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Abstract: About 45% of the world’s fruit and vegetables are wasted, resulting in postharvest losses
and contributing to economic losses ranging from $10 billion to $100 billion worldwide. Soft rot dis-
ease caused by Rhizopus stolonifer leads to postharvest storage losses of sweet potatoes. Nanoscience
stands as a new tool in our arsenal against these mounting challenges that will restrict efforts to
achieve and maintain global food security. In this study, three nanomaterials (NMs) namely C60,
CuO, and TiO2 were evaluated for their potential application in the restriction of Rhizopus soft rot
disease in two cultivars of sweet potato (Y25, J26). CuO NM exhibited a better antifungal effect than
C60 and TiO2 NMs. The contents of three important hormones, indolepropionic acid (IPA), gibberellic
acid 3 (GA-3), and indole-3-acetic acid (IAA) in the infected J26 sweet potato treated with 50 mg/L
CuO NM were significantly higher than those of the control by 14.5%, 10.8%, and 24.1%. CuO and
C60 NMs promoted antioxidants in both cultivars of sweet potato. Overall, CuO NM at 50 mg/L
exhibited the best antifungal properties, followed by TiO2 NM and C60 NM, and these results were
further confirmed through scanning electron microscope (SEM) analysis. The use of CuO NMs as an
antifungal agent in the prevention of Rhizopus stolonifer infections in sweet potatoes could greatly
reduce postharvest storage and delivery losses.

Keywords: sweet potato; C60 nanomaterial; TiO2 nanomaterial; CuO nanomaterial; antifungal
effect; physiology

1. Introduction

The consumption of fruits and vegetables has significantly increased in recent years
due to the exponential growth of the population. It has been estimated that population
growth by 2050 will be 9.8 billion and will require a 70% increase in food production to
overcome food security [1]. The postharvest loss poses a serious threat to global food
security due to devastating effects on vegetables and fruits during storage. According to a
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report of Food and Agriculture Organization of the United Nations (FAO) in 2015, about
45% of the world’s fruit and vegetables were wasted, resulting in economic losses ranging
from $10 billion to $100 billion worldwide [2]. It has been documented that in developed
countries, the loss rate of fresh fruit and vegetables is 20–25% [3,4]. However, developing
countries' situation is more severe due to inadequate handling facilities and losses reaching
~50% [5].

The postharvest diseases in crops and fruit causing major losses are primarily con-
trolled using fungicides [6,7]. However, in recent years, the resistance of Rhizopus stolonifer
to conventional synthetic fungicides [8] has drastically increased because the fact that the
widespread, long-term agricultural use of synthetic fungicides has caused some major
postharvest pathogens to develop resistance [9]. Furthermore, fungicides have been ap-
plied to overcome aforementioned losses and 70–99% of these never reach their target,
except for several fungicides [10–12]. The presence of these fungicides causes a detrimental
impact on soil health and surface water quality as well as by terrestrial organisms [13,14].
Recently, extensive research has been conducted to minimize the heavy dependence on
synthetic fungicides for controlling postharvest diseases [15]. However, this mounting
challenge needs safe and environmentally friendly solutions for perishable crops including
sweet potatoes [15].

Nanoscience stands as a new tool in our arsenal against these mounting challenges
that will restrict efforts to achieve and maintain global food security. Previously, studies
reported that nanomaterials (NMs) increase the shelf life of fruits as compared to other
traditional methods that are used to minimize postharvest losses [16]. For example, studies
reported that silicon dioxide [17], titanium dioxide [18], zinc oxide [19], and chitosan [8]
NMs are often used in fruit and vegetable preservation as antibacterial and antifungal
agents. Adeel et al. reported inhibitory effects of chitosan on black rot disease caused
by C. fimbriata in sweet potato roots [20] and suggested that Aureofaciens SPS-41 might
constitute an attractive biological fumigant for controlling black rot disease in sweet potato
roots [21]. Similarly, another study has shown that metal-based NMs have a significant
antifungal effect on Botrytis cinerea on rose petals [22]. Interestingly, foliar application
of engineered nanomaterials (ENMs) such as Fe2O3, TiO2, MWCNTs, and C60 NMs, has
been shown to significantly increase biomass and inhibit virus proliferation in tobacco
(Nicotiana benthamiana) [23]. Recently, Adeel et al. explored the protective role of carbon-
based NMs, with suppression of tobacco mosaic virus (TMV) symptoms via hindered
physical movement and viral replication [24]. Farooq et al. described the emerging field
challenges and research gaps that are instrumental to the successful development of a
nanotechnology-based, multidisciplinary approach for prevention of viral diseases [25].

