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Abstract: The photocatalytic activity of eco-friendly zinc oxide doped silica nanocomposites, synthe-
sized via a co-precipitation method followed by heat-treatment at 300, 600, and 900 ◦C is investigated.
The samples have been characterized by employing X-ray diffraction method, and further analyzed
using the Rietveld Refinement method. The samples show a space group P63mc with hexagonal
structure. The prepared composites are tested for their photocatalytic activities for the degradation
of methyl orange-based water pollutants under ultra-violet (UV) irradiation using a 125 W mer-
cury lamp. A systematic analysis of parameters such as the irradiation time, pH value, annealing
temperatures, and the concentration of sodium hydroxide impacting the degradation of the methyl
orange (MO) is carried out using UV-visible spectroscopy. The ZnO.SiO2 nanocomposite annealed at
300 ◦C at a pH value of seven shows a maximum photo-degradation ability (~98.1%) towards methyl
orange, while the photo-degradation ability of ZnO.SiO2 nanocomposites decreases with annealing
temperature (i.e., for 600 and 900 ◦C) due to the aspect ratio. Moreover, it is seen that with increment
in the concentration of the NaOH (i.e., from 1 to 3 g), the photo-degradation of the dye component is
enhanced from 20.9 to 53.8%, whereas a reverse trend of degradation ability is observed for higher
concentrations.

Keywords: water pollutant; Rietveld refinement; Tauc’s plot; photocatalytic activity; methyl orange

1. Introduction

To meet the demand and supply of developing countries, numerous small and large-
scale industries are flourishing. The fast-growing industries produce a large number of
toxic chemical wastes due to a lack of proper management and knowledge. The chemical
wastes contain several non-biodegradable elements and other water pollutants, which are
harmful to both aquatic and human life. Major water pollutants involve dye molecules
used in pharmaceuticals, paper, leather, plastic, cosmetics, food, and textile industries [1,2].
It is reported that the yearly generation of the synthetic dye is greater than 7 × 105 tons,
out of which around 2 × 103 tons of dyes are discharged in water bodies only as textile
waste [3]. Among many dyes, azo dyes like methyl orange (MO) are used in laboratories
as pH indicators, water-soluble dye products in textiles, printing, paper, pharmaceuticals,
and food industries [4]. MO displays an orange colour in the basic medium and a red
colour in the acidic medium [5]. Due to its high solubility, it is difficult to remove MO
from solvents using a conventional treatment system [6]. Drinking MO contaminated
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water may cause vomiting, shock, irregular heart rate, jaundice, and tissue necrosis in
humans [7]. Thus, it is important to remove the residual MO content from wastewater
produced by industries. Numerous water treatment techniques, such as chemical oxidation,
adsorption, precipitation, coagulation, electrolysis, photo-degradation, and many more,
are employed for the filtration and purification at the industry level before releasing it into
the environment [8–10].

In recent times, metal oxides are reported as good photocatalysts due to their excellent
photocatalytic activity, high stability in a watery environment, and low cost [11,12], and
are the most widely used for wastewater treatment [13–16]. Lu et al. have reported on the
TiO2/biochar composite for photocatalytic degradation of MO, and have illustrated the
good catalytic performance of TiO2 nanocomposites [17]. Molkenova et al. examined the
photocatalytic performance of hollow CuO microspheres for the degradation of pollutant
Rhodamine B dye [18]. With ZnO having remarkable physical, chemical, and optical
properties, as well as an easy scale-up and complete mineralization capacity, it is pur-
posefully used in the catalytic processes for the elimination of organic-dye pollutants [19].
Wang et al. used a porous graphene/ZnO nanocomposite to decolor MO and confirmed
enhanced efficiency as compared to bare ZnO nanoparticles [20]. Ali et al. reported the
photo-degradation of the MO using ZnO/SnO2 nanocomposites. Their studies revealed
a decrement in the photo-degradation efficiency of ZnO/SnO2 nanocomposites with an
increase in the annealing temperature [21]. Albiss et al. fabricated ZnO nanorods over the
activated carbon fiber composites and studied the photocatalytic performance [22]. It is
reported that the photocatalytic activities depend on surface area, absorption of UV-light,
and charge carrier recombination, and the photocatalytic efficiency can be enhanced by
improving these properties.

