I15/2 (Er3+) +2F5/2 (Yb3+) → 4I11/2 (Er3+) +2F7/2 

(Yb3+)). The energy level Er3+: 4F7/2 is populated via the energy transferred from Yb3+ (4I11/2 

(Er3+) +2F5/2 (Yb3+) → 4F7/2 (Er3+) +2F7/2 (Yb3+)). After non-radiative relaxation from energy 

level 4F7/2 to 2H11/2, 4S3/2, and further to 4F9/2, green (2H11/2,4S3/2 → 4I15/2) red (4F9/2 → 4I15/2) 

and the emissions located at 820 nm (4S3/2 → 4I13/2) occur. In addition, the population of 
4F9/2 state can be obtained via another process: 4I13/2(Er3+) +2F5/2 (Yb3+) → 4F9/2 (Er3+) +2F7/2 

(Yb3+), where the energy level Er3+: 4I13/2 is accumulated from Er3+: 4I11/2 through 

non-radiative relaxation. The energy level Tm3+: 3H5 is populated through the energy 

transferred from Yb3+ (3H6 (Tm3+) +2F5/2 (Yb3+) → 3H5 (Tm3+) +2F7/2 (Yb3+)). The energy lev-

els Tm3+: 3F2 and 1G4 are populated via the energy transferred from Yb3+ (3F4 (Tm3+) +2F5/2 

(Yb3+) → 3F2 (Tm3+) +2F7/2 (Yb3+) and 3H4 (Tm3+) +2F5/2 (Yb3+) → 1G4 (Tm3+) +2F7/2 (Yb3+)). 

Blue and red, the emissions located at 692 and 800 nm, are radiated from the transitions 
1G4 →  3H6, 1G4 →  3F4, 3F2 →  3H6 and 3H4 →  3H6, respectively. Apart from the 

up-conversion processes between Er-Yb and Tm-Yb, the energy transfer (ET: 4F9/2 (Er3+) 

→ 3F2(Tm3+)) and cross relaxation (CR: 3F4 (Tm3+) + 4I11/2 (Er3+) → 3H6 (Tm3+) + 4F9/2 (Er3+)) 

occur. The ET and CR can increase the emission intensities at 692 and 650 nm, respec-

tively. The decrease of the green emission is caused by CR, which can reduce the energy 

excited to 4F7/2 (Er3+). 

 

Figure 2. Up-conversion spectra of the samples under 980 nm laser excitation (5 W/cm2)  

 
Figure 3. Schematic energy levels and the possible up-conversion processes in Er3+, Tm3+, Yb3+ 

co-doped materials. 

In order to obtain the number of photons required for up-conversion processes, the 

variation law (I∝Pn) of excitation power (p) dependent emission intensity (I) is shown in 

Figure 3. Schematic energy levels and the possible up-conversion processes in Er3+, Tm3+, Yb3+

co-doped materials.

In order to obtain the number of photons required for up-conversion processes, the
variation law (I∝Pn) of excitation power (p) dependent emission intensity (I) is shown
in Figure 4. The slopes of the fitting line in the lnI-lnP plot represents the photons (n)
participating in the up-conversion processes [25]. The values of n are 2.1, 1.9, 1.8, 1.5, 1.8,
1.5, 1.4 and 1.4 for 475, 520, 550, 650, 692 and 800 nm emissions, respectively. Therefore,
the emission of blue comes from the three-photon process and the other emissions derive
from the two-photon process. The participating photons, calculated from the slopes, are
consistent with the up-conversion processes in Figure 3.
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Figure 4. Ln-ln plot of emission intensity against the excitation power for NaYF4:Er/Tm/Yb phosphors.

3.3. Temperature-Dependent Up-Conversion Luminescence

In order to analyze the variation law of up-conversion luminescence as the temper-
ature changes, the emission spectra were obtained when the NaYF4: Er3+, Tm3+, Yb3+

phosphors were heated by heating stage. The up-conversion spectra of the sample at dif-
ferent temperatures are displayed in Figure 5a and the temperature-dependent integrated
intensity of the emissions located at different wavelengths are displayed in Figure 5b. As
can be seen, most of the emissions radiated from the sample decrease with increasing
temperature except for the emissions located at 520 and 692 nm. The reason for emission
decreases is that the non-radiative transition increases with the increase of temperature.
However, the emission increases at 520 and 692 nm are due to the thermal excitation from
the adjacent lower energy levels (4S3/2 → 2H11/2 (Er3+)/3H4 → 3F2 (Tm3+)).
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To measure temperature via LIR, we chose the emissions located at 520 and 550 nm
as the detected signals in the visible range and the emissions located at 650, 692 and
800 nm as the signals in the first biological window. For thermal coupled energy levels, the
relationship between luminescence intensity ratio (520 and 550 nm) and temperature can
be mathematically expressed as follows [26,27]