Sweet potatoes are the seventh largest food crop in the world and the fourth most
important in China [26,27]. Due to 70% water content, sweet potato can wilt easily, become
discolored, and start decaying, which causes an economic loss of more than 30% [28].
During storage and transportation, sweet potatoes are susceptible to pathogen invasion [29],
leading to soft rot, black spot, and other types of disease. Soft rot is caused mainly by
Rhizopus stolonifer, known as black bread mold, and is a major cause of the loss of sweet
potatoes during postharvest storage, with the fungal plant pathogen, Fusarium circinatum,
also causing losses [30]. Rhizopus stolonifer is widely distributed in the air and soil, so it
can infect sweet potatoes, rapidly developing from water stains, to rot the roots completely.
The whole rotting process can be completed in just a few days [31]. These pathogens are
wound parasites, so they usually require a wound in the skin or stem of the plant to contact
susceptible tissue and initiate the infection. The best way to control Rhizopus soft rot is to
heal any wounds incurred during harvest and by avoiding any damage during storage.
However, injuries occur unavoidably during washing, packing, shipping, and marketing,
so these wounds could be a major factor in sporadic outbreaks of Rhizopus soft rot [32].

The application of nanotech for the storage of fruit and vegetables is still in its initial
stages, so further investigations, new discoveries, and research breakthroughs are required,
especially, for the storage of sweet potatoes. At the same time, new alternatives and less
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harmful strategies need to be established for controlling and treating infectious diseases
caused by phytopathogens. Therefore, the objectives of the present study are to investigate
the postharvest application of nanomaterials as a novel strategy for controlling postharvest
diseases in sweet potatoes. This study aims to evaluate the antifungal activity of CuO, TiO2,
and C60 NMs against Rhizopus stolonifer in sweet potatoes and to determine the effects of
nanomaterials on the defense-related activity of several enzymes and hormones and the
structure of sweet potatoes. To our knowledge, this is the first study that evaluates the
mechanistic physiological, and biochemical, evidence on the impact of different levels of
ENMs on fungus inhibition.

2. Materials and Methods
2.1. Experimental Materials

Two sweet potato cultivars, Y25 and J26, bred by the Yantai Academy of Agricultural
Sciences and the Crop Research Institute of Shandong Academy of Agricultural Sciences re-
spectively, were selected for investigating the antifungal effects of selected NMs. The sweet
potatoes used in the experiment were provided by the Institute of Dry Farming, Zhanjiang
Academy of Agricultural Sciences (Zhanjiang, China). Rhizopus stolonifer (Ehr. ex Fr.) Vuill
was provided by Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu
Province of China.

2.2. Nanomaterial Characterization

The C60, CuO, and TiO2 NMs, selected as antifungal material for this experiment,
were purchased from the Shanghai Pantian Powder Materials Co., Ltd. (Shanghai, China).
A transmission electron microscope (TEM) (JEM-2100, JEOL, Tokyo, Japan) was used to
determine the shape and size of the NMs before their use in experiments. To prepare the
samples for TEM, the NMs were dissolved, sonicated in ethanol, then dropped onto Cu
grids. The powders were dispersed in deionized water for observation of zeta potential
and dynamic light scattering (DLS).

2.3. Preparation of Sweet Potato Inoculant and Inoculation

A small amount of sterile water was added to Rhizopus stolonifer (Ehr. ex Fr.) Vuill
after 7 d of culture, which was then gently scraped with a sterile inoculation ring, filtered
through four layers of wipe paper, counted using a hemocytometer, diluted with sterile
water, and formulated into a spore suspension at 1 × 106 CFU/mL, ready for use.

The sweet potatoes were washed with tap water then dried in the air. After wiping
with a 75% ethanol solution they were placed on a sterile bench. Each variety of sweet
potato was deliberately damaged by making two small holes (diameter, 5 mm; depth,
5 mm), 30 mm apart using a sterilized punch. Using a disposable syringe, 25 µL of the
bacterial suspension were placed in the holes, allowed to dry, then stored in an artificial
climate box (SAFE, Ningbo, China) at a temperature of 28 ◦C and relative humidity of 85%.