However, while ZnO is widely used for photocatalytic activities, it has some basic
problems such as a high optical band gap (3.37 eV) and a high recombination rate of
electron-hole pairs (EHPs), which diminish its photocatalytic efficiency [23,24]. Therefore,
it is always preferable to mix doped ZnO with some porous matrix or system, such as
silica dioxide (SiO2). The doping of SiO2 leads to high mass transport, which causes
higher selectivity and adsorption of the pollutants [25]. Additionally, the core of the silicon
dioxide will act as an electron-trapping centre. These trapping centres deal with the electron
generated from ZnO due to the process of photon irradiation and excitation, which reduces
the recombination rate of EHPs, and in turn, contributes to an enhanced photocatalytic
performance [26].

In light of the above, the present work reports on the synthesis of ZnO.SiO2 nanocom-
posites, the examination of their structure, and photo-degradation of methyl orange pol-
lutant of the nanocomposite. This report explains the correlation between the structure
and the parameters such as temperature, pH, irradiation time, and NaOH concentration
affecting the photo-degradation performance of nanocomposites.

2. Experimental Details
2.1. Materials Used

For the synthesis of this photocatalyst material, zinc nitrate hexahydrate (Zn(NO3)2·6H2O,
ethanol (C2H5OH), silicon oxide (SiO2), sodium hydroxide (NaOH), HCl, and methyl or-
ange (C14H14N3NaO3S) were procured from the Merck, Bengaluru, India. All chemicals
were of analytic grade and were used as procured.

2.2. Synthesis

The synthesis of the ZnO.SiO2 nanocomposite involves three steps. The first step
involves the preparation of ZnO nano-suspension. For this, 0.1 M NaOH solution was
prepared in 50 mL distilled water and was added to 0.1 M of Zn(NO3)2·6H2O dissolved in
100 mL ethanol, following the procedure reported in our previous work [27]. Secondly, the
preparation of SiO2 nano-suspension was prepared by mixing 0.3 M SiO2 in 50 mL 0.6 M
NaOH, which resulted in Na2SiO3. The prepared solution was drop-wise added (using the
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piezoelectric nozzle of 0.05 mm and drop rate of 0.02 mL/s) to 50 mL 0.6 M HCl, which
resulted in white precipitates of SiO2. The obtained suspension was stirred at 8000 rpm
for 3 h at 50 ◦C. Afterward, NaCl was removed from the suspension by washing it several
times using distilled water [28]. For the synthesis of the ZnO.SiO2 nanocomposite, both
suspensions were mixed and stirred [28]. The white precipitates were filtered with grade
5 Whatman filter paper and then washed and dried in air. By following the procedure
(Scheme 1a) two samples (0.1 M)ZnO.(0.3M)SiO2 (ZS1) and (0.05 M)ZnO.(0.3 M)SiO2 (ZS2)
were prepared; furthermore, these samples were annealed at the different temperatures of
300, 600, and 900 ◦C for 2 h. For ease of understanding, the samples annealed at 300, 600,
and 900 ◦C are named as ZS1300, ZS1600, and ZS1900, respectively.
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Scheme 1. Schematic diagram of (a) preparation of SiO2.ZnO nanoparticles with the expected morphology (ZnO nanoparti-
cles embedded into SiO2 porous structure) and, (b) photocatalytic activity set-up.

2.3. Characterization

For the determination of the crystallite size and lattice constant, the X-ray diffrac-
tion (XRD) patterns of the samples were acquired with an X-ray diffractometer (Philips
PW/1710), operated at 50 kV and 40 mA in range of 10 to 70 degrees. The XRD data was
analyzed through Rietveld refinement for a perfect matching of phases and to determine
various lattice parameters, dislocation density, microstrain, Wyckoff positions, bond length,
and bond angle, etc. For morphological analysis, transmission electron microscopy was
performed on a Hitachi (H-7500) instrument. Fourier transform infrared spectrometer
(Bruker compact alpha-II) was used for recording the spectra of nanocomposites in a range
of 4000–400 cm−1 using Kbr pallets. The UV-Vis absorption spectra of the prepared samples
were acquired with a Lambda 750 spectrophotometer (Perkin) in a wavelength from 300
to 700 nm. The surface area (SBET) was evaluated using N2-adsorption measurements
performed on a Quantachrome Instruments at 77.3500 K. Nitrogen and carbon were used
as adsorbate and adsorbent, respectively.
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2.4. Photocatalytic Activity

