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Abstract: In this work, we prepared spinel-type NiCo2O4 (NCO) nanopowders as a low-cost and 

sensitive electrochemical sensor for nonenzymatic glucose detection. A facile and simple chemical 

bath method to synthesize the NCO nanopowders is demonstrated. The effect of pH and annealing 

temperature on the formation mechanism of NCO nanoparticles was systematically investigated. 

Our studies show that different pHs of the precursor solution during synthesis result in different 

intermediate phases and relating chemical reactions for the formation of NCO nanoparticles. Dif-

ferent morphologies of the NCO depending on pHs are also discussed based on the mechanism of 

growth. Electrochemical performance of the prepared NCO was characterized towards glucose, 

which reveals that sensitivity and selectivity of the NCO are significantly related with the final mi-

crostructure combined with constituent species with multiple oxidation states in the spinel struc-

ture. 
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1. Introduction 

Diabetes is a disease that impairs the human body’s ability to control glucose or sugar 

in the blood [1–3]. High glucose levels can cause serious health problems including heart 

disease, stroke, and kidney disease, and thus, it is important to maintain the glucose levels 

in blood via continuous monitoring with accurate detection of glucose [4–6]. Since the 

oxygen electrode was developed, different types of glucose sensors including an optical 

sensor and electrochemical sensor have been introduced [7,8]. Especially, the electro-

chemical glucose sensor has been actively studied to increase the sensitivity and to reduce 

the detection time for its excellent applicability to the real-time monitoring system. 

Electrochemical glucose sensors can be divided into enzymatic and nonenzymatic 

sensors. The enzymatic glucose sensor exhibits high sensitivity and selectivity through 

direct immobilization of glucose oxidase. However, its natural limitations include a short 
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lifetime due to poor chemical and thermal stability, and expensive processing costs hin-

dering further advancement of the enzymatic biosensor for industrial applications [9–11]. 

Thanks to their several advantages such as long-term stability and reproducibility, and 

effective processing cost, different types of nonenzymatic electrocatalysts have been de-

veloped including noble metals, transition metals and alloys, and metal oxides [12–14]. 

Among them, transition-metal-based oxides have drawn great interest due to their con-

figurational flexibility of transition metals, which promotes glucose oxidation with excel-

lent sensitivity and selectivity [15–18]. 

Different types of synthesis methods for transition-metal-based oxides have been de-

veloped including hydroxide decomposition [19], nanocasting [20], electrodeposition [21], 

coprecipitation [22], and hydrothermal synthesis [23]. However, their complex and en-

ergy-consuming processing hinders the industrial application to glucose sensors. There-

fore, exploring fast, environmentally friendly, and energy-efficient synthetic methods for 

transition-metal-based oxides is urgent. Recently, it has been reported that chemical bath 

synthesis has proven to be capable of controlling the size and morphology of materials by 

control of reaction parameters, such as temperature, pH, and solvent concentration [23–

26]. It is expected that the transition-metal-based oxides prepared by chemical bath syn-

thesis can be applied as a glucose sensor. However, there is limited information available 

on the effect of the processing parameters of chemical bath synthesis on the electrochem-

ical performance for glucose detection.  

In this work, spinel-type NiCo2O4 (NCO) are successfully synthesized by a simple 

and facile chemical bath method. The morphology of the NCOs depending on pH during 

synthesis was investigated, which is closely related to the growth mechanism. Also, the 

formation of the NCOs was investigated to show excellent electrochemical performance 

for glucose detection including sensitivity, selectivity, and low detection limits. 

2. Materials and Methods 

2.1. Materials and Reagents 

Nickel nitrate hexahydrate (Ni(NO3)2·6H2O, 99.99%), cobalt nitrate hexahydrate 

Co(NO3)2·6H2O, 99.9%), ammonia solution (NH4OH), sodium hydroxide (NaOH), D-(+)-

glucose, uric acid (UA), dopamine (DA), L-ascorbic acid (LA), and acetic acid (AA) were 

purchased from Sigma-Aldrich (Seoul, South Korea). All of the reagents used were of an-

alytical grade and used as received without further purification. 

