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Abstract: Carbon dots (CDs)-based logic gates are smart nanoprobes that can respond to various
analytes such as metal cations, anions, amino acids, pesticides, antioxidants, etc. Most of these logic
gates are based on fluorescence techniques because they are inexpensive, give an instant response,
and highly sensitive. Computations based on molecular logic can lead to advancement in modern
science. This review focuses on different logic functions based on the sensing abilities of CDs and
their synthesis. We also discuss the sensing mechanism of these logic gates and bring different types
of possible logic operations. This review envisions that CDs-based logic gates have a promising
future in computing nanodevices. In addition, we cover the advancement in CDs-based logic gates
with the focus of understanding the fundamentals of how CDs have the potential for performing
various logic functions depending upon their different categories.

Keywords: carbon dots (CDs), logic gates; nanodevices; molecular logic; PET; IFE; FRET

1. Introduction

In many fields of science, carbon dots (CDs) have grabbed significant attention due
to their unique chemical and physical properties. These properties include nontoxicity,
inexpensive synthesis, and excitation dependent fluorescence performance [1,2]. In 2004,
the CDs were developed accidentally during the electrophoretic purification of carbon
nanotubes (CNTs) by Xu and coworkers [3].

The photophysical, as well as chemical properties of CDs, can be tuned by changing
their size and by doping with different heteroatoms such as nitrogen (N), oxygen (O), sulfur
(S), and boron (B) [4]. Both the biological and electronic properties of CDs, such as water
solubility and biocompatibility along with their electron donor and acceptor behavior,
resulted in their application in the field of bioimaging, drug delivery, biosensors, optronics,
catalysis, and sensors [5–9]. Initially, CDs were considered as an amorphous allotrope
of carbon. From XRD analysis a broad diffraction pattern of sp3 carbon atoms inside
CDs was demonstrated. Recently, the crystalline structure of CDs was studied by some
researchers. These crystal structures can be classified as CDs having a graphitic crystalline
core and others having non-graphitic crystallinity [10]. Regarding optical properties,
CDs show a strong absorption band in the UV region in the range of 240–350 nm. The
shorter wavelength bands, which are 240–280 nm, correspond to π–π* transitions, while
the longer wavelength transition in the range of 350 nm is for n–π* transitions. In some
cases, additional bands are observed because of the presence of multiple functional groups
on the surface of the CDs. CDs possess excitation dependent emission properties, which
make them distinct from other carbon allotropes. The surface composition of CDs was
studied through the X-ray photoelectron spectroscopy (XPS) technique. The surface of
CDs mostly consists of an oxygen-containing functional group such as −COOH, −OH, a
nitrogen-containing group such as −NH2, CONH2, and other groups depending on the
doping and functionalization of the CDs. The sensing ability of CDs imparted due to the
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presence of different functional groups on CDs surface made them suitable candidates for
performing logic operations due to their ‘Turn-ON’ and ‘Turn-OFF’ response with analytes
(Figure 1) [11]. Typically, the surface of CDs is rich in groups such as −COOH and −OH.
This functional group gets a negative charge in the solution. Thus, the stable metal ion-CDs
complex formation is favored in presence of positive ions due to electrostatic interaction.
Metals ions such as Cu2+, Hg2+, Fe3+ when dispersed in CDs solution lead to the quenching
of the CDs fluorescence. This is due to electron transfer from CDs to metal ions, preventing
the radiative recombination of excitons. It is a well-established fact that CDs act as electron
donors, which leads to their interaction with metal ions. CDs can also act as electron
acceptor depending upon their surface structure. The charge transfer complex is formed
between CDs and organic molecules or when CDs are adsorbed on the semiconductor
surface. Apart from this, the pH of the solution changes the emission intensity of CDs. This
is probably due to the changes in the charge state of the surface functional group. This also
confirms that the surface state of the CDs plays an important role in their interaction with
metal ions and the analytes.
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Figure 1. Carbon dots and their application in logic function based on their sensing ability.

