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Abstract: Silver nanoparticles (AgNPs) are frequently found in everyday products and, as a con-
sequence, their release into the environment cannot be avoided. Once in aquatic systems, AgNPs
interact with natural constituents and undergo different transformation processes. Therefore, it is
important to characterize and quantify AgNPs in environmental waters in order to understand their
behavior, their transformation, and their associated toxicological risks. However, the coexistence of
ionic silver (Ag+) with AgNPs in aquatic systems is one of the greatest challenges for the determina-
tion of nanosilver. Ion-exchange resins can be used to separate Ag+ from AgNPs, taking advantage
of the different charges of the species. In this work, Dowex 50W-X8 was used to separate Ag+ and
AgNPs in order to easily determine AgNP concentrations using inductively coupled plasma optical
emission spectroscopy. The separation methodology was successfully applied to river water samples
with different ratios of Ag+ and AgNPs. However, the methodology is not useful for wastewater
samples. The described methodology also demonstrated an improvement in the determination of the
particle size of AgNPs present in river waters by single particle inductively coupled plasma mass
spectrometry when a significant amount of Ag+ is also present.

Keywords: silver nanoparticles; cation-exchange resin; environmental waters; single particle
inductively coupled plasma mass spectrometry

1. Introduction

The number of commercial products available on the market containing engineered
nanoparticles (ENPs) is continuously growing. These nanomaterials are widely used in
the industry because of their small size (<100 nm), which give them novel properties
compared to their bulk counterparts. In our daily life, one of the common ENPs that
can be found in everyday products are silver nanoparticles (AgNPs) because of their
antibacterial properties [1,2]. According to The Project of Emerging Nanotechnologies and
The Nanodatabase, AgNPs are used worldwide in textiles, household appliances, hygienic
products, electronic devices, food and beverage packaging, medical appliances, and goods
for children [3,4]. Because of their large production, the release of these nanoparticles into
the environment during their manufacture, usage, and disposal is unavoidable [5]. Among
the three environmental compartments (air, soil, and water), these emerging pollutants
accumulate in different aquatic systems through water pollution remediation and industrial
or wastewater treatment plant discharges. Another source of AgNP entry is through
landfills, or through agricultural activities, such as the application of sewage sludge, or
the usage of nanopesticides, as these particles can be leached from land and reach surface
waters or groundwaters [6–9]. Through these routes of entry, nanosilver can be transported,
both in their original form or after undergoing transformations [10,11]. In waters, AgNPs
interact with natural constituents and also go through different transformation processes
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that may modify their physicochemical properties [2,6,12,13]. These phenomena alter
the fate, transport, bioavailability, and toxicity of AgNPs. Dissolution is one of the key
transformation processes that they can undergo in aquatic environments [2,12,14]. The
resulting ionic silver (Ag+) from the metallic nanoparticles (NPs) dissolution is considered
to be linked to the toxicity of AgNPs [5,12]. Therefore, concerns about the hazards that
these emerging pollutants present to aquatic living organisms has increased. In fact, there
are several studies that show that both AgNPs and Ag+ exert toxicity effects on algae
(e.g., reduction of growth), plants (e.g., decrease of photosynthetic pigments), animals
(e.g., lowering of locomotor mobility), and other living organisms [15–20]. For this reason,
it is important to characterize and quantify AgNPs in environmental waters in order to
understand their behavior, their transformation, and the associated toxicological risks.
However, the coexistence of Ag+ with AgNPs in aquatic systems is one of the greatest
challenges for the determination of nanosilver in this environmental compartment [21].