The photocatalytic properties of ZnO.SiO2 nanocomposite were evaluated by testing the
photo-degradation of methyl orange (MO) in water using UV irradiation (125 WHg lamp).
In a typical reaction, 30 mg ZS1 composite and 10 mL of 30 mg/80 mL of methyl orange
dye aqueous solution were stirred using a magnetic stirrer for an hour to establish the
adsorption/desorption equilibrium of MO on the surface of catalyst before the irradiated
process. For this experiment, two mercury lamps were placed 5 cm away from the magnetic
stirrer on which the solution of catalyst, as well as dye, were stirred, as shown in Scheme 1b.
The effect of pH (at 7 and 12) on photocatalytic activity was analyzed. The pH of methyl
orange dye solution (MODS) was controlled by adding diluted Nitric acid and NaOH.
For this analysis, solutions of ZS1 (ZS1300, ZS1600 and ZS1900) and MODS were prepared
with pH values of 7 and 12. At consequent intervals of time (i.e., 0 min, 20 min, 40 min,
60 min, 100 min) 2 mL of samples were extracted from each solution and analyzed using
UV–Vis spectroscopy. The effect of NaOH conc. on the photo-degradation of dye was also
evaluated. For this analysis, solutions of ZS1300 and MODS were prepared with different
conc. of NaOH (1 g, 2 g, 3 g, and 4 g). Afterward, the slurry was not stirred, and the
resulting dye content was determined at the end of the experiment. The photo-degradation
percentage of methyl orange is calculated using Equation (1) [29]

Photo − degradation (removal efficiency) =
Ao − At

Ao
× 100 (1)

where, Ao is the initial concentration of MO and At is the concentration of MO after time t.
The experiment has been repeated again to ensure the reproducibility of the results.

2.5. Zero-Point Charge

The value of zero-point charge (ZPC) was calculated with the help of salt titration
method. The ZPC value of the catalyst was determined using a 10 mol solution of NaClO4.
In this method, 0.2 g of catalyst was taken in 10 mL deionized water, and 0.01 mol/L NaOH
was added to get the required pH. The suspension was taken in ten different beakers and
the pH of the suspensions was initially set to different values from two to 11. This pH
value is denoted as pHinitial. The sample of each beaker was stirred briskly for 24 h at room
temperature, and the value of pH was recorded. This pH value is denoted as pHfinal. The
ZPC is obtained from the plot, between ∆pH (pHfinal–pHinitial) and pHinitial as depicted in
Figure 1. For ZPC, ∆pH needs to be zero. The ZPC of ZS1300 is investigated and its value is
found as 8 [30].
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The value of ZPC implies that surface of the catalyst is positively charged at pH < pHZPC,
and for pH > pHZPC will be negatively charged. Therefore, ZPC is considered an important
feature for photocatalytic activity as it affects the surface property of catalyst. Under
basic pH conditions, the negatively charged pollutant compounds will be repelled from
the negatively charged catalyst surface, which results in to decrease in absorption of the
pollutant compound. As a result, the degradation efficiency of the sample falls at a higher
pH [31].

3. Results and Discussion
3.1. XRD Analysis

The XRD patterns of ZS1300, ZS1600 and ZS1900 samples are shown in Figure 2A. It can
be observed from Figure 2A(a,b) that the XRD patterns of both samples contain various
well-defined reflections at 2θ at 31.68◦, 34.32◦, 36.26◦, 47.56◦, 56.59◦, 62.87◦, 66.44◦, 67.95◦,
and 69.08◦ correspond to Miller planes (100), (002), (101), (102), (110), (103), (200), (112), and
(201) respectively, confirming the formation of ZnO [32–34]. In both diffraction patterns, a
broad hump is present at 2θ~21.98◦, which reveals the presence of amorphous silica. The
observed peaks in in the diffraction pattern reveal the formation of the hexagonal structure
of ZnO embedded in silica matrix, with the space group P63mc (JCPDS card no. 790205).
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Figure 2. (A) XRD patterns of ZS1 annealed at various temperatures and (B) Rietveld Refined XRD pattern of ZS1300

nanocomposite.

However, the XRD pattern of the sample ZS1900 also contained some new peaks
(Figure 2A(c)). The peak centred at 2θ (reflection planes) at ~22.06◦ (101), 28.76◦ (111),
31.70◦ (102), 36.14◦ (200), 45.44◦ (202), 47.28◦ (113), 48.72◦ (212), 62.18◦ (302), 65.02◦ (312),
and 66◦ (204), which may be ascribed to Tetragonal Cristobalite (JCPDS File No. 82-1408).
In the same pattern, some of the peaks cantered at 2θ (reflection planes) at ~31.70◦ (113),
34◦ (410), and 38.80◦ (223) may be ascribed to Hexagonal Zinc silicate (Zn2SiO4) (JCPDS
File No.37-1485).