2.2. Chemical Bath Synthesis of NiCo-Layered Double Hydroxide and NiCo2O4  

An aqueous solution of Ni(NO3)2·6H2O (0.005 M) and Co(NO3)2·6H2O (0.01 M) was 

prepared by dissolving the salts in 100 mL of deionized water (DI water) with vigorous 

stirring for 60 min. Ammonia solution was added to the precursor solution until each 

scheduled pH value (11, 12, 13, and 14) was reached, followed by heating at 80 °C on a 

hotplate for 14 h, resulting in a thick, viscous, dark greenish fluid. It is noted that the pH 

of the precursor solution without the addition of ammonia solution was 8. Obtained prod-

ucts prepared at pH 8, 11, 12, 13, 14 are denoted as NCO8B, NCO11B, NCO12B, NCO13B, 

and NCO14B, respectively. The fluid was filtered through filter paper several times with 

DI water and ethanol. Subsequently, the filtered materials were dried in air for 24 h fol-

lowed by annealing in air for 4 h at different temperatures at 450 °C with a heating rate of 

10 °C/min, which turned the material black in color. Final products prepared at pH 8, 11, 

12, 13, 14 are denoted as NCO8, NCO11, NCO12, NCO13, and NCO14, respectively. Also, 

crystalline NiCo2O4 with spinel structure is abbreviated as NCO. For clarity, detailed in-

formation is presented in Table S1 in the Supporting Information. 

2.3. Material Characterizations and Electrochemical Measurements 

The morphologies of NCO were investigated by scanning electron microscopy (SEM, 

Nova NanoSEM 450, FEI, Portland, OR, USA). The X-ray diffraction (XRD) patterns were 



Nanomaterials 2021, 11, 55 3 of 11 
 

 

collected using a PANalytical X-ray diffractometer (Empyrean, PANanalytical, Almelo, 

Nederland) with Cu-Kα radiation (λ = 0.1548 nm).  

All the electrochemical measurements including cyclic voltammetry (CV) and chron-

oamperometry (CA) were performed on an IVIUMSTAT electrochemical analyzer (IVI-

UMSTAT, Ivium Technologies, Eindhoven, Netherland) using a three-electrode system in 

a 0.1 M aqueous NaOH solution at room temperature. A glassy carbon electrode (GCE), 

an Ag/AgCl electrode, and a platinum plate were used as the working electrode, reference 

electrode, and counter electrode, respectively. The samples (10 mg), ethanol (0.5 mL), and 

Nafion solution (30 μL) were mixed for the preparation of the working electrode. Subse-

quently, drop-casting of the dispersion on the GC electrode was performed followed by 

drying under ambient conditions overnight. 

The CV response was recorded between 0 and 0.6 V at different scanning rates of 5–

100 mV/s. To get the optimal potential of the CA response of the sample, glucose was 

added to the 0.1 M NaOH solution at various potentials from +0.4 to +0.6 V, as shown in 

Figure S1. The optimal potential of +0.5 V was chosen, which was highly responsive and 

stable as the working potential for glucose detection. The CA response of the samples to 

the glucose was carried out at an applied potential of 0.5 V under stirred conditions. For 

sensing performance evaluation, 0.01–6 mM glucose solutions were used, with LA, DA, 

AA, and UA detection performed at concentrations of 0.1 mM in 0.1 M NaOH alkaline 

electrolyte.  