In the last few years, diverse analytical methodologies have been presented to over-
come this analytical problem. Field flow fractionation (FFF) has been used, in combination
with inductively coupled plasma mass spectrometry (ICPMS), for tracking the dissolution
of AgNPs in laboratory, processed, and natural waters [22]. FFF has also been used, in com-
bination with other analytical tools, for characterizing and quantifying both silver species
in spiked surface waters [23]. The hyphenation of chromatographic methods with ICPMS
has also been demonstrated to be effective for the separation and quantification of partic-
ulate and ionic silver, and for tracking their dissolution and size transformation [24,25].
However, one of the analytical methodologies that has been gaining in popularity over the
years is single particle inductively coupled plasma mass spectrometry (SP-ICPMS), which
allows the identification, characterization, and determination of the mass and particle num-
ber concentration of AgNPs at low concentrations (ng·L−1 level) [21]. In fact, SP-ICPMS
has been employed to obtain quantitative and qualitative information on AgNPs present
in spiked or non-spiked lake waters [26–29], river waters [28,30,31], tap waters [30,32],
seawaters [33–36], and wastewaters [36–38]. Despite the advantages of these sophisticated
methods, they also present some drawbacks. For example, low recoveries in FFF because of
the interaction of the NPs with the working membranes [39]. In the case of SP-ICPMS, the
presence of high amounts of ionic species of the same element as the analyte can inhibit the
distinction of AgNPs and Ag+, and increase the particle size limit of detection [40]. For this
reason, simpler and less expensive analytical tools for detecting, extracting, and/or pre-
concentrating AgNPs have been developed. Alternatives, such as stripping voltammetry
or cyclic voltammetry, have been used to detect nanosilver in the presence of Ag+ in real
waters [41–43]. Sample pretreatment methods have also been employed in combination
with the aforementioned analytical techniques. A simple approach, such as ultrafiltration,
has been used in combination with ICPMS in order to determine the Ag+ in aqueous
samples [27]. Another methodology that has been extensively used, in combination with
diverse spectrometric techniques, is cloud point extraction to preconcentrate and separate
AgNPs from Ag+ in different spiked and non-spiked environmental waters, without chang-
ing their characteristics [44–55]. However, this methodology also presents some drawbacks.
For instance, the recoveries of AgNPs are neither easily reproducible nor low because of
some critical steps, such as the pH adjustment. To a lesser extent, magnetic solid phase
extraction has also been used, in combination with SP-ICPMS, to selectively separate both
silver chemical forms (nanoforms and ionic forms) [56,57]. Another possible option for
separating the AgNPs and Ag+ is the use of solid phase extraction, taking into account the
ability to separate the different charged species. For example, an anionic-exchange resin
was employed to extract different AgNPs present in wastewaters by modifying the surface
with mercaptosuccinic acid for their adsorption into the resin. The extracted NPs were
analyzed with graphite furnace atomic absorption spectrometry [58]. Apart from anionic-
exchange resin, a method with cation-exchange resin has been developed for removing the
Ag+ present in aqueous samples before AgNP characterization by SP-ICPMS analysis [59].
To our knowledge, this analytical methodology has been applied to wastewaters [59], soil
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extracts [60], and commercial suspensions [61]. The purpose of this work is to extend the
application of this method to other natural waters. With this aim, the cation-exchange
procedure was optimized, and the influence of some components present in natural waters
on the extraction was also evaluated in order to have acceptable recoveries. In addition,
two different setups (batch and column) were studied for performing the solid phase extrac-
tion. Finally, the pretreatment procedure was applied to two river waters and wastewater
samples in combination with inductively coupled plasma optical emission spectroscopy
(ICP-OES). One of the river waters was also analyzed in combination with SP-ICPMS in
order to improve the characterization of the extracted AgNPs.

2. Materials and Methods
2.1. Chemicals, Materials, and Apparatus

Commercial polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) of 75 nm,
and 60 nm of citrate-stabilized bare silver nanoparticles were acquired from Nanocomposix
(St. Louis, MO, USA). The zeta potentials of these nanoparticles are −37 and −54 mV,
respectively. PVP-AgNPs were employed to prepare standards for the method development
and the SP-ICPMS analysis. An ionic silver stock solution (1000 ± 2 mg·L−1), purchased
from Merck (Darmstadt, Germany), was used to prepare the calibration standards for
ICP-OES analysis, and to prepare spiked samples for the method development. Moreover,
mixtures of both aforementioned AgNPs (citrate and PVP) with Ag+ were prepared for the
method evaluation.

To separate AgNPs from Ag+, Dowex 50W-X8 cation-exchange resin was used (Sigma-
Aldrich, Darmstadt, Germany).

Analytical grade hiperpur-quality nitric acid (HNO3 69%, Panreac, Barcelona, Spain)
and sodium hydroxide (NaOH, Fisher Scientific, EUA, Waltham, MA, USA) were used for
resin conditioning. Ultrapure water from a Milli-Q purification system (Millipore Corp.,
Bedford, MA, USA) was utilized to dilute standards, reagents, and samples. Humic acid
(Sigma-Aldrich, Darmstadt, Germany) and calcium (Ca2+)stock solution (1000 ± 2 mg·L−1,
Merck, Germany) were used to study the experimental conditions.

