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Abstract: Lithium-sulfur (Li-S) batteries have received extensive attention due to their high theoretical
specific capacity and theoretical energy density. However, their commercialization is hindered by the
shuttle effect caused by the dissolution of lithium polysulfide. To solve this problem, a method is
proposed to improve the performance of Li-S batteries using Ti2N(Ti2NS2) with S-functional groups
as the sulfur cathode host material. The calculation results show that due to the mutual attraction
between Li and S atoms, Ti2NS2 has the moderate adsorption energies for Li2Sx species, which is
more advantageous than Ti2NO2 and can effectively inhibit the shuttle effect. Therefore, Ti2NS2 is a
potential cathode host material, which is helpful to improve the performance of Li-S batteries. This
work provides a reference for the design of high-performance sulfur cathode materials.

Keywords: Li-S batteries; first-principles study; S-functionalized Ti2N

1. Introduction

Presently, the continuous development of electric vehicles and electronic devices puts
more requirements on rechargeable batteries [1]. At present, the technology of lithium
batteries is relatively mature, but the low theoretical capacity of them cannot meet the
needs of future development [2]. Therefore, new rechargeable battery technologies need
to be developed. In the next generation of rechargeable batteries, Li-S batteries have
received widespread attention because of their high theoretical specific capacity and high
energy density. The charge and discharge of Li-S batteries are based on a chemical reaction:
S8 + 8Li2 ↔ 8Li2S. During discharging process, the lithium anode is oxidized to form
lithium ions and electrons. The lithium ions and electrons travel to the cathode via a
membrane and an external circuit, respectively. Sulfur is reduced at the cathode and reacts
with lithium ions and electrons to first form soluble intermediates Li2S8, Li2S6, Li2S4, and
then form insoluble Li2S2 and Li2S (Figure 1). The charging process is reversed [3,4]. The
theoretical specific capacity of Li-S batteries can reach 1675 mAh·g−1, and the theoretical
energy density can reach 2600 Wh·kg−1 [5–7]. In addition, as a cathode material, the sulfur
has the advantages of large storage capacity, low cost, environmental friendliness, and
non-toxicity [8–10]. However, in the process of charging and discharging, the long-chain
soluble polysulfides (Li2S8, Li2S6, Li2S4) produced at the cathode of Li-S batteries are easily
dissolved in the electrolyte. These soluble lithium polysulfides (LiPSs) can shuttle with the
electrolyte to the anode (“shuttle effect”), causing the loss of cathode active materials. As a
result, the coulombic efficiency of the Li-S batteries is reduced, and the cycle stability is
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deteriorated [11–13]. In addition, sulfur and its discharge products Li2S/Li2S2 have poor
conductivity [14]. The application of Li-S batteries is hindered by these problems.
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To solve the above-mentioned problems, a lot of efforts have been made. Physical
confinement is one of the effective methods [15]. Various structures, such as the open
porous structure [16] and the lithium permeable shell [17], have been shown to inhibit the
shuttle effect. In 2009, Nazar et al. [18] used CMK-3, a mesoporous carbon, as a conductive
skeleton loaded with elemental sulfur, greatly improving the performance of the cathode.
In 2018, Ma [19] et al. used the hollow carbon sphere structure as the main body of the
sulfur cathode, which effectively improved the stability of the lithium–sulfur batteries.

Another effective method is chemical binding, which uses host materials with high
conductivity and appropriate affinity to capture LiPSs [20]. Therefore, a variety of materials
have been introduced into sulfur cathodes as host materials, such as graphene [21–23],
two-dimensional transition metal sulfides and oxides [24–26], phosphorene [27–29], etc.,
which have been proved to be possible as cathode host materials.

Recently, MXenes, a new type of two-dimensional materials, have received extensive
attention due to their high specific surface area, good electrical conductivity and stable
structure [30–32]. It is considered to have great potential to become excellent sulfur cathode
host materials. In 2015, Xiao Liang et al. [33] introduced Ti2C into the cathode of Li-S
batteries and produced the 70 wt.% S/Ti2C composite materials, which proved that there
was a strong interaction between LiPSs and Ti atoms on the surface of Ti2C. This allowed
the specific capacity of the sulfur cathodes to reach 1200 mAh·g−1, therefore improving the
cycle performance of the sulfur cathodes. The sulfur cathodes still had a capacity retention
rate of 80% after 400 cycles of charging and discharging at a rate of 0.5 C. In 2018, Chang
Du et al. [34] used Ti2O hollow nanospheres to wrap sulfur, which was then embedded
in the Ti2C interlayer to produce the S@Ti2O/Ti2C composite materials as the cathodes of
Li-S batteries. When the S@Ti2O/Ti2C composite cathode was charged and discharged at a
rate of 0.2 C, its initial capacitance reached 1408.6 mAh·g−1. Under the conditions of 2 C
and 5 C high-rate charging and discharging after 200 cycles, it could maintain the specific
capacities of 464.0 mAh·g−1 and 227.3 mAh·g−1, respectively.