3. Results 

The influence of pH during synthesis on the crystallization of the NCO was investi-

gated as shown in Figure 1. As shown in Figure 1a, Ni2(NO3)2(OH)2 · 2H2O and Co(NO3)2· 

6H2O were observed from NCO8B, while NiCo-layered double hydroxide (NiCo-LDH) 

was observed from NCO11B to 14B [27]. As annealing temperature increased, different 

phase transformations were observed depending on pH as shown in Figure 1b, c. Phase 

transformation of the NCO8B to spinel-type NCO (NCO8) occurred from 150 °C, and 

NCO single phase with improved crystallinity was observed at 350 °C, which implies the 

chemical reaction of the intermediates (Ni3(NO3)2(OH)4 and Co(NO3)2· 6H2O) with oxygen 

for the formation of spinel-type NCO8. However, NCO11B–14B with LDH structure di-

rectly transformed into spinel-type NCOs (NCO11—14) without any chemical reaction 

between intermediates with increasing temperature. Regardless of pH during synthesis, 

spinel-type NCO single phase was observed after annealing at 450 °C (Figure 1d) [28]. In 

the chemical bath process, an increase of OH− ions in a precursor solution containing Ni2+, 

Co2+, and NO3− occurred by applying NH4OH, which turned into an alkaline condition 

(pH = 11~14) in the chemical bath. Under the condition, the chemical reaction among dif-

ferent ions such as Ni2+, Co2+, and OH− ions led to the formation of the NiCo-LDH as ex-

pressed by reaction (1) [29,30]. Simultaneously, H2O molecules and NO3− ions were inter-

calated into NiCo-LDH interlayer to retain the LDH structure through a hydrogen bond. 

Subsequent annealing of the as-synthesized NiCo-LDH caused structural transformation 

into spinel-type NiCo2O4 (NCO), as described by the reaction (2) [29–32]. 

Ni2+ + 2Co2+ + 6OH− → NiCo2(OH)6 (NiCo-LDH) (1)

2NiCo2(OH)6 + O2 → 2NiCo2O4 + 6H2O (2)
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Figure 1. XRD patterns of (a) NCOBs (8B, 11B, 12B, 13B, and 14B), (b) NCO8 by different annealing temperatures (150, 

250, and 350 °C), (c) NCO13 by different annealing temperatures (150, 250, and 350 °C), and (d) NCOs (8, 11, 12, 13, and 

14) after annealing at 450 °C. 

The pH depending on OH− ions in the precursor solution also determines the mor-

phology of the NCO during synthesis. As depicted in Figure 2a, a high concentration of 

OH− ions for the reaction environment reveals the flower-like morphology as observed 

from NCO11B–13B, which is originated from anisotropic grain growth of LDH. [33,34] 

However, the unique flower-like morphology disappears at pH 14 (NCO14B) due to fur-

ther grain growth of LDHs. After annealing, the morphological transformation of the 

NCOB prepared at different pH values was observed as shown in Figure 2b. Spherical 

nanoparticles were observed from NCO8, derived by the chemical reaction between ni-

trates and oxygen. However, the transformation from NiCo-LDH prepared at high pH 

(NCO11–13) to NCO maintains the sheet-like morphology. It is noted that the nanosheets 

consist of the assembly of spherical nanoparticles after transformation from LDH to NCO. 

Also, an increase of pH from 8 to 13 during synthesis results in smaller particle sizes after 

annealing. As expected, the morphology of the NCO14 is transferred from NCO14B. Re-

gardless of different pH, homogenous distribution of the constituent elements (Ni, Co, 

and O) was observed from NCOBs and NCOs as shown in Figure S2, which implies that 

the synthesis route using the chemical bath method is applicable to prepare the spinel-

type NiCo2O4 nanostructures at comparatively low temperature (450 °C).  
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Figure 2. FE-SEM images of (a) NCOBs (8B, 11B, 12B, 13B, and 14B), and (b) NCOs (8, 11, 12, 13, and 14). 