River water samples were obtained from the Osor River (Anglès and Osor, Girona,
Spain) at two different points. The wastewater sample was collected from the wastewater
treatment plant of Girona (Can Dura, Girona, Spain). The main characteristics of the waters
are listed in Table 1.

Table 1. Main chemical characteristics of river waters and wastewater used in this work.

River Water 1 River Water 2 Wastewater

Conductivity (µS·cm−1) 314 367 956
pH 8.3 8.2 7.2

TOC (mg (C)·L−1) 1.975 1.815 -
Alkalinity (mg (CaCO3)·L−1) 107.3 117.1 -

Sodium (mg (Na+)·L−1) 22.88 22.77 115.96
Potassium (mg (K+)·L−1) 1.74 1.80 22.22

Magnesium (mg (Mg2+)·L−1) 5.81 6.67 12.87
Calcium (mg (Ca2+)·L−1) 28.99 34.77 74.48

Batch separation experiments were performed using a rotary mixer Dinko (Barcelona,
Spain). An ultrasonic system, J.P. Selecta (Barcelona, Spain), was used to break down the
possible agglomerated AgNPs. A P-Selecta oven was used to dry the resin before the
ion-exchange procedure.

2.2. Instrumentation

Total Ag concentrations were determined using an Agilent Technologies Vertical
Dual View 5100 ICP-OES (Tokyo, Japan). SP-ICPMS was performed with a quadrupole-
based Agilent Technologies model 7500c ICPMS (Tokyo, Japan) equipped with an octapole
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reaction system (ORS). SP-ICPMS data treatment was carried out using an in-lab Microsoft
Excel spreadsheet. The separation of the signal corresponding to the AgNPs from the
Ag+ was performed by employing the iterative algorithm based on 5 times the standard
deviation, plus the mean of all data points, obtained from the analysis [62]. In order to
transfer the particle intensity to particle mass, the nebulization efficiency was calculated
using the particle frequency method [63]. This method uses the number of particle events
detected during a fixed acquisition time, the particle number concentration, and the sample
flow rate to calculate the nebulization efficiency. The nebulization efficiencies obtained
using the in-lab Microsoft Excel spreadsheet were comparable to the ones obtained using
the RIKILT spreadsheet [64], with the advantage of not needing to use silver standards. The
instrumental characteristics and measurement conditions of the different equipment used
in this study are listed in Table 2. In addition, an ANOVA was performed to determine if
there were statistical differences between the results obtained.

Table 2. Instrumental characteristics and measurement conditions.

Agilent 5100 Vertical Dual View ICP-OES

Instrumental characteristics
RF power 1200 W

Pump speed 12 rpm
Nebulizer chamber Double pass glass cyclonic

Nebulizer Concentric glass
Torch inner diameter 1.8 mm
Nebulizer flow rate 0.7 L·min−1

Argon gas flow rate 12 L·min−1

Plasma configuration Axial (double vision)
Wavelength selector Echelle polychromator

Data acquisition
parameters

Ag wavelength 328.068 nm
Detector Charge-coupled device (CCD)

Reading time 1 s
Readings per replicate 3

Agilent 7500c ICP-MS

Instrumental characteristics
RF power 1500 W

Sample uptake rate 0.3 mL·min−1

Nebulizer chamber Double pass scott
Nebulizer Babington

Torch inner diameter 2.5 mm
Nebulizer gas flow rate 1.1 L·min−1

Sampling cone Ni, 1 mm aperture diameter
Skimmer cone Ni, 0.4 mm aperture diameter

Argon gas flow rate 15 L·min−1

Analyzer Quadrupole
Detector Electron multiplier

Data acquisition
parameters

Single particle measuring mode
Isotopes monitored 107

Dwell time 10 ms
Acquisition time 60 s

Points per spectral peak 1
Readings per replicate 5730

2.3. Separation Procedure

In order to carry out the separation of AgNPs from Ag+ in water samples, a simple
ion-exchange methodology was used. Prior to its use, the cation-exchange resin was
conditioned using 1.5 M HNO3. The resin can be used in this acid form or can be converted
to its sodium form with 0.1 M NaOH solution. The steps followed in this study were
obtained from [61].
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• Batch Studies