2.4. Treatment Groups

We used three NMs at concentrations of 50 and 200 mg/L against two cultivars of
sweet potato with their respective controls, eight treatments in total. Each treatment group
comprised three replicates, with three parallel samples for each replicate. Each sweet
potato inoculated was sprayed with 0.5 mL/cm2 NMs solution on the surface and dried
out naturally in the air.

2.5. SEM (Scanning Electron Microscope) Assessment

A longitudinal cut was made along the infected part of the sweet potato, and a tissue
sample (about 1 cm2) was taken from the hole previously made. The sample was stored in
2.5% glutaraldehyde fixing solution then dried under vacuum to remove the water before
observation by SEM.
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2.6. Determination of Hormonal Contents of Sweet Potato

The contents of indole-3-acetic acid (IAA), Indolepropionic acid (IPA), brassinolide
(BR), gibberellic acid 3 (GA-3), gibberellic acid 4 (GA-4), zeatin riboside (ZR), dihydrozeatin
riboside (DHZR), and methyl jasmonate (JA-ME) were determined by following Adeel
et al. [23,24]. Those hormonal contents of sweet potato roots were extracted, purified, and
quantified using enzyme linked immunosorbent assay (ELISA) after the exposure test [33].

2.7. Determination of Enzyme Activity of Sweet Potato

Different enzyme-linked immunosorbent assay (ELISA) kits (Nanjing Jiancheng Bio-
engineering Institute, Nanjing, China) were used to determine the antioxidant enzyme
activity and malondialdehyde (MDA) content using established experimental methods
and operations [34,35].

2.8. Biochemical Analysis

Frozen sweet potato (2 g) powder obtained by lyophilizing and crushing was repeat-
edly extracted with 5 mL of ethyl acetate until the extract was colorless. All the extracts
were transferred to a 50 mL volumetric flask for a constant volume, then centrifuged at
11,000× g for 4 min. The absorbance of the supernatant was evaluated using an ultra-
violet/visible spectrophotometer (UV-2802, Unico (Shanghai) Instrument Co., Shanghai,
China) at 454 nm. The carotenoids content (g/(100 g)) was calculated as OD454 nm × 10 [36].

2.8.1. Total Flavone Content

To prepare the standard curve, a 0.021 g portion of rutin standard dried at 105 ◦C
was made up to 100 mL with a 30% ethanol solution. Then 0, 0.5, 1.0, 1.5, 2.0, 2.5, and
3.0 mL of this rutin standard solution were each placed in a test tube, made up to 5 mL with
30% ethanol, mixed well, then 0.3 mL of 5% sodium nitrite solution were added. The tubes
were shaken well, then allowed to stand for 6 min. After adding 0.3 mL of 10% aluminum
nitrate solution, the tubes were mixed for 5 min. Four mL of 1 mol/L sodium hydroxide
solution were added, and then 0.4 mL of 30% ethanol to make the total volume up to 10 mL,
then shaken well. After standing for 10 min, the absorbance was measured at 510 nm.

2.8.2. Total Phenol Content

It was measured by preparing 0.5 g sample of frozen sweet potato powder added to
10 mL of 60% ethanol solution, ultrasonically extracted for 30 min, centrifuged at 10,000× g
for 10 min, and then 1 mL of the supernatant was taken. The rest of the procedure was
the same as that for the standard method above. The total flavone content (g/(100 g)) was
calculated as the weight of rutin (mg) divided by the fresh weight of sweet potato (g). The
total phenol content was determined using the Folin–Ciocalteu method. A 0.04 g portion
of gallic acid was accurately weighed then dissolved in 10 mL of 95% ethanol and made up
to 100 mL with water, to provide a 400 mg/L gallic acid standard solution. Then 1, 2, 3,
4, 5, 6, and 10 mL of this solution were accurately measured using volumetric flasks, to
provide the 40, 80, 120, 160, 200, 240, and 400 mg/L gallic acid standard solutions. Then
0.5 mL of the above solution was measured into a 25 mL volumetric flask, mixed with
1 mL of a 1 mol/L solution of Folin phenol reagent, allowed to stand for 5 min, and then
5 mL of 7.5% sodium carbonate solution were added, and made up to 25 mL. After shaking
well, the solutions were heated in a water bath at 40 ◦C for 30 min. The absorbance was
then adjusted to zero using distilled water, and the solution absorbance was measured at
765 nm. The standard curve was used to obtain the final result.