LIR =
Ihigh

Ilow
= Cexp

(
−∆E

kT

)
(1)

where Ihigh and Ilow are the integrated intensities of the green emissions corresponding
to the transition of high energy level to ground state (2H11/2 → 4I15/2) and low energy
level to ground state (4S3/2 → 4I15/2). ∆E is the energy gap between high and low energy
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levels. k is the Boltzmann constant. C is a parameter related to the degeneracy, the
radiative probabilities of the transitions and the angular frequency [26,27]. Using the
integrated areas under the 520 and 550 nm bands and applying Equation (1), a perfect fit
(R > 0.99) to the determined band intensity ratio was obtained. The temperature-dependent
LIR of 520 and 550 nm (R520/550) is shown in Figure 6a, in which the fitting function is
R = 13.9exp(−1141/T). In order to compare the thermometry ability with other research,
we calculated the relative sensing sensitivity (Sr) using the expression that follows [28]

Sr =
1
R

dR
dT

(2)
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The temperature dependent Sr of R520/550 is shown in Figure 6b and the value of
relative sensing sensitivity decreases as the temperature increases from 297 to 560 K. The
maximum value reaches to 0.013 K−1 (297 K).

In order to explore its thermometry ability in biological tissues, we studied the LIR of
the emissions located in the first biological window (650, 692 and 800 nm). The temperature-
dependent ratios of R692/650 and R692/800 are shown in Figure 7a. For the non-thermal
coupled energy levels, the temperature-dependent ratios are fitted via the cubic function
R = B0 + B1T + B2T2 + B3T3 [29] and the fitting parameters are displayed in Table 1.
To evaluate the sensing capacity, the relative sensing sensitivities are calculated through
Expression (2) and the sensitivity curves are displayed in Figure 7b. The relative sensing
sensitivities of R692/650 and R692/800 decrease as the temperature increases from 297 to
560 K. The maximum values reach to 0.027 and 0.028 K−1 (297 K), respectively. To compare
the thermometry capacity of NaYF4: Er/Tm/Yb phosphors, the relevant parameters from
other research are listed in Table 2. As can be seen, the sensing sensitivities of our samples
are relatively high among these works based on thermal coupled levels and non-thermal
coupled levels.
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Table 1. The fitting parameters of R692/650 and R692/800.

Parameter R692/650 R692/800

B0 0.94 0.17
B1 −0.0061 −0.0010
B2 1.3 × 10−5 1.9 × 10−6

B3 −6.7 × 10−9 −7.9 × 10−10

Table 2. Comparison of relative sensing sensitivities in LIR thermometry.

Materials Wavelengths (nm) Temperature Range
(K)

Sr(K−1)
(Temperature, K) Ref.

NaGdF4: Yb/Er 520/550 77–500 0.0112 (298) [30]
La(IO3)3: Yb/Er 520/550 298–343 0.012 (298) [31]

Ba3La(PO4)3: Yb/Er 520/550 298–498 0.0117 (298) [32]
Ba3La(PO4)3: Yb/Tm 690/792 303–503 0.0211 (303) [32]

YF3: Yb/Tm 940/800 303–345 0.008 (310) [33]
NaErF4@NaGdF4 806/654 303–593 0.0058 (303) [34]

GeO2-PbO-PbF2: Yb/Er 520/650 300–466 0.01 (300) [35]
NaYbF4/NaYF4: Tm/Yb/NaYF4 800/1800 303–423 0.0033 (300) [36]

Y2O3: Yb/Tm 684/490 303–573 0.0151 (445) [37]
NaY2F7: Yb/Tm 678/700 307–567 0.016 (415) [38]

NaYF4: Ho 961/1183 113–473 0.008 (367) [39]
Na3ZrF7: Yb/Er/Tm 800/673 313–393 0.0176 (313) [40]
NaYF4: Er/Tm/Yb 520/550 297–560 0.013 (297) This work

692/650 297–560 0.027 (297) This work
692/800 297–560 0.028 (297) This work

4. Conclusions

In summary, NaYF4: Er3+, Tm3+, Yb3+ phosphors were prepared through the typical
hydrothermal method. The up-conversion luminescence and temperature-dependent
emissions were studied under 980 nm laser excitation. The slopes in the lnI-lnP plot are 2.1,
1.9, 1.8, 1.5, 1.8, 1.5, 1.4 and 1.4 for 475, 520, 550, 650, 692 and 800 nm emissions, respectively.
This implies that the 475, 520, 550, 650, 692 and 800 nm emissions are three-photon, two-
photon, two-photon, two-photon, two-photon and two-photon processes, respectively.
Moreover, the thermal coupled energy level- and non-thermal coupled energy level-based
LIR thermometry of the sample demonstrates that these two methods can be used to test
temperature. The maximum relative sensing sensitivities of R520/550, R692/650 and R692/800
reach to 0.013, 0.027 and 0.028 K−1 at 297 K, respectively. The results reveal that Er/Tm/Yb
co-doped NaYF4 phosphors have great potential in LIR-based temperature sensing at room
temperature. Meanwhile, the emissions for thermometry can alter from the visible range to
the first biological window based on the actual requirements.
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