In order to study the variables affecting the separation of AgNPs and Ag+, batch
sorption studies were carried out. The required quantity of Dowex 50W-X8 resin was
conditioned. Afterwards, 10 mL of the silver solution containing either AgNPs or Ag+, or
mixtures of them, were added. This solution was rotated for 60 min and then the resin
was left to settle down. The supernatant was extracted, and the silver concentration was
determined in this supernatant solution by ICP-OES. When two extraction procedures
were used, the supernatant was again put in contact with a freshly conditioned amount
of resin, and the mixture was rotated once again for 60 min. The supernatant was again
separated from the resin, and the silver concentration was determined. The fraction of
silver that remains in the supernatant, named the “Remaining silver fraction (%)”, was
calculated according to the following equation:

Remaining silver fraction (%) = [Ag]f/[Ag]i × 100 (1)

where [Ag]f is the remaining silver concentration after the adsorption process, and [Ag]i is
the initial silver concentration.

• Column Studies

The separation of AgNPs and Ag+ was also studied under column conditions. A small
amount of filter paper was placed at the bottom of a cut polypropylene Pasteur pipette, and
0.5 g of the resin was placed inside. The resin was then conditioned with 1.5 M HNO3 and
transformed to its sodium form using 0.1 M NaOH solution. Silver solutions, either AgNPs
or Ag+, were passed through the resin bed, and the eluent of the column was collected
in polypropylene tubes for analysis. The flow rates used in these experiments were from
1.2–1.4 mL·min−1.

3. Results and Discussion
3.1. Effect of the Material Container without the Presence of Resin

Prior to the study of the separation, the stability of the silver solutions, both Ag+ and
AgNPs (75 nm PVP-AgNPs), were tested under different conditions and using containers
of different materials (polypropylene and polystyrene). For this purpose, solutions of
100 µg·kg−1 and different matrix compositions were rotated for 60 min using the same
conditions as the adsorption study, but without the presence of the resin. The results
of these tests can be seen in Figure 1A. The presence of Ca2+ (40 mg·kg−1) in the silver
solutions dramatically affected the stability of the analytes, resulting in losses of more than
55% for both tested materials. The effect was even more prominent in AgNP suspensions,
which showed remaining silver fractions below 10%.
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This behavior can be explained by the adsorption process to the tube walls that is
only effective in the presence of Ca2+. To verify this adsorption process, the tubes were
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emptied, rinsed with Milli-Q water and, afterwards, 10 mL of 5 M HNO3 was added.
Then, the tubes were rotated for 24 h and, finally, the amount of silver was determined
in the acid solution. 80% of the silver, which previously dissipated, was recovered in
the acidic solution, confirming the retention of silver in the tube walls. The presence of
Ca2+ in the AgNP solutions has been previously related to the agglomeration effect [65].
The explanation of both processes (agglomeration and adsorption) may be due to similar
mechanisms, and possibly related to the surface charge of the nanoparticles.

In order to solve this stability problem, the presence of humic acid (25 mg·kg−1) in
the silver solution was tested. Previous studies [65,66] indicate that humic acids stabilize
AgNPs and hamper their agglomeration. The results obtained can be seen in Figure 1B.
Good stabilities of both Ag+ and AgNPs were obtained using humic acids, either with or
without the presence of Ca2+ in the solutions.

An ANOVA test indicated that there were no significant differences between the
container materials tested when humic acids were present (p-values = 0.26, 0.88 and 0.13,
respectively), except in the case of AgNPs without calcium (p-value = 0.02). This could
possibly be because of the unusually low standard deviations obtained in this experiment.
Therefore, taking into account these results, polystyrene tubes were used in the rest of
the work.

3.2. Resin Conditioning and Contact Time

As previously mentioned, the resin can be conditioned in acid or sodium form. The
results of both types of conditioning for Ag+ and AgNPs adsorption in relation to time were
studied, and the results are shown in Figure 2. These experiments were done using 10 mg
of the Dowex 50W-X8 resin. From this figure, the better behavior of the sodium form can
clearly be seen, allowing the separation of both silver forms. These results are in agreement
with those present in the literature that use the present resin in sodium form to carry out
silver ion separation from AgNPs [60,61]. Moreover, as can be observed in Figure 2, from
30 to 60 min is the contact time that allows the better separation of both forms.
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The adsorption procedure was carried out using different silver concentrations with
both ionic silver and AgNPs, and the results obtained were very similar for concentrations
ranging from 20 to 200 µg·Kg−1 (data not shown). Therefore, the separation methodology
can be applied in a broad range of silver concentrations.