As MXenes are etched with HF acid, functional groups are inevitably left on the surface
of MXenes [35]. Common natural functional groups are –O, –F, –OH [36]. The presence
of functional groups affects the anchoring effects of MXenes on LiPSs. In 2019, Dashuai
Wang et al. [37] studied the anchoring effects of Ti3C2 surface functional groups on LiPSs
through first-principles calculations. The results showed that the anchoring effects of
O-functionalized Ti3C2 (Ti3C2O2) on LiPSs were better than those of F-functionalized Ti3C2
(Ti3C2F2). Recently, some studies have shown that it is possible to introduce non-natural
functional groups, such as S-functional groups, through experimental means. Unlike
natural functional groups, there are few studies on non-natural functional groups. In this
work, through first-principles calculations, the adsorption capacity, electronic properties
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and catalytic capacity of S-functionalized Ti2N (Ti2NS2) for LiPSs are studied. The research
results show that Ti2NS2 has a moderate adsorption capacity for LiPSs, which is stronger
than O-functionalized Ti2N (Ti2NO2). In addition, Ti2NS2 has good electrical conductivity,
and it still has good electrical conductivity after adsorption of Li2Sx species. Therefore,
Ti2NS2 has the potential to become host materials for the cathodes of Li-S batteries.

2. Method and Computational Details

In this work, all first-principles calculations are based on the CASTEP package.
The exchange-correlation functional is described by the Perdew-Burke-Ernzerhof (PBE)
functional within generalized gradient approximation (GGA) [38]. The Grimme of DFT-
D2 is used to describe the van der Waals (vdW) interaction between the substrate and
LiPSs [39,40]. The models of MXenes are constructed using 3 × 3 super cells. The size of the
vacuum layer is set to 20 Å along the Z-axis to avoid layer-to-layer interaction. To ensure the
accuracy of the calculation, 520 eV is selected as the cut-off energy of the plane wave base.
The 6 × 6 × 1 k-point grid is used for structural optimization, and the 9 × 9 × 1 k-point
grid is used for the calculation of the density of states. Meanwhile, the maximum values
of the energy standard, force standard position and displacement standard for structural
convergence are 2 × 10−5 eV/atom−1, 0.05 eV/Å−1 and 0.002 Å, respectively. The electron
transfer is calculated using the Hirshfeld population analysis method.

The adsorption energy (Eads) between Li2Sx species and MXenes is defined by the
following formula:

Eads = Especies+MXene − (Especies + EMXene) (1)

where Especies+MXene represents the energy of the entire system after MXenes adsorb Li2Sx
species, while EMXene and Especies represent the energy of isolated MXenes and Li2Sx species,
respectively. By definition, the more negative the value, the stronger ability of MXenes to
adsorb Li2Sx species.

3. Results and Discussion
3.1. Structure and Adsorption Performance

First, the structures of Li2Sx species are studied (Figure 2). S8 presents a folded ring
structure, and the shortest S-S bond length is 1.96 Å. The shortest S-Li bond lengths of
soluble Li2S8, Li2S6, and Li2S4 are 2.39 Å, 2.41 Å, and 2.37 Å, respectively, and the shortest
S-S bond lengths are 2.05 Å, 2.04 Å, and 2.08 Å, respectively. For insoluble Li2S2 and Li2S,
the shortest S-Li bond lengths are 2.24 Å and 2.11 Å, respectively. For insoluble Li2S2 and
Li2S, the shortest S-Li bond lengths are 2.24 Å and 2.11 Å. All molecules present a 3D
structure, not a chain structure, which is consistent with previous work [41].

