

Supplementary Materials

Investigation of Physicochemical Properties of the Structurally Modified Nanosized Silicate-Substituted Hydroxyapatite Co-Doped with Eu³⁺ and Sr²⁺ ions

Sara Targonska * and Rafal J. Wiglusz *

Table S1. The number of substrates used for synthesis of silicate-substituted hydroxyapatite co-doped with Eu³⁺ and 2+

Sr
01

Sample	Ca9.8-xSr0.2Eux(PO4)2(SiO4)4(OH)2			
Substrate	0.5 mol%	1.0 mol%	2.0 mol%	
Ca(NO3)2·4H2O [g]	4.568	4.519	4.424	
(NH4)2HPO4 [g]	0.524	0.521	0.515	
tetraethyl orthosilicate TEOS [mL]	1.76	1.75	1.73	
Eu2O3 [g]	0.017	0.035	0.069	
Sr(NO ₃) ₂ [g]	0.084	0.083	0.083	

Figure S1. The representative SEM image (a) and EDS spectra (b) of the Ca_{9.6}Sr_{0.2}Eu_{0.2}(PO₄)₂(SiO₄)₄(OH)₂ nanopawders.

Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland

Correspondence: s.targonska@intibs.pl (S.T.); r.wiglusz@intibs.pl (R.J.W.); Tel.: +48-071-3954-159-274 (R.J.W.)

Figure S2. Representative results of the of the $Sr_{0.2}Eu_{0.2}Ca_{9.6}(PO_4)_2(SiO_4)_4(OH)_2$, obtained at 600°C, Rietveld analysis (red – fitted diffraction; blue – differential pattern, column – reference phase peak position).

Table S2. Unit cell parameters (a,c), cell volume (V), grain size as well as refine factor (Rw) for the Ca10(PO4)2(SiO4)4(OH	i)2
co-doped with 2 mol% Sr^{2+} and x mol/% Eu^{3+} ions (where x = 0.5 – 2).	

Sample	a (Å)	c (Å)	V (Å3)	size (nm)	Rw (%)	
single crystal ¹	9.4106(2)	6.9166(2)	530.47(2)	_	_	
	600°C					
x = 0.5	9.4343(2)	6.8860(3)	530.78(8)	54.66	2.0	
x = 1	9.4288(0)	6.8900(1)	530.40(4)	56.00	2.5	
x = 2	9.4231(3)	6.8858(6)	529.51(6)	45.37	2.1	
Sr0.2Eu0.2Ca9.6(PO4)4(SiO4)2(OH)2						
as prepared	9.4387(8)	6.8897(1)	531.57(3)	16.12	1.9	
400°C	9.4291(6)	6.8902(7)	530.53(4)	16.61	1.7	
500°C	9.4307(1)	6.8871(0)	530.46(4)	35.77	2.4	
600°C	9.4231(3)	6.8858(6)	529.51(6)	45.37	2.1	

Figure S3. Temperature-dependent emission intensity of the lines correspond to the listed transitions.

Temperature (K)	CIE (x)	CIE (y)	Colour
80	0.643	0.356	
100	0.644	0.356	_
125	0.645	0.354	
150	0.645	0.355	
175	0.645	0.354	_
200	0.645	0.354	-
225	0.645	0.355	
250	0.645	0.355	-
275	0.646	0.353	-
300	0.644	0.355	-
325	0.647	0.353	-
350	0.645	0.355	-
375	0.645	0.355	-
400	0.645	0.354	- Keddish
425	0.644	0.355	- orange -
450	0.644	0.356	
475	0.643	0.357	_
500	0.641	0.359	_
525	0.641	0.359	_
550	0.638	0.362	
575	0.634	0.366	-
600	0.630	0.370	-
625	0.627	0.372	-
650	0.626	0.373	-
675	0.621	0.378	_
700	0.618	0.382	
725	0.613	0.386	_
750	0.609	0.391	
757	0.603	0.397	Orango
800	0.597	0.402	- Orange
825	0.590	0.409	

Table S3. The comparison of the CIE color coordinates (x,y) of Ca_{9.6}Sr_{0.2}Eu_{0.2}(PO₄)₂(SiO₄)₄(OH)₂ as a function of ambient temperature.