3.3. Effect of Calcium and Humic Acids in the Separation

The separation of Ag+ and AgNPs in water samples can be affected by the presence of
interfering substances in the matrix. The presence of cations, mainly Ca2+, in freshwater
samples, can hamper the adsorption of Ag+ by Dowex 50W-X8 resin because of a competing
behavior. Therefore, the effect of the presence of Ca2+ in water samples in the recovery of
both silver forms was studied. However, the instability of the solutions without humic
acids, as previously observed, has to be taken into account. In Figure 3, the recoveries of
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silver (in the form of Ag+ or AgNPs) under different conditions using Dowex 50W-X8 is
shown. Although the recoveries of silver nanoparticles are very low when Ca2+ is present,
this behavior was also observed without resin in the tube (see Figure 1A). Therefore, the
addition of humic acids to stabilize the AgNPs in the presence of Ca2+ becomes mandatory.
As can be observed, the presence of humic acids, without calcium, does not affect the
adsorption behavior of the silver species, indicating that it can be used to stabilize the
solutions in the presence of calcium without any additional effect. The addition of both
humic acids and Ca2+ to the silver solutions shows good stability of AgNPs. However,
Ag+ adsorption is still worse than that observed in the absence of calcium. This is due to
calcium cations competing for the resin. Therefore, although the separation is still feasible,
the conditions must be improved in order to remove Ag+ more efficiently.
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3.4. Effect of Resin Quantity, Double Extraction Procedure, and Reuse of the Resin

To improve the separation of Ag+ and AgNPs, different amounts of resin were tested.
As can be observed in Figure 4, the more the amount of resin, the less the amount of Ag+

remaining in the solution. However, for quantities of resin greater than 50 mg, the amount
of AgNPs slightly decreases. Although, under these conditions, the separation is near
90%, we tried to improve it using a double extraction. The supernatant solution of the
first extraction step was put in contact with a freshly conditioned amount of resin (50 mg
again). After this second extraction process, the amount of Ag+ in the supernatant was
3.0% (S.D. 0.2), and the recovery of AgNPs was 82.4% (S.D. 1.3). Therefore, the separation
is clearly improved by using two extraction processes.

The reuse of the resin was also studied. For this experiment, the resin used for the
separation steps (first or second) was reconditioned in sodium form, following the same
procedure used for conditioning the resin, and reused. As can be observed in Figure 5, the
adsorption of silver ions is still very high using the reused resin, and the adsorption of
AgNPs is almost negligible. The reuse of the resin was carried out four times for Ag+ and
two times for AgNPs (after conditioning each time), and the results were very similar in all
the cases, indicating the suitability of the reuse of the resin. Moreover, an ANOVA test was
carried out and there were not significant differences (p > 0.05) in the remaining values of
ionic silver between extraction cycles.
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3.5. Analysis of Mixtures of Ag+/AgNPs and Application to River Water and Wastewater Samples

The effectiveness of the ion-exchange methodology for separating the AgNPs from
Ag+ was tested using ICP-OES. The resulting aqueous extracts of the Ag+ and AgNPs
mixtures at different proportions of different spiked water samples were analyzed. Due to
the fact that we expected to find only AgNPs in the extracts, the results were calculated
as the total silver concentration measured by ICP-OES in the aqueous extracts divided by
the initial AgNP concentration. Therefore, when the separation works properly, we expect
to obtain values close to 1. The results obtained from using either one or two extraction
steps can be seen in Figure 6. As can be observed, for up to a 1:1 ratio, the measured
concentrations of silver by ICP-OES were similar between the one and two extraction
procedures. However, when the amount of Ag+ is higher, a double extraction procedure is
necessary so as not to overestimate the amount of AgNPs. This behavior is observed with
spiked Milli-Q and river water samples. In all these samples, humic acids have been added
in order to stabilize the AgNPs. Note that neither the addition of humic acids (pH = 8.36),
nor the extraction process (pH = 8.42), remarkably changes the pH of the tested River
Water 1 (initial pH = 8.31).
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The system was also applied to wastewater. However, the adsorption of silver cations
in this type of water was very low. Even with 100 mg of resin and the application of a
double extraction, the adsorption of silver ions only reached 25%. A possible explanation of
this phenomenon is that the ionic strength of these waters was very high, and the presence
of competing cations present in the sample was much higher, hampering the adsorption of
silver ions. Therefore, additional studies of this system are needed to improve and achieve
the separation of AgNPs and Ag+ in different types of environmental waters.