For sample measurement, 2 g of sweet potato were accurately weighed then added
to 20 mL of 80% methanol in a centrifuge tube, shaken, sonicated at 40 ◦C for 30 min in
the dark, and centrifuged at 4 ◦C and 9000× g for 30 min. A 0.5 mL sample of the sweet
potato extract was measured following the same procedure as for preparing the standard
curve. The total phenol content (g/(100 g)) was calculated as the weight of gallic acid (mg)
divided by the fresh weight of sweet potato (g).
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2.8.3. Ascorbic Acid Content

It was measured by preparing the standard curve; 1.5 g of activated carbon was
added to 50 mL of standard solution (Vitamin C, 1 mg/mL), shaken well for full oxidation,
then filtered. Ten milliliters of the filtrate was placed in a 500 mL volumetric flask, 5.0 g
of thiourea was added, and then made up to 500 mL, with 1% oxalic acid solution for
later use. Then 5, 10, 20, 25, 40, 50, and 60 mL of this diluted solution were placed into
100 mL volumetric flasks and made up to 100 mL with 1% thiourea solution. Using this
sample measurement procedure, tritium is formed so that the colors can be compared. The
standard curve was drawn with absorbance as the ordinate and ascorbic acid concentration
(µg/mL) as the abscissa.

2.9. Data Analysis

The results were expressed as the mean ± standard deviation from triplicate samples.
All the data were analyzed by one-way analysis of variance with Duncan’s test using
the SPSS 19.0 statistical software package for Windows (IBM Corp., Armonk, NY, USA).
Differences were considered statistically significant at p < 0.05.

3. Results and Discussion

This section is divided by subheadings and provides a concise and precise description
of the experimental results, their interpretation, as well as the experimental conclusions
that can be drawn.

3.1. NMs Characterization

The average diameter of the carbon 60 (C60) NM was approximately around 70 nm
(Figure 1A) with that of the copper oxide (CuO) NM ranging from 70 to 80 nm (Figure 1B)
and that of the titanium dioxide (TiO2) NM approximately 75 nm (Figure 1C). The zeta (ζ)
potential of the C60 NM dispersed in deionized water at 100 mg/L was −18.933 ± 1.501 mV,
943.100± 6.788 nm; that of the CuO NM dispersed in water at 100 mg/L was 14.900 ± 1.217 mV,
2790.000 ± 19.799 nm; and that of the TiO2 NM dispersed in water at 0.5 mg/mL was
−12.967 ± 0.950 mV, 1110.000 ± 79.196 nm. Results of Zeta potential show moderate
stability of all applied nanomaterials.
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3.2. NMs Treatment Suppressed the Soft Rot Symptoms and Disease Development

The potential role of NMs in promoting the plant post-harvesting overall quality and
biotic/abiotic stress tolerance has been well documented [37,38]. Recently, it has been
reposted that several NMs act as anti-pathogenic agents and play vital roles in disease
prevention [24,39]. The transverse sections of the Y25 cultivar of sweet potatoes (Figure 2A)
showed that the plaque depth after CuO NM treatment was very shallow, with the degree
of soft rot being less than those of the other treatment groups. However, sweet potatoes
from the C60 NM treatment group exhibited serious soft rot.
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Figure 2. Representative images of the cross sections of sweet potatoes inoculated against soft rot: (A) representing Y25
cultivar and (B) representing J26 cultivar of sweet potato at different concentrations of NMs. CK is not sprayed with
any NMs.

The transverse sections of the J26 cultivar of sweet potatoes (Figure 2B) showed that
the plaque depth and infection area of the C60 NM treatment group were significantly
greater than those of the other treatment groups. Regarding the degree of soft rot, the
softened condition of sweet potatoes in the C60 NM treatment group was more serious
with an obvious alcohol aroma, but the TiO2 NM and CuO NM treatments exhibited
good antifungal effects. Our findings are in agreement with previous studies, as early
studies also reported that metal-based NPs are used as a fungicide against the soft rot
of potatoes [40]. Nafady et al. reported the fungicidal impacts of ZnO NPs against soft
rot of sweet potato at 50 ppm applied concentration. Whereas in the current study CuO
NMs produces a significant antifungal effect as compared to other applied materials. The
application of three different types of NMs in this study is the novel aspect of this work as
previously published literature focused on one type of NM [41].