The value of structural parameters like plane (hkl), crystallite size (D), d-spacing,
full width at half maximum (β), intensity, microstrain (ε) and the dislocation density (δ)
of ZnO.SiO2 composite are obtained from XRD analysis and are shown in Table S1. The
crystallite size (D) is calculated by using Scherrer’s formula as:

D = (0.9 × λ)/( β × cosθ) (2)

The average crystallite size is calculated from the three peaks of highest intensity in
the pattern, which was characterized by lattice plane (100), (002) and (101) at 2θ ~ 31.85,
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34.55 and 36.35◦, respectively inserted in Table S1. Dislocation density (δ) is calculated
as [35]:

δ = 1/D2 (3)

and microstrain (ε) value of the nanocomposite ZnO.SiO2 is evaluated as,

ε = βcos θ/4 (4)

The Rietveld refined X-ray diffractogram of ZS1300 nanocomposite is shown in Figure 2B.
For the quantitative analysis of the phase present in the sample, Rietveld refinement was
carried out of the XRD data. The atomic position and isothermal parameters for Zinc and
Oxygen are fixed and the other parameters like lattice constants, shape parameters, and
scale factors are considered as free parameters during the time of fitting. The parameters,
such as background factors and scale factors, are refined in the first step of the Rietveld
refinement. The background is fitted using a linear interpolation method and pseudo-
voigt is chosen for peak profile. In the succeeding stage, the structural parameters (lattice
parameters, width parameter, preferred orientation, asymmetry, and atomic coordinates,
etc.) are refined.

Figure 2B approves the hexagonal structure of ZnO embedded in SiO2. The Wyckoff
positions parameters

( x
a , y

b , z
c
)

of atoms obtained from refinement are tabulated in Table S2.
The norm’s factor for the best fit, such as the Reliability factors (R factors), Profile R factor
(RB = 13.6), Weighted R Factor (Rwp = 14.3), Expected values (Rexp = 7.17), Bragg R Factor
(RB = 6.02), Rf–Factor (RB = 2.78) and Goodness fit factor (χ2 = 3.9) value obtained from
Rietveld refinement, confirm the precision of the Rietveld refinement analysis. The value
of lattice parameters obtained from the refinement are as follows: a = b = 3.249

(
Å
)

;

c = 5.2058
(

Å
)

; α = 90◦; γ = 120o, and ratio of c/a is 1.6022. The bond lengths between
different atoms and bond angles between them are evaluated and presented in Table S3.

The type of the grain boundaries may play an important role in the photocatalytic
mechanism. The grain boundary specific area (Sa) i.e., the ratio of the area enclosed by the
grain boundary and volume of grain, is estimated as [36]

Sa =
1.65
D

(5)

where, D is the crystallite size estimated from XRD studies using Equation (2). The
Equation (5) is valid for both single and polycrystalline forms of ZnO system having a
random distribution of shapes and grains. The values of Sa are tabulated in Table 1. It is
observed that the grain boundary-specific area is decreased with an increase in temperature.
The higher value i.e., 4.445 × 107 m2 m−3 of Sa is calculated for the ZS1 sample annealed at
300 ◦C.

Table 1. Average crystallite size (D), bandgap energy (Eg) and grain boundary specific area (Sa) w.r.t.
to annealing temperatures.

Annealing Temp (◦C) D (nm) Sa (m2·m−3) Eg (eV)

300 36.20 4.455 × 107 3.26
600 38.81 4.251 × 107 3.25
900 43.42 3.800 × 107 3.36

With a change in the precursor’s concentration i.e., sample ZS2, it is observed from
the XRD patterns of ZS2300 and ZS2600 for the ZnO phase that the crystallite size decreased
compared to ZS1300 and ZS1600, respectively. The XRD data for ZS2300 and ZS2600 are
provided in the Supplementary File. The diffractogram of ZS2900 was found to have
marginal changes compare to ZS1900. The phase structure observed for ZS2 samples is the
same as observed in the case of ZS1 samples.
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3.2. TEM Analysis

Transmission electron microscopy (TEM) is a utile technique for the analysis of particle
size and the morphology of materials. The microscopic images of ZnO.SiO2 nanocom-
posites annealed at 300 ◦C are depicted in Figure 3. The average particles size is found
to vary between 20 to 30 nm, which is nearly analogous to the crystallite size calculated
from the XRD results. From the figure, a uniform morphology has been observed in which
the particles are appearing roughly as spherical shapes. The micrograph shows the weak
aggregation of ZnO particles that confirm the presence of particles in the silica matrix.
Some particles are observed to possess sharp grain boundaries and a clear morphology in
the silica matrix.
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3.3. FTIR Analysis

For the further investigation of the molecular structures of ZS1300, ZS1600 and ZS1900
nanocomposites, Fourier-transform infrared (FTIR) spectroscopy studies are carried out
and the FTIR spectra of these samples are shown in Figure 3.