Secondly, we establish the model of Ti2N (Figure S1). The lattice constant is a = b = 3.01 Å,
and the Ti-N bond length is 2.07 Å. Based on Ti2N, the model of Ti2NS2 is established
(Figure 3). The fully relaxed Ti2NS2 presents the hexagonal structure. The lattice constant is
a = b = 3.17 Å. The triangular carbon layer in the middle is sandwiched by two triangular
titanium layers, while the outermost layer of S atoms is located directly above the lower layer
of titanium. Compared with the original Ti2N, the Ti–N bond length of Ti2NS2 changes from
2.07 Å to 2.18 Å. The bond length of the Ti–S bond is 2.39 Å. This is in line with the results of
previous research [42], indicating the correctness of the Ti2NS2 model.
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Figure 3. (a) Side and (b) top views of Ti2NS2. Yellow balls represent S atoms. Gray balls represent
Ti atoms. Blue balls represent N atoms.

Figure 4 shows the density of states of Ti2NS2. The dotted line represents the Fermi
energy levels. It can be clearly seen from the figure that the Fermi level appears in the
electronic state, which indicates that the Ti2N with S-functional group presents the metal-
licity. The metallicity is mainly provided by the d-orbital of titanium. At the same time,
the p-orbital of the sulfur atom also contributes to the metallicity of Ti2NS2. The electrical
conductivity of the host materials facilitates the charge-discharge reaction in Li-S batteries,
since it can provide the electrons needed for the reaction.

After understanding the structure of Li2Sx species and Ti2NS2, the interaction between
Li2Sx species and Ti2NS2 is studied. To find the stable structures, different positions of the
Li2Sx species on Ti2NS2 are tried. For Li2S, the possible adsorption orientations include
S-Top, Li-Side and S-Down (Figure S2). Among the three adsorption orientations, the S-
Down becomes the S-Top after optimization, and the adsorption energies of the S-Top and
Li-Side are −3.42 eV and −1.56 eV, respectively. Therefore, the S-Top is the most favorable
adsorption orientation. The adsorption of Li2S2, Li2S4, Li2S6, Li2S8 and S8 on Ti2NS2 is
considered in a similar manner. The final optimized structures are shown in Figure 5.
Table 1 shows the adsorption energies (Eads), shortest distances between Li2Sx species and
Ti2NS2 (d), and transfer charge (Q) when Ti2NS2 adsorbs Li2Sx species. The ring structure
of the S8 molecule remains intact, parallel to the surface of Ti2NS2, and the adsorption
energy is −0.57 eV. The shortest distance between the S atom of S8 and the S atom on the
surface of Ti2NS2 is 3.52 Å. For insoluble Li2S and Li2S2, their Li atoms tend to combine
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with the S atoms of Ti2NS2. Li atoms of Li2S and Li2S2 are surrounded by three S atoms on
the surface of Ti2NS2, and the distances from the nearest S atoms are 2.38 Å and 2.43 Å,
respectively, and the adsorption energies are −3.42 eV and −2.36 eV, respectively. As for
the soluble Li2S4, Li2S6, Li2S8, their adsorption energies are −1.31 eV, −0.90eV, −0.95 eV,
respectively. Similar to the insoluble Li2S and Li2S2, Li atoms tend to combine with the S
atoms of the Ti2NS2, and the shortest distances between them are 2.47 Å, 2.54 Å and 2.51 Å,
respectively. Generally speaking, the adsorption energies of Ti2NS2 for Li2Sx are between
−0.57 eV~−3.42 eV, showing an increasing trend with the deepening of lithiation.
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Table 1. The adsorption energy (Eads), shortest distance between Li2Sx species and Ti2NS2, the charge
transfer (Q, a positive value means that the substrate loses electrons from Li2Sx, a negative value is
the opposite) when Ti2NS2 adsorbs Li2Sx species.

Li2S Li2S2 Li2S4 Li2S6 Li2S8 S8

Eads/eV −3.42 −2.36 −1.31 −0.90 −0.95 −0.57
d/Å 2.38 2.43 2.47 2.54 2.51 3.52
Q/e 0.38 0.34 0.22 0.13 0.15 0.13