For both the Y25 and J26 sweet potato cultivars, we measured plaque depth (cm)/diameter
(cm) as shown in Figure 3 and the CuO treatment provided the best level of fungistasis
followed by the TiO2 NM and C60 NM treatments. Our results were further confirmed by
scanning electron microscope (SEM) images (Figure 4).
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Figure 4. Representative scanning electron microscopic (SEM) images of the cross sections of inoculated sweet potato
(A) representing Y25 cultivar and (B) representing J26 cultivar of sweet potato at different concentrations of NMs.

The SEM images (Figure 4A,B) showed that the antifungal effect on Y25 sweet potatoes
was better than that on J26 sweet potatoes. Compared with the control, the tissue rot at the
two concentrations of C60 NM was poorly contained. The CuO NM treatment exhibited
a good antifungal effect, with tissue rot at both concentrations being less. For Y25 sweet
potatoes, the TiO2 NM treatment provided a better antifungal effect with less tissue rot
observed compared with the control.

The SEM images showed that the extent of tissue rot on the 200 mg/L C60 NM
treatment group was slightly improved compared with the control, but the 50 mg/L
C60 treatment offered no significant improvement. For sweet potatoes treated with CuO
NM, the tissue rot improved at both concentrations. The SEM images showed that the
two concentrations of TiO2 NM did not provide good inhibition of sweet potato rot.
In summary, phenotypic observation, SEM imaging, and plaque depth (cm) to plaque
diameter (cm) for two sweet potato cultivars clearly demonstrate that CuO NMs at 50 mg/L
were highly effective at suppressing the development of soft rot symptoms and disease
in sweet potatoes. The exact mechanism behind the excellent fungicidal potential of CuO
NMs needs to be explored yet. One possible explanation is the production of Cu2+ ions and
their effect on the growth and metabolism of Rhizopus stolonifer, which leads to inhibition
of fungus production [41].

3.3. NMs Application Enhances Hormonal Contents of Sweet Potato

Plant hormones regulate many processes during plant growth and development [33],
so the effects of nanomaterials on plant hormones should be an important index for judging
their antifungal effect. Indole-3-acetic acid (IAA) is the most prominent phytohormone
in plants, playing a very important role in the process of plant growth and development.
Auxin-like hormones affect growth, maturation, and senescence at the organ level, and,
at the cellular level, can affect cell elongation, division, and differentiation [1–3,42,43].
Brassinolide (BR) shows some characteristics of auxin and gibberellin, being able to promote
vegetative growth, flower bud differentiation, and the growth of plants. BR also mediates
plant responses to various abiotic and biotic stresses [44,45]. Gibberellic acid (GA) is an
endogenous plant hormone, which can stimulate plant growth and development. GA has
been synthesized and generally used as a growth promoter in production by promoting
seed germination and the growth of plant stems and leaves, regulating flowering, increasing
yield, and improving quality [46,47]. Indolepropionic acid (IPA) also participates in many
important metabolic processes in plants [48]. Overall, these four hormones can regulate
the growth of plants and enhance their tolerance to abiotic stress.

An analysis of the contents of GA, IPA, BR, and IAA, which play an important role
in the regulation of plant growth and development in Y25 sweet potatoes (Figure 5A–E),
leads to the following findings.

The content of GA-4 in sweet potatoes from the CuO NMs treatment group was
significantly higher (34%) from those of the control group followed by TiO2 NMs (15%)
group, respectively, at 50 mg/kg of applied concentration. The lowest content GA-4 was
observed in the case of C60 NMs treatment at 50 mg/kg of applied concentration. A
similar trend was noted in GA-3 but the TiO2 NMs and CuO NMs treatment did not
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show the significant result at 50 mg/kg of applied concentration. IPA, IAA, and BR
content was significantly increased with the inoculation of CuO NMs of 26%, 78%, and
51%, respectively, at 50 mg/kg of applied concentration as compared to control. With the
increase of applied NMs concentration, a downward result was observed for the production
of hormonal content.
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Figure 5. Effect of different NMs on the mean contents (n = 3) of (A) gibberellic acid-4, (B) gibberel-
lic acid-3, (C) indolepropionic acid, (D) indole-3-acetic acid, (E) brassinolide, (F) zeatin riboside,
(G) methyl jasmonate, and (H) dihydrozeatin riboside hormones in sweet potato cultivar (Y25) ex-
posed to soft rot disease. Different small letters represent significant difference according to Duncan’s
multiple range test (p < 0.05. n = 3).