Different microstructures of the NCOs can be determined by different processing 

conditions including pH, thus showing different electrochemical properties. The depend-

ence of the cyclic voltammetric (CV) curves for NCOs on the pH during chemical bath 

synthesis was measured to investigate the electrochemical behavior of the NCOs under 

alkaline conditions (0.1 M NaOH) at various scan rates as shown in Figure 3. There is a 

negligible effect of pH on the redox peak potentials for the NCO electrodes. Regardless of 

pH, redox peak currents of the NCOs were increased with increasing CV scan rate. Oxi-

dation peaks of the NCOs correspond to Ni2+/Ni3+, Co2+/Co3+, and Co3+/Co4+ due to oxida-

tion of Ni2+, Co2+ and Co3+ to Ni3+, Co3+, and Co4+, respectively. It is noted that the redox 

peak potential of Co3+/Co4+ is close to that of Ni2+/Ni3+ and Co2+/Co3+, which shows over-

lapped redox peaks in the CV curve [35–37]. In addition, the reduction peaks of NCOs are 

attributed to the Ni3+, Co4+, and Co3+ to Ni2+, Co3+, and Co2+, respectively. The redox peak 
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currents for the NCOs at the square root of the scan rates are presented in Figure 3f. All 

NCOs synthesized at different pH show a linear proportionality relationship between the 

redox peak currents and the square root of the scan rates, suggesting that NCOs undergo 

diffusion-controlled electrochemical behavior [38,39]. Also, CV responses of NCOs were 

synthesized at different pH in response to 5 mM glucose under alkaline conditions (0.1 M 

NaOH) at a scan rate of 50 mVs−1, as shown in Figure S3. Regardless of the pH, all NCOs 

oxidize glucose (C6H12O6) to gluconolactone (C6H10O6), which implies that NCOs synthe-

sized at different pH can be applied to electrochemical glucose sensors [40,41]. 

 

Figure 3. CV curves of (a) NCO8, (b) NCO11, (c) NCO12, (d) NCO13, and (e) NCO14 electrodes at 

different scan rates in 0.1 M NaOH solution. (f) Respective Randles–Sevcik plots of NCO elec-

trodes. 

The electrochemical performance of NCOs on glucose oxidation was investigated as 

shown in Figure 4. Chronoamperometry (CA) responses of NCOs were measured by step-

wise changes in glucose concentrations in 0.1 M NaOH at 60 s intervals under an applied 

potential of 0.50 V. With increasing pH during synthesis, the sensitivity of NCO shows in 

the range between 48.71–146.26 μA/mM (cm2) with 0.995–0.998 (R2), which shows a linear 

detection limit in the range between 0.01–6 mM. The limits of detection (LOD) of NCOs 

are in the range between 0.0475–0.393 μM, as shown in Figure S4. Based on the results 
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from the CA test, NCO13 shows superior electrochemical performance for glucose detec-

tion, supported by excellent linear sensitivity (146.24 μA/mM (cm2)) in a wide detection 

range. The excellent sensitivity of the NCOs is strongly associated with the redox reaction 

of active sites. As expected, Co2+, Co3+, Ni2+, and Ni3+ as active sites in NCO were investi-

gated in XPS results, as shown in Figure S5. In the XPS spectra of Co2p and Ni2p, Co2+/3+ 

and Ni2+/3+ were observed on the NCO. It is believed that multi-valence states of Ni and 

Co cations play an important role as oxidizing agents for glucose detection [17,42,43]. 

Thus, the reversible conversion of Ni2+/Ni3+ and Co2+/Co3+ in NCOs enables repetitive glu-

cose detection [44–46]. 

 

Figure 4. CA responses of (a) NCO8, (b) NCO11, (c) NCO12, (d) NCO13, and (e) NCO14 elec-

trodes with the addition of glucose to 0.1 M NaOH solution at 0.50 V. Their respective calibration 

curves of current response versus glucose concentration plots inset in the figure. 

The selectivity of NCOs is also an important factor for accurate glucose detection: 

current response to other reagents can detract from the determination of glucose [47–49]. 