Since the shuttle effect is caused by the dissolution of soluble polysulfides (Li2S4, Li2S6,
and Li2S8) into the electrolyte, we calculate the adsorption energies of electrolyte solvent
molecules (DOL and DME) for Li2S4, Li2S6, and Li2S8 (Figure S3). The results show that the
adsorption energies of electrolyte solvent molecules are between −0.76~−0.84 eV, which
are fewer than those of Ti2NS2 (−0.90~−1.31 eV). Furthermore, the adsorption energies
of Ti2NS2 are in the range of −0.8~−2.0 eV [43], and the adsorption energy intensity is
moderate. Therefore, Ti2NS2 can effectively inhibit the shuttle effect. In addition, to form a
comparison, the model of Ti2NO2 is constructed (Figure S4). The structure of Ti2NO2 is
similar to that of Ti2NS2, presenting a hexagon structure. The lattice constant of Ti2NO2
is a = b = 3.07 Å, and the length of the Ti–O bond is 1.85 Å, which is shorter than that of
Ti2NS2, mainly because the size of the oxygen atom is smaller than that of the sulfur atom.
After that, the adsorption energies of Ti2NO2 for Li2Sx species are calculated (Figure S5,
Figure 6). The results show that the adsorption energies of Ti2NO2 for Li2Sx species are
−2.07 eV, −2.21 eV, −1.29 eV, −0.66 eV, −0.90 eV, −0.43 eV, respectively, which are fewer
than those of Ti2NS2. Therefore, Ti2NO2 is less effective than Ti2NS2 in inhibiting the
shuttle effect. The S-functional groups have an advantage over the O-functional groups.

Nanomaterials 2021, 11, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 6. Adsorption energies of Ti2NS2 and Ti2NO2. 

To further explore the adsorption mechanism of Ti2NS2, the charge transfer and 
charge density difference between Li2Sx species and Ti2NS2 are calculated. 

It can be seen from Table 1 that the transferred electrons between S8 and Ti2NS2 are 
0.13 e, which indicates that the force between S8 and the substrate is weak, and the ad-
sorption energy depends on van der Waals force. Similar to S8, the transferred electrons 
of Li2S8 and Li2S6 are 0.15 e and 0.13 e, respectively, so the adsorption energies also mainly 
depend on van der Waals force. Later, with the deepening of lithium, the transferred elec-
trons become more. The transferred electrons of Li2S4, Li2S2 and Li2S are 0.22 e, 0.34 e and 
0.38 e, respectively. Meanwhile, the adsorption energies become higher, indicating that 
the transferred electrons affect the adsorption energies. 

Figure 7 shows the charge density difference between Li2Sx species and Ti2NS2. The 
blue regions indicate the accumulation of charge, and the red regions indicate the deple-
tion of charge. The blue regions are mainly concentrated near the Li atoms of Li2Sx and the 
S atoms of Ti2NS2 surface, which indicates that the transferred electrons between Li2Sx 
species and Ti2NS2 surface are mainly provided by Li atoms of Li2Sx species. For long-chain 
sulfides (Li2S8, Li2S6, Li2S4), the blue regions are significantly smaller than those of short-
chain sulfides (Li2S2, Li2S), indicating that the transferred electrons of long-chain sulfides 
are fewer than those of short-chain sulfides, so Ti2NS2 has a stronger adsorption capacity 
for short-chain sulfides. 

 
Figure 7. Charge density difference between (a) S8, (b) Li2S8, (c) Li2S6, (d) Li2S4, (e) Li2S2, (f) Li2S and 
Ti2NS2. The isosurface level is set to 0.025 e/Å3. The blue regions indicate charge accumulation, and 
the red regions indicate charge depletion. 

Figure 6. Adsorption energies of Ti2NS2 and Ti2NO2.

To further explore the adsorption mechanism of Ti2NS2, the charge transfer and charge
density difference between Li2Sx species and Ti2NS2 are calculated.

It can be seen from Table 1 that the transferred electrons between S8 and Ti2NS2
are 0.13 e, which indicates that the force between S8 and the substrate is weak, and the
adsorption energy depends on van der Waals force. Similar to S8, the transferred electrons
of Li2S8 and Li2S6 are 0.15 e and 0.13 e, respectively, so the adsorption energies also mainly
depend on van der Waals force. Later, with the deepening of lithium, the transferred
electrons become more. The transferred electrons of Li2S4, Li2S2 and Li2S are 0.22 e, 0.34 e
and 0.38 e, respectively. Meanwhile, the adsorption energies become higher, indicating that
the transferred electrons affect the adsorption energies.