Overall, analysis of the four hormones (GA, IPA, BR, and IAA) that have a great
influence on plant growth and development showed that the TiO2 NMs treatment provided
the highest antifungal effect, followed by C60 NMs and CuO NMs, respectively. The
contents of dihydrozeatin riboside (DHZR), zeatin riboside (ZR), and methyl jasmonate
(JA-ME) from each treatment group were not significantly different from those of the
control group (Figure 5F–H).

Our results lead to the following findings for the contents of GA, IPA, BR, and IAA in
J26 cultivars of sweet potato (Figure 6A–E). The content of GA-4 in sweet potatoes from the
CuO NMs treatment group was significantly higher (27%) than those of the control group
followed by TiO2 NMs (15%) group, respectively, at 50 mg/kg of applied concentration. The
lowest content GA-4 was observed in the case of C60 NMs (7%) treatment at 50 mg/kg of
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applied concentration. A similar trend was noted in GA-3 where CuO NMs treatment group
was significantly higher (59%) and interestingly TiO2 NMs and C60 NMs show similar
trends and reported (11%) of GA-3 content. IPA, IAA, and BR contents were significantly
increased with the inoculation of CuO NMs of 25%, 46%, and 19%, respectively, at 50 mg/kg
of applied concentration as compared to control. However, C60 significantly shows the
downward result for hormone production for IPA, BR, and IAA with −19%, −16%, and
−0.25%, respectively, at 200 mg/kg of applied concentrations.

Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 18 
 

 

contents were significantly increased with the inoculation of CuO NMs of 25%, 46%, and 

19%, respectively, at 50 mg/kg of applied concentration as compared to control. However, 

C60 significantly shows the downward result for hormone production for IPA, BR, and 

IAA with −19%, −16%, and −0.25%, respectively, at 200 mg/kg of applied concentrations. 

 

Figure 6. Effect of different NMs on the mean contents (n = 3) of (A) gibberellic acid-4, (B) gibberellic acid-3, (C) 

indolepropionic acid, (D) indole-3-acetic acid, (E) brassinolide, (F) zeatin riboside, (G) methyl jasmonate, and (H) 

dihydrozeatin riboside hormones in sweet potato cultivar (J26) exposed to soft rot disease. Different small letters represent 

significant difference according to Duncan’s multiple range test (p < 0.05. n = 3). 

Overall, analysis of the four hormones including GA, IPA, BR, and IAA showed that 

the TiO2 NMs treatment provided the lowest antifungal effect, followed by C60 NMs, with 

Figure 6. Effect of different NMs on the mean contents (n = 3) of (A) gibberellic acid-4, (B) gibberel-
lic acid-3, (C) indolepropionic acid, (D) indole-3-acetic acid, (E) brassinolide, (F) zeatin riboside,
(G) methyl jasmonate, and (H) dihydrozeatin riboside hormones in sweet potato cultivar (J26) ex-
posed to soft rot disease. Different small letters represent significant difference according to Duncan’s
multiple range test (p < 0.05. n = 3).

Overall, analysis of the four hormones including GA, IPA, BR, and IAA showed that
the TiO2 NMs treatment provided the lowest antifungal effect, followed by C60 NMs, with
CuO NMs providing the best effect at 50 mg/kg of applied concentration as compared
to control. The contents of dihydrozeatin riboside (DHZR), zeatin riboside (ZR), and
methyl jasmonate (JA-ME) from each treatment group were not significantly different
from those of the control group (Figure 6F–H). Conclusively, we observed better hormonal
content in Y25 cultivar of sweet potato as compared to J26 cultivar. The CuO NM treatment
shows the best antifungal effect followed by the TiO2 NM treatment group, with the worst
being the C60 NM treatment in both cultivars at 50 mg/kg of applied concentration as
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compared to control. Shang et al. observed that the use of CuO NP partially helps the plant
to balance the water in shoots, and thus controls ABA (abscisic acid) production in the
plant tissues, consequently stimulating the plant response against abiotic stress [49]. Our
findings suggest that CuO NP enabled crosstalk between different hormonal contents in
sweet potato exposed to soft rot disease and effectively enhanced the defense response, thus
promoting the freshness of sweet potato. Increase in concentration of applied nanomaterial
decreases the antifungal effect in all treatments.