The selectivity of the NCOs depending on different pH was investigated as shown in Fig-

ure 5. The current response of all NCOs to glucose is obvious. However, there is no change 

in the current response to uric acid (UA), dopamine (DA), L-ascorbic acid (LA), and acetic 

acid (AA) at the same glucose concentration of 1 and 2 mM, which implies that NCOs 
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have excellent selectivity for glucose [41,50,51]. Based on the results above, it is suggested 

that the sensitivity of the NCOs for glucose detection is strongly dependent on morphol-

ogy, however, selectivity for glucose detection is significantly determined by the redox 

reaction of the chemical components. The electrochemical performance of the NCOs pre-

pared in this work was summarized in Table 1. The sensitivity of the NiCo2O4/rGO shows 

the highest value when compared to the other materials including NCOs, induced by the 

excellent electrochemical performance of the NCOs combined with fast electron transfer 

from supportive rGO [52–55]. However, NCOs show higher sensitivity with a lower de-

tection limit in response to glucose compared to the rest of the materials in Table 1 [56–

58]. Therefore, the NCOs as pure oxides can be expected to be practical for the application 

of glucose sensors. 

 

Figure 5. CA responses (CA) of (a) NCO8, (b) NCO11, (c) NCO12, (d) NCO13, and (e) NCO14 

electrodes to addition of 1 mM glucose and 0.1 mM interfering species (LA, DA, AA, and UA) in a 

0.1 M NaOH solution at 0.5 V. 
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Table 1. Comparison of our work to the nonenzymatic glucose sensor. 

Electrode Method 
Sensitivity 

(μA/mM (cm2)) 

Linear Range 

(mM) 

Correlation 

Coefficient (R2) 

Detection Limit 

(μM) 
Refs. 

NCO8 CA 48.71 0.01–6 0.992 0.539 This work 

NCO11 CA 90.549 0.01–6 0.995 0.393 This work 

NCO12 CA 94.90 0.01–6 0.998 0.0503 This work 

NCO13 CA 142.14 0.01–6 0.997 0.0433 This work 

NCO14 CA 73.10 0.01–6 0.996 0.0475 This work 

NiCo2O4/CNT CA 66.15 0.02–12.12 0.99 5 [52] 

NiCo2O4/rGO CA 548.9 0.005–8.56 0.99 2 [53] 

CuCo2O4 CA 3.625 Up to 0.32 - 5 [56] 

NiO CA 32.91 Up to 1.94  1.28 [57] 

Co3O4 CA 36.25 Up to 2.04  0.97 [58] 

4. Conclusions 

Spinel-type NiCo2O4 (NCO) nanostructure was synthesized by a simple chemical 

bath method for electrochemical glucose sensors. Although different chemical reactions 

and formation of intermediates depending on pHs occur during synthesis, only spinel-

type NCO was prepared after annealing at 450 °C. However, the morphology and particle 

size of the NCOs are strongly influenced by pH value, which emphasizes the importance 

of synthetic routes for the formation of the NCO. In our study, NCO13 with flower-like 

morphology assembled with small nanoparticles shows superior glucose detection in-

cluding a sensitivity of 143 μA/mM (cm2) up to 6 mM with good linearity. It is revealed 

that the different morphology and particle size of the NCO determine the sensitivity for 

glucose detection. Also, the selectivity of the NCO is determined by the unique spinel 

structure and redox reaction of Ni and Co ions. 

Supplementary Materials: The following are available online at www.mdpi.com/2079-

4991/11/1/55/s1, Figure S1: CA response of NCO13 electrode upon addition of 1 mM glucose in 1m 

M NaOH solution at different applied potentials. Figure S2: SEM-elemental mapping images of (a) 

NCOBs (8B, 11B, 12B, 13B, and 14B), and (b) NCOs (8, 11, 12, 13, and 14). Figure S3: CV curves of (a) 

NCO8, (b) NCO11, (c) NCO12, (d) NCO13, and (e) NCO14 electrodes in the absence of glucose and 

with 5 mM concentration of glucose at a scan rate 50 mVs−1. Figure S4: CA response of (a) NCO8, (b) 

NCO11, (c) NCO12, (d) NCO13, and (e) NCO14 electrodes with the addition of 10 μM glucose in 0.1 

M NaOH solution at 0.50 V. Figure S5: The XPS spectra of Ni2p and Co2p (NCO13). Table S1: Sample 

notations of As-prepared and after annealing samples. 
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