3.6. Separation of Ag+ and AgNPs Using Column Experiments

The separation of both silver forms (Ag+ and AgNPs) was also studied under column
experiments. In these experiments, 100 mL of 100 µg·Kg−1 silver solutions were passed
through the column separately. As can be observed, the separation of both silver species
is almost complete (higher than 90%) when a freshly conditioned resin is used. However,
the reuse of the column, after reconditioning, shows a lower retention of silver ions and,
as a result, a lower separation (Figure 7). Therefore, the column procedure can be used to
separate Ag+ and AgNPs, but an improvement in the conditioning of the resin must be
carried out in order to be able to reuse the resin.
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3.7. Separation of Ag+ from AgNPs Previous to SP-ICPMS Analysis for a Better Quantification
and Characterization of AgNPs

The ion-exchange methodology can also be used in order to decrease the amount of
Ag+ in AgNP suspensions and to improve the determination of AgNP size and quantity
by SP-ICPMS. As can be observed in Figure 8, when silver nanoparticles are mixed with
a relevant amount of ionic silver in river water samples, the discrimination between the
signal coming from ionic silver, and that coming from AgNPs, is difficult. This led to poor
results for particle size distributions. This effect is more pronounced for smaller silver
nanoparticles of 60 nm (Figure 9).
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By using double ion-exchange pretreatment with the Dowex 50W-X8 prior to the
SP-ICPMS analysis, the amount of ionic silver is reduced and the determination of AgNPs
is remarkably better (Figures 10 and 11). The results of the particle size determination in
river water before and after the application of the ion-exchange pretreatment can be seen
in Table 3. The improvement in the particle size determination, in comparison with the
expected values, can be clearly observed.

Table 3. Particle size of the AgNPs determined by SP-ICPMS in a mixture of Ag+:AgNPs 5:1 before
and after a double extraction with Dowex 50W-X8 cation-exchange resin.

Manufacturer Value Calculated Size before
Extraction

Calculated Size after Double
Extraction

79 nm 81 nm 78 nm
59 nm 74 nm 62 nm
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4. Conclusions

In this paper, the effectiveness of the cation-exchange resin Dowex 50W-X8 for the
separation of ionic silver from silver nanoparticles in natural water samples has been
demonstrated. Although the extraction and separation is inhibited when cations such as
Ca2+ are present, the addition of humic acids allows for the overcoming of this handicap
because of its capacity to stabilize AgNPs [66]. The separation of both forms of silver can
be carried out in either batch or column design. The latter allows the treatment of large
quantities of samples. Under batch conditions, the resin could be reused up to four cycles.
However, in column conditions, the resins could not be completely regenerated. Therefore,
further investigation needs to be done regarding the regeneration method of the resin.

This separation methodology, when applied to river water samples, produced good
results when a double extraction procedure was used, even for samples with ionic silver
concentrations up to three times higher than that of the AgNPs. However, the usefulness
of the method for wastewater samples could not be established. The high conductivity of
the sample, which indicates higher amounts of ions in the sample, seems to influence the
proper retention of silver ions. This problem has been previously observed for nickel [67].
Although the dilution of the sample could improve the results, AgNPs will also be diluted,
and this could be a problem when the concentration is already very low. Therefore,
additional research is needed with these types of waters in order to improve the results. The
separation of Ag+ and AgNPs is also useful for determining the particle size distribution
of silver nanoparticles present in river waters by SP-ICPMS when a high amount of ionic
silver is present. The combination of the ion-exchange resin for extracting Ag+, with
SP-ICPMS significantly improves the particle size determination for smaller nanoparticles
(60 nm). This is due to the diminution of the silver ions signals that otherwise overlap
with the silver nanoparticle signal. The discrimination between the continuous and noisy
signals of the dissolved silver and AgNP signals are clearly better when the concentration
of ionic silver decreases. This fact has previously been observed in a study of AgNP size
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and particle number concentration determination in soil aqueous leachates, carried out by
Torrent et al. [62]. In that work, the authors proposed a cloud point extraction methodology
to separate Ag+ and AgNPs. Although the results of both separation systems are similar,
ion-exchange methodology is much simpler and easier to carry out.
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