3.4. Activation of the Antioxidant Activities in Sweet Potato over Application of NMs

Reactive oxygen species (ROS) induce defense mechanisms against abiotic stress
and activate antioxidant systems [50]. Little research has been conducted to elaborate
the combined effects of NMs and soft rot disease in sweet potatoes on the production
of antioxidant enzymes. ROS enzyme activity including CAT (catalase), MDA, SOD
(superoxide dismutase), and POD (peroxidase) was measured in NM-treated sweet potatoes
that were infected with soft rot (Figure 7A–D).
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Figure 7. Effect of NMs treatment on the mean content (n = 3) of (A) catalase, (B) malondialdehyde,
(C) superoxide dismutase, and (D) peroxidase enzymes in sweet potato (Y25) exposed to soft rot
disease. Different small letters represent significant difference according to Duncan’s multiple range
test (p < 0.05. n = 3).

Antioxidant enzymes play an important role in detoxifying sources of abiotic stress [51,52].
Stress can increase the production of reactive oxygen species (ROS), which destroy bi-
ological macromolecules and reduce enzyme activity. Reducing stress can thus help to
increase the content of some protective enzymes such as peroxidase (POD) and catalase
(CAT) [53,54]. In plants, CAT mainly removes hydrogen peroxide produced during electron
transport, β-fatty acid oxidation, and photorespiration, thus preventing damage caused
by ROS free radicals to plants [55]. CAT also plays an important role in plant growth and
development, stress defense response, oxidative senescence, and other physiological pro-
cesses. Its expression activity is also affected by many biological and abiotic factors, such
as light, temperature, high salt, drought, plant hormones, and other pathogenic microor-
ganisms [56]. As a protective enzyme of the in vivo defense system, POD can effectively
catalyze the decomposition of hydrogen peroxide into water, thus effectively preventing
its accumulation in vivo and eliminating potential damage to the cell membrane structure
of leaves [57].

Superoxide dismutase (SOD) is the first line of defense against an active oxygen-
scavenging system, which can convert O- into O2 and H2O2, thus reducing the toxic effect
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of ROS free radicals on cells [58,59]. Malondialdehyde (MDA) is the final decomposition
product of membrane lipid peroxide, so it indicates the degree of membrane oxidation in
plant cells [56].

The enzyme activity determined in Y25 cultivar of sweet potatoes (Figure 7) showed
that the activities of CAT, MDA, SOD, and POD at the 50 mg/L of CuO NMs group was
non-significant (0–2%) as compared to control. With C60 NMs treatment, the activities of
CAT, MDA, SOD, and POD at the 50 mg/L were significantly higher (30–49%) as compared
to control. TiO2 NMs treatment group showed a significant increase for MDA (18%) and
SOD (26%), respectively, and insignificant for CAT (7%) and POD (10%) as compared to the
control group at 50 mg/L of applied concentration. All enzymatic activites were increased
with the increase of applied NMs concentration but the lowest increase was observed for
the CuO NMs group.

The enzymatic activities observed in J26 cultivar of sweet potatoes (Figure 8) showed
that the activities of CAT, MDA, SOD, and POD at the 50 mg/L of CuO NMs group was
non-significant (0–4%) as compared to control. TiO2 NMs treatment group showed a
significant increase for POD (12%) and a non-significant increase in the case of MDA (2%),
CAT (7.9%), and POD (7.7%) as compared to the control group at 50 mg/L of applied
concentration. With C60 NMs treatment, the activities of CAT, MDA, SOD, and POD at the
50 mg/L was significantly higher (19–25%) as compared to control. All enzymatic activities
were increased with the increase of applied NMs concentration but the lowest increase was
observed for the CuO NMs group. However, modulation in enzymatic activity for J26 was
not as significant as the Y25 cultivar of sweet potato.
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Figure 8. Effect of NMs treatment on the mean content (n = 3) of (A) catalase, (B) malondialdehyde,
(C) superoxide dismutase and (D) peroxidase enzymes in sweet potato (J26) exposed to soft rot
disease. Different small letters represent significant difference according to Duncan’s multiple range
test (p < 0.05. n = 3).