Characteristic peaks of these samples are observed at 1081 and 799 cm−1, which
represent the stretching vibration mode and symmetric stretching of the Si-O-Si group,
respectively [26]. The peak at around 475 cm−1 in the spectra is due to the vibration of
the Zn, and the O bond confirms the presence of ZnO in the samples [37]. The presence of
bonds at 1500 cm−1 and 1632 cm−1 are attributed to the stretching vibration of the (−OH)
group attached with Si and ZnO, respectively [38]. The hydroxyl group results from the
hygroscopic nature of ZnO and Si that come during the synthesis. It is also observed that
the content of hydroxyl group in the sample decreased with an increase in temperature,
suggesting the presence of impurities mostly near the surfaces of ZnO and Si. Moreover, it
can be found that the peak at 1081.98 of ZS1300 sample had a strong intensity. However,
for ZS1600 and ZS1900, the peak intensity decreased due to the decomposition of hydroxyl
group Figure 4a,b. In the spectrum of ZS1900 sample (Figure 4c), some new peaks are
also observed, which confirm the formation of some intermediate phases of ZnO and
cristobalite (crystallite form of silica). The observed changes in the FTIR spectra of the
nanocomposites samples are well-matched with the findings of XRD analysis.
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3.4. UV-Visible Analysis

For the examination of the optical band gap of the ZS1300, ZS1600 and ZS1900 samples,
UV-Visible spectroscopy is performed, as shown in Figure 5. It is seen that band edge
shifted to a lower wavelength edge (i.e., blue shift), suggesting an alteration in the optical
band gap. Thereby, to estimate the energy band gap (Eg) of the catalyst samples, Tauc’s
relation the spectra (250–700 nm) is used, which is given by

(αhν)1/n = A
(
hν − Eg

)
(6)

where α, h, n and A are the absorption coefficients, Planks constant, power factor for the
transition mode, and constant, respectively. For the allowed direct transitions, n is taken
as 1/2. The band gap values for the nanocomposites samples are determined by plotting
(αhν)1/n versus hν, as shown in Figure 5.
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The estimated values of Eg for the ZS1300, ZS1600, and ZS1900 nanocomposites are
3.26 eV, 3.25 eV, and 3.36 eV, respectively. The optical band gap of ZS1300 is found to be
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smaller than the characteristic value of ZnO, i.e., 3.37 eV at room temperature. This may be
due to the occurrence of intrinsic defects like oxygen vacancies and zinc interstitials in the
ZnO [36,39]. The ZS1900 sample has a higher optical band gap (very near to 3.37 eV) which
attributes to an increase in crystallite size, as can be seen from XRD studies. The observed
values of Eg w.r.t. crystallite size are tabulated in Table 1.

3.5. BET Analysis

Surface area is an important parameter that affects photocatalytic activity due to the
surface dependency of the process. With a larger surface area, the active sites are larger
and with better photocatalytic activities. Therefore, to measure the surface and poros-
ity of the ZS1300 and ZS1900 nanocomposite samples, the Brunauer-Emmett-Teller (BET)
measurements are performed in a nitrogen environment. The nitrogen (N2) adsorption-
desorption isotherm curves of the ZS1300 sample are shown in Figure 6a. The shape of
adsorption-desorption curves depicts the features of isotherm of type IV (as per IUPAC
classification) with H4 hysteresis, which reflects the mesoporous kind nature of the samples
under discussion. The BET curve having three main segments, i.e., (i) concave-shaped
for relative pressures from 0.05 to 0.1, (ii) linear-shaped up to 0.3, and (iii) convex-shaped
for above 0.3, the (ii) or linear-shaped segment, as shown in inset of Figure 6a, denotes a
realization of the first monolayer of the gas molecules and commencement of the second
layer. The linear segment of the BET curve is known as the ‘B’ point, which is further used
to calculate the specific surface area. From the BET equation:

p/po

w(1 − p/po)
=

1
wmC

+
C − 1
wmC

(p/po) (7)

whereas, w denotes the volume of adsorbed gas at normal temperature (T) and pressure (P);
wm represents the volume of adsorbed gas for monolayer per gram of adsorbent; P◦ denotes
saturated vapor pressure of N2 at normal temperature; C refers to a constant depending on
the Ha (heat absorbed by the monolayer of N2); and HL (liquefaction parameter of the gas)
in the range of 0.05–0.3 of relative pressure, given by flowing relation