Logic operations are performed by the molecules using one or more inputs and
producing measurable output signals. Logic gates are the elementary building block for
any digital system, where there is a certain relationship between the input and output
signal based on a certain logic. The seven basic logic gates include AND, NOT, NOR, XOR,
OR, NAND, and XNOR. Along with it, there are integrated logic gates, such as INHIBIT
(INH) and IMPLICATION (IMP) circuits. These logic gates have several applications, such
as AND gates being used for data transfer, while NAND gates are used in alarms and
buzzers. They are used in circuits that involve processing and computation. In 1993 for the
first time, Silva et al. explored the ability of the molecules to perform logic operations [12].
The logic output can be observed by the change in emission or absorption intensity or
wavelength and establish the basis of logic gate operation via the known Boolean arithmetic
function [13]. These molecular logic gates are superior to their semiconductor comparable
as they can provide different information available to molecular logic as opposed to voltage
information only [14]. The input can be physical (temperature [15], pressure [16], pH [17],
light [18]), biochemical (enzymes [19,20] nucleotides [21]), and chemical (atomic [12],
molecular [22]). For molecular computing, it is essential to design the logic gates using
nano regime electronic circuits. Logic gates mimicking electronic circuits can be fabricated
using nanomaterials such as fluorophores [23], graphene oxide dots [24], CDs [25], copper
nanomaterials [26], silver nanocluster [27], and more.

CDs can be considered as the green carbonaceous nanomaterial possessing great
potential to replace the conventional fluorophore [28] and silicon-based logic gates tech-
niques [29]. Recently, molecular logic gates performing logic functions produced capti-
vating research of miniaturization in the field of information technology [30]. CD-based
logic gates show strong potential for optical sensing, leading to new avenues for future
advancement of multidirectional memory devices. There are several reviews on CDs
based on their forensic applications [31], synthesis [2], bioimaging [28], and sensing [6].
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In addition, there are reviews on molecular logic gates based on their past, present, and
future [32], fluorescent sensors [33], and biological logic gates [34]. To date, no review has
been devoted to the combination of CDs and logic gates. This review is focused on the
application of CDs in logic functions. It covers the latest advancement and development in
the field of CDs-based logic gates, along with understanding the mechanism of CDs-based
logic systems. Here we have categorized logic output based on their received output as
single, combinational, sequential, and reversible. In a similar manner, we have divided
the CDs used for logic function depending upon their synthesis as pristine, functionalized,
doped, co-doped and other CDs complexes.

2. Logic Output

CDs based logic gates can be categorized based on their displayed logic output. For
this review purpose, we have categorized the CDs based logic gates as single output,
combinational output, sequential output, and reversible systems (Figure 2).
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Figure 2. Different categories of carbon dots (CDs)-based logic gates according to their output. I. Single output, where only
one output is generated. II. Combinational outputs are the integration of simple logic operations to obtain the complex
combinational output. III. Sequential output, which responds to multiple inputs but with different stages of activation that
should happen in a predestined order. IV. Reversible systems can switch between ON and OFF states depending upon the
input added to the system.