Figure 7 shows the charge density difference between Li2Sx species and Ti2NS2. The
blue regions indicate the accumulation of charge, and the red regions indicate the depletion
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of charge. The blue regions are mainly concentrated near the Li atoms of Li2Sx and the
S atoms of Ti2NS2 surface, which indicates that the transferred electrons between Li2Sx
species and Ti2NS2 surface are mainly provided by Li atoms of Li2Sx species. For long-
chain sulfides (Li2S8, Li2S6, Li2S4), the blue regions are significantly smaller than those of
short-chain sulfides (Li2S2, Li2S), indicating that the transferred electrons of long-chain
sulfides are fewer than those of short-chain sulfides, so Ti2NS2 has a stronger adsorption
capacity for short-chain sulfides.
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Figure 7. Charge density difference between (a) S8, (b) Li2S8, (c) Li2S6, (d) Li2S4, (e) Li2S2, (f) Li2S
and Ti2NS2. The isosurface level is set to 0.025 e/Å3. The blue regions indicate charge accumulation,
and the red regions indicate charge depletion.

In addition, to better explore the influence of van der Waals forces on adsorption, we
take Li2S2, Li2S4 and Li2S6 as examples to calculate the ratio of vdW interaction (R), as
shown in Figure 8. The R is defined as follows:

R =
EvdW

ads − EnovdW
ads

EvdW
ads

× 100% (2)

where EvdW
ads and EnovdW

ads represent the adsorption energies with and without the vdW
interaction, respectively. It is clear that the ratio of van der Waals forces decreases and the
ratio of chemical interactions increases as the degree of lithium increases. For long-chain
sulfides, van der Waals force is the main source of adsorption energy.

3.2. Electronic Properties

It is well known that good conductivity is very important for batteries. However,
sulfur, the cathode material of Li-S batteries, is very poor in conductivity. An excellent
cathode host material should not only have good conductivity itself, but also have good
conductivity after absorbing Li2Sx species. Therefore, the density of states of the whole
systems after Ti2NS2 adsorbed Li2Sx species is calculated. Figure 9a shows the density
of states of the whole system after Ti2NS2 adsorbed S8, and the dotted line in Figure 9
represents the Fermi energy level. Similar to the density of states of Ti2NS2, S8@Ti2Ns2
composites still possess metallic properties due to Ti atoms. The electronic properties
of S8 are changed by Ti2NS2. In addition, Figure 9b–f show the density of states of the
systems which are formed after the adsorption of long-chain sulfides Li2S8, Li2S6, Li2S4 and
short-chain sulfides Li2S2 and Li2S by Ti2NS2. Affected by Ti2NS2, the composite materials
formed by Li2Sx species and Ti2NS2 still have an electronic state at the Fermi level. All
systems exhibit metallic properties, including S8, Li2S, and Li2S2, which are originally
poor conductivities. This indicates that the sulfur cathodes can maintain high conductivity
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during the entire lithiation and delithiation process. This is very beneficial for improving
the cycle performance and rate performance of Li-S batteries.
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4. Conclusions

In this work, the performance of S-functionalized Ti2N (Ti2NS2) as the host materials
for the cathodes of Li-S batteries is studied through first-principles calculations. The results
show that the adsorption energies of Ti2NS2 are moderate, stronger than those of Ti2NO2,
especially the adsorption energies of LiPSs are stronger than those of electrolytes, which
can effectively inhibit the shuttle effect. At the same time, Ti2NS2 has good conductivity
without adsorption of Li2Sx species. After adsorption of Li2Sx species, it still has a high
conductivity, which can improve the conductivity of sulfur cathodes and enhance the
electrochemical activity during the charge/discharge process. Therefore, Ti2NS2 has the
potential to be the cathode host materials for Li-S batteries. This work provides a reference
for the design of high-performance cathode host materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11102478/s1. Figure S1: (a) Side and (b) top views of Ti2N. Gray balls represent Ti atoms.
Blue balls represent N atoms. Figure S2: The possible orientation of Li2S with respect toTi2NS2.
Figure S3: The optimized structures of DME and DOL absorbing (a) S8, (b) Li2S8, (c) Li2S6, (d) Li2S4,
(e) Li2S2, and (f) Li2S. Figure S4: (a) Side and (b) top views of Ti2NS2. Red balls represent O atoms.
Gray balls represent Ti atoms. Blue balls represent N atoms. Figure S5: The optimized structures of
Ti2NO2 absorbing (a) S8, (b) Li2S8, (c) Li2S6, (d) Li2S4, (e) Li2S2, and (f) Li2S. Purple balls represent Li
atoms. Red balls represent O atoms. Gray balls represent Ti atoms. Blue balls represent N atoms.
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