C = exp
(

Ha − HL
RT

)
= exp

(
DH
RT

)
(8)
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The Equation (7) represents an equation of a straight line in between p/P0
w(1 –P/P0)

vs.
P
P0

with slope
(

C−1
wmC

)
and intercept of

(
1

wmC

)
having the values of 206.87578 g/cm3

and 0.0088 g/cm3, respectively. The volume of the gas molecules monolayer (wm) can be
obtained using the values of slope and intercept of the curve in the straight-line portion of
the isotherm. The specific surface area can be calculated using the relation, SBET = wmAmN,
where N is the Avogadro number and Am is the molecular cross-sectional area (for nitrogen;
Am = 0.162 nm2). The measured values of the specific surface areas (SBET) for the samples
ZS1300 & ZS1900 are found to be 16.8 m2/g and 0.001 m2/g, respectively. The decrease in
specific surface area with annealing temperature can be attributed to the penetration of
ZnO nanocrystallites into the porous structure of SiO2. The filling of the closed pores of
SiO2 with ZnO resulted in the decrease in porosity of the nanocomposite samples. This
can easily be predicted and corroborated with the change in XRD pattern from ZS1300 to
ZS1900, wherein the XRD pattern of ZS1300 is vastly matched with the pure ZnO hexagonal
structure. On the flip side, the XRD pattern of ZS1900 consists of the sharps reflections of
ZnO along with the well-visualized reflection of SiO2, which points to the mixed phase of
the nanocomposite.

The respective pore size distribution curve for the sample under discussion is obtained
with the adsorption particulars employing the Barrett-Joyner-Halenda (BJH) method and
depicted in Figure 6b. This figure confirms the mesoporous nature of the prepared compos-
ite. The insets depict the change in quantity adsorbed as a function of the deposited layer
thickness and the change in layer thickness with relative pressure. It can be seen that the
composite contains a total pore volume of 0.01667 cm3/g and an average pore diameter of
3.838 nm. The ZS1300 nanocomposite shows a higher specific surface area and it is reported
that a higher surface area is advantageous for superior photocatalytic performance [40].

3.6. Photocatalytic Studies

Absorption of UV light with energy greater than the band gap of the catalyst material
causes generation of electron-hole pairs in ZnO particles i.e., electrons (e−) in conduction
band and holes (h+) in the valence band holes. The holes react with H2O or hydroxide
ions, which are adsorbed on the surface of the ZnO particles and produce •OH. Conversely,
the electron reduces O2 and produces O2

•− as well as other oxygen species (H2O2 and
•OH) [32,33]. Both the holes and the •OH are super reactive to organic compounds that
are in contact with these radicals [33]. The oxidizing tendency of the •OH radicals is high
enough to split C-H as well as C-C bonds of MO sitting on the outer surface of ZnO.SiO2
nanocomposite leading to CO2 and H2O production as shown in Scheme 2.

The ability of photocatalyst to decompose the pollutant compound MO, depends upon
the different factors, such as the annealing temperature of the photocatalyst, the pH value
of solution containing MO dye, and the time of irradiation and different conc. of NaOH.
The effect of these factors on the catalytic performance of the material is examined. For an
investigation of the effect of pH conc. and annealing temperatures of catalytic material on
MO dye, samples of MO and ZS1 (annealed at 300, 600 & 900 ◦C) were prepared distinctly
with different pH concentrations. The samples’ names are abbreviated as S1 (ZS1300, pH7),
S2 (ZS1300, pH12), S3 (ZS1600, pH7), S4 (ZS1600, pH12), S5 (ZS1900, pH7), and S6 (ZS1900,
pH12). The UV–visible spectra of each sample showing degradation of MO w.r.t. irradiation
time, depicted in Figure 7.
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3.6.1. Effect of pH and Irradiation Time