The antimicrobial/fungal pathogens of the applied nanomaterials might be attributed
to accumulate ROS, which caused oxidative stress in cells, including lipid peroxidation in
the cell membrane leading to leakage of intracellular contents, DNA damage, and inhibi-
tion of partial enzyme activities connecting with cell growth; interacted with respiratory
chain enzymes, leading to disruption of adenosine triphosphate production; and caused
protein dysfunction, including destruction of Fe-S clusters, the cellular donor ligands
that coordinate Fe and exchange of catalytic or/and structural metal, resulting in the
death of phytopathogens [19,60,61]. These findings can guide researchers and other stake-
holders dealing with post harvesting of sweet potato regarding the selection of specific
nanoparticles for their use as antifungal agents.
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3.5. Nutrients Content of Sweet Potatoes

Vitamin C (Vc), an indispensable product of plant metabolism, is also involved in
plant antioxidants [62], photosynthesis [63,64], and metabolic regulation [65]. Vc can
rapidly react with ROS and participate in their removal during aerobic metabolism [66].
Vc can also maintain the reduced state of fat-soluble antioxidants, thereby protecting the
body and normal metabolism from oxidative stress [67]. Other studies have shown that
Vc is involved in the photosynthetic system and mitochondrial electron transfer [68]. In
plant cells, carotenoids are mainly located in plastids and participate in physiological
functions such as photomorphogenesis and photoprotection [69]. Some oxolytic products
of carotenoids are also important precursors of phytohormones such as abscisic acid
(ABA) and strigolactones, so are closely related to the growth and development of higher
plants [70]. Phenols are important secondary metabolites of plants, being widely present in
plants and participating in many physiological and biochemical reactions. Flavonoids play
an important role in plant growth, development, flowering, and fruiting, with antibacterial
and disease-prevention properties [71].

The antifungal effect of the NMs and the feasibility of their practical use can be
measured by analyzing changes in the contents of the main nutrients in sweet potatoes.
Figures 9 and 10 show that the contents of nutrients at the 50 mg/L CuO NMs treatment
group were significantly higher (26–76%) as compared to the control group, with CuO NMs
still exhibiting good antifungal properties. Overall, the nutrient content from the TiO2 NMs
treatment was not significantly (5–54%) different from that of the control group, indicating
that although TiO2 NMs could inhibit the development of soft rot, it would not be the
most suitable antifungal treatment for sweet potato transport and storage. The C60 NMs
treatment did not produce good results at both concentrations and was not significantly
(0.5–13%) different from the control group. CuO NMs treatment enhances the nutrient
content of sweet potato including Vc, carotenoid, phenol, and flavone content at 50 mg/L
of applied concentration. Shang et al. observed the increase in nutrient supply and growth
of Lactuca sativa exposed to Fusarium oxysporum f. sp. Lactucae, CuO NMs embedded with
hydrogels increase the uptake of P, Zn, Mn, and Mg by increasing the levels of organic acids
as compared to the Fusarium oxysporum f. sp exposed control Lactuca sativa [49]. Altogether,
our results provide useful information and a nano approach improving the efficiency of
NMs for preventing and controlling soft rot in sweet potatoes during their post harvesting.
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Figure 9. Effect of NMs treatment on the mean content (n = 3) of ascorbic acid (A), carotenoids (B), total
phenol (C), and total flavones (D) in sweet potato (Y25) exposed to soft rot disease. Different small
letters represent significant difference according to Duncan’s multiple range test (p < 0.05. n = 3).
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Figure 10. Effect of NMs treatment on the mean content (n = 3) of ascorbic acid (A), carotenoids (B), total
phenol (C), and total flavones (D) in sweet potato (J26) exposed to soft rot disease. Different small letters
represent significant difference according to Duncan’s multiple range test (p < 0.05. n = 3).

4. Conclusions

This study has investigated the use of novel engineered nanomaterials for preventing
and controlling soft rot in sweet potatoes during their storage and transportation. It has
also analyzed the infection of the cut surface of sweet potatoes; the contents of the plant
hormones GA-3, IPA, GA-4, ZR, IAA, DHZR, JA-ME, and BR; the activities of the plant
stress enzymes CAT, MDA, SOD, and POD; the contents of the main nutrients: ascorbic
acid, carotenoids, total phenol, and total flavones; and studied the antifungal effect of each
nanomaterial. The results for Y25 sweet potatoes showed that treatment with 50 mg/L
CuO NM exhibited the greatest antifungal effect, with hormone and nutrient contents
generally higher than those of the control group. This indicated that CuO NM was the
most practical antifungal agent. The next most effective antifungal effect was provided by
TiO2 NM, with the least effective being C60 NM. When analyzing the J26 sweet potato, the
results showed that CuO NM still provided the best level of fungistasis, followed by TiO2
NM and C60 NM.
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