Using Equation (1), the photo-degradation percentages of samples S1, S2, S3, S4, S5,
and S6 irradiated under the UV light for 100 min are calculated and the values of photo-
degradation (%) are found to be 98.1, 39.7, 71.63, 60.39, 43.51, and 41.34%, respectively
(Figure 8a). Interestingly, it is observed that the photocatalytic activity of the S1 sample is
relatively higher than the other samples. As the value of pH is increased, the degradation
response is decreased and only 39.7 % of MO degradation response is observed for sample
S2 (i.e., at pH = 12). The photo-degradation activity depends on the surface properties
of the catalyst. Generally, pH changes the surface properties of catalysts like surface
charge properties that oversee the absorption mechanism of MO on catalytic surface. At a
pH 7 (below ZPC pH i.e., 8), the surface of ZnO is positively charged, which can absorb
negatively charged MO due to electrostatic attraction, facilitating the degradation reaction.
In contrast, at a higher pH (=12), absorption is decreased due to electrostatic repulsive
forces among the catalytic surface and the dyed surface. As a result, photo-degradation
response becomes minuscule; this is firstly because of the decrease in adsorption of the
dye molecules on surface of the photocatalyst surface at higher pH [41,42], and secondly
due to rapid scavenging of the hydroxyl radicals produced via reaction between holes and
OH−, which causes a decrease in free radicals [42,43]. It is reported that pH affects the
production of these free radicals that, in turn, lower the degradation rate of dye, or the
termination of degradation [31].

It is observed that on increasing the irradiation time under light irradiating lamps, the
photo-degradation percentage of methyl orange also increased, as shown in Figure 8b. It is
observed from Figure 8b that all the samples attained maximum photo-degradation (%)
in about 100 min. This may be due to the production of more and more e-h pairs and the
corresponding excitation of an electron from the valence band to the conduction band [44].
Accordingly, the production of hydroxyl radicals is rose, which resulted in an enhanced
photodegradation (%). The higher degradation efficiency of the ZS1300 nanocomposite
sample, as compared to other samples, can be attributed to its small band gap and larger
surface area.
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3.6.2. Effect of Annealing Temperatures

The photocatalytic efficiency of the ZS1 nanocomposite at different annealing tem-
peratures has also been assessed for the photo-degradation of MO. Figure 9 shows the
correlation between photo-degradation (%) of MO with annealing temperatures of ZS1
nanocomposite. It is observed that the photocatalytic degradation of MO decreases from
98.1% to about 39% with an increase in the annealing temperature of the sample ZS1 (i.e.,
sample ZS1300 to ZS1900. The highest activity observed for the ZS1300 nanocomposite may
be ascribed to the higher specific surface area, lower band gap value, and efficient charge
separation ability of the sample through the charge exchange process in the existence of UV
light. The lowest photo-degradation ability of the sample ZS1900 can be due to the decrease
in specific surface area due to the filling of the pore by the penetration of ZnO into the
SiO2 porous matrix, as observed from the XRD and BET studies. The lower reactivity of
SiO2 towards photo-degradation and the presence of higher content of SiO2 on the upper
surface as expected from XRD pattern could be another reason for the lower efficiency of
ZS1900 sample.
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It is reported that in the photocatalytic mechanism, the production of •OH is expected
to occur mainly on an internal surface i.e., the ZnO surface [45,46]. In addition, MO
approaches the ZnO surface via the pores present in the surface area of sample ZS1. Thus,
the photonic degradation efficiency is being limited by the absorption or diffusion rate of
the MO molecule into the photo-catalytically active surface. As a result of the difference
in the size and the number of pores of the ZS1 samples (ZS1300, ZS1600 & ZS1900,), the
photo-degradation (%) is changed accordingly. Therefore, it is concluded that the ZS1300
assists the transport properties of all reactants involved in the photocatalytic process, which
enhanced the overall photocatalytic activity.

3.6.3. Effect of NaOH Concentration

To investigate the effect of NaOH concentration on the photo-degradation ability of
the nanocomposite samples, four different concentrations (1, 2, 3 and 4 g) of NaOH are
mixed with the photocatalyst and MO solution. In a typical process, 0.38 g of catalyst
powder was dispersed in 100 mL deionized water and then 10 mL of methyl orange dye
solution was added to catalyst solution and stirred to adsorb the dye molecules on surface
of the photocatalyst. After that, 1 g of NaOH powder was mixed with the above solution
containing methyl orange and photocatalyst, then the solution was stirred in absence of
light to achieve equilibrium between adsorption and desorption and then irradiated with
visible irradiation light with continuous stirring [47]. After the decoloration of methyl
orange, a part of the solution was used for recording the absorbance spectrum using a
UV-Visible spectrophotometer and photo-degradation percentage was calculated using
Equation (1). The same steps are followed for the degradation of MO with different weights
(2, 3 and 4 g) of NaOH and the recorded absorption spectra are shown in Figure 10a.
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It is observed that the decoloration time of methyl orange decreases from 275 through
95 to 40 min with an increase in NaOH concentration from 1 g through 2 g to 3 g. However,
for the 4 g of NaOH, again the decoloration time increases to 80 min. It is observed that
the sample containing 3 g concentration of NaOH shows a higher photo-degradation of
53.8 %, and beyond 3 g NaOH concentration again the photo-degradation (%) decreases
to 27.5%, with 4 g of NaOH (Figure 10b). The results showed that the photo-degradation
rate increased with an increase in NaOH concentration up to 3 g of NaOH, which may be
due to OH− ions produced by NaOH acting as a strong hole scavenger and generating
hydroxyl radicals, thus reducing the e-h pair recombination [45]. Moreover, with a further
increase in concentration (>3 g) of NaOH, the degradation rate became poor, since a greater
amount of hydroxyl radicals may oxidize the catalyst [45].
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Compared to other metal oxide composites tabulated in Table 2, the present ZnO.SiO2
prepared through the co-precipitation method shows enhanced photocatalytic efficiency
for the degradation of MO.

Table 2. Photocatalytic activity of various ZnO composites.

Catalyst Composite Method of Synthesis Light Used for
Irradiation Irradiation Time (min) Photo-Degradation (%) Refs.

ZnO nano-needles on Si substrates Hydrothermal UV light 140 95.4 [48]
ZnO quantum dots Flame spray pyrolysis UV light 160 97 [49]

TiO2/biochar Hydrolysis UV light 160 96.88 [17]
Xanthan gum/TiO2 Hydro-gel Visible light 90 89 [15]

Anatase TiO2 Sol-gel Visible light 240 67.12 [50]
ZnO catalyst Hydrothermal UV light 180 99.7 [51]

Rare earth metal doped ZnO Sol-gel UV light 180 98 [32]
ZnO.SiO2 Co-precipitation UV light 100 98.1 Present work

4. Conclusions

ZnO.SiO2 nanocomposites are successfully synthesized via the co-precipitation method.
The specific surface area decreases from 16.8 m2/g and 0.001 m2/g on increasing the an-
nealing temperature from 300 to 900 ◦C due to blocking of SiO2 pores via the penetration
of ZnO into these pores. It is found that the specific surface area of the nanocomposite
plays an important role in photocatalytic activities and the degradation of methyl orange
dye. The effect of various parameters, such as the pH value of the solution, irradiation
time, annealing temperature, and NaOH concentration on photocatalytic performance of
ZS1 nanocomposite have been investigated. The sample ZS1300 shows a higher photo-
degradation efficiency of 98.1% at pH 7 for 100 min irradiation times. The high efficiency
of ZS1300 can be governed by the following mechanisms: (i) a higher specific area that
assures the maximum interaction with UV irradiation; (ii) an optimized bandgap resulting
in enhanced absorption efficiency of UV irradiation where more electron-hole pairs are
produced; (iii) more irradiation time proportional to more generation electron-hole pairs;
and (iv) at lower pH below the ZPC pH, which increases the absorption of pollutant dye
that resulting higher efficiency. OH− radicals act as active species for the degradation of
the pollutant. For the degradation, the formation of hole and hydroxyl radicals is proven
to be the crucial factor. The results revealed that ZnO.SiO2 nanocomposite is an effective,
inexpensive, and eco-friendly catalyst for the degradation of methyl organic pollutants.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102548/s1, Table S1: Structural parameters of ZS1300 achieved from X-ray Diffraction
Pattern, Table S2: Fractional atomic coordinates and isothermal parameter of different atoms obtained
from the Rietveld anal-ysis of XRD patterns for the sample ZS1300, Table S3: Bond Length and bond
angles of sample ZS1300, Table S4: Structural parameters of ZS1600 achieved from X-ray Diffraction
Pattern, Table S5: Structural parameters of ZS1900 achieved from X-ray Diffraction Pattern, Table S6:
Structural parameters of ZS2300 achieved from X-ray Diffraction, Table S7: Structural parameters of
ZS2600 achieved from X-ray Diffraction Pattern.
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