2.1. Single Output

The single output is the basic building block of CDs based logic gates. It is important
to establish a complex logic function based on these simple single-output logic operations.
This type of system responds to multiple inputs to give a single response. Due to the sim-
plicity of these systems, many researchers have used CDs as fluorophores for developing
CDs based logic gates. Lin et al. have demonstrated different logic functions such as YES,
OR, NOT, XOR, and IMP based on the sensing properties of CDs with metal cations and
anions. These multiple logic gates are created through sequential metal ion association and
anion dissociation process with CDs [35]. Zhao et al. constructed an AND logic gate with
AgNPs nitrogen-doped CD nanocomposites without any chemical labeling and complex
modification [36]. There are several reports that have constructed AND logic operation
through the detection of different metal ions, such as Cr6+ [37], Hg2+ [38], Cu2+ [39], and
Fe3+ [40]. Apart from AND, other logic operations such as the INHIBIT function were
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also fabricated through sensing of various metal ions through different amino acid deriva-
tized CDs [41], histidine [42], Cu2+, H2S [43], arginine, and acetaminophen [44]. Other
researchers developed IMPLICATION logic operations using the sensing ability of CDs
for Hg (II) and cysteine [45], AA [46], Fe3+ [47], Hg2+, and biothiols [48], Hg(II), and glu-
tathione [49]. A multilevel single-output logic system was also developed using gadolinium
doped CDs with H+, OH−, Cu2+ as inputs, which trigger both Fluorescence intensity (FI)
and magnetic resonance (MR) signals [50]. Apart from the fluorescence technique, using
magnetic resonance signal for dual readout logic operations is of significant importance, as
the combination of FL/MR techniques gives the logic devices better applicability in case of
biological application.

2.2. Combinational Logic Output

The output of the combinational logic operation is the instant response to their current
input state as logic 0 or logic 1. This type of output depends upon the combination of
the input all the time. Thus, the combinational logic circuit is termed as ‘memoryless’.
Combination logic circuits combine or connect simple logic operations to build a complex
logic circuit. Tang et al. demonstrated the combinational nano logic gate with a dual output
channel. The supramolecular assembly based on CDs showed two distinctive patterns
of logic function at two different emission wavelengths of 440 nm and 490/545 nm. The
output channel at 490/545 nm consists of a combination of two INHIBIT gates [51]. The
supramolecular strategy serves as a substitute for covalent modification and simplifies the
fabrication process. Zhao et al. performed half addition and half subtraction operations on
synthesized pH-responsive CDs at two different emission wavelengths. A half-adder was
constructed by combining XOR and AND gates, which further implement the function of
sum and carry, while the half-subtractor consisted of the INHIBIT gate producing borrow
bits and XOR gate for obtaining difference bits [52]. Fan et al. have designed a three-
input and three-output combinational circuit along with a keypad lock using red emissive
CDs/Prussian blue composite electrode films. The complicated logic gate was constructed
using elementary functions such as OR, AND, INHIBIT, and IMP [53].

2.3. Sequential Output

Unlike combinational output, the third category is the sequential output in which the
output depends on both present inputs and previous output. In contrast to combinational
output, it has a memory, so the output varies based on the input. Qu et al. designed multiple
single and sequential DNA-based logic gates. These types of logic gates were inspired by B
to Z-DNA transition induced by functionalized CDs. The logic gate was constructed based
on FRET between CDs and DNA intercalators and fluorescence quencher for CDs. Single
AND functions were established at 585 nm and NAND logic at 465 nm. Similarly, AND +
INHIBIT and NAND + INHIBIT sequential circuits were constructed at 585 nm and 465 nm,
respectively [54]. Fluorescence techniques have certain limitations, such as shorter emission
lifetime of nanoseconds leading to inner filter emission (IFE), overlapping of excitation and
emission spectra, interference from the light scattering, and short-lived autofluorescence
species. These limitations can be overcome by the triplet excited state phenomena known
as ‘Phosphorescence’. Wang et al. developed a phosphorescence-based OR-INHIBIT logic
gate using inputs such as Hg(II), tDNA (target ssDNA), and doxorubicin [55]. The phos-
phorescence logic gates are superior to most common fluorescence-based logic gates due
to their benefits over fluorescence. Viswanathan et al. used the switching nature of CDs
to design memory devices having sequential circuits due to reversible response with the
addition of Hg(II) and L-cysteine alternatively. A Write-Read-Erase-Read nature of sequen-
tial circuit was developed using OFF-ON reversible behavior with inputs as Hg (II) and
L-cysteine. [56]. Other research groups have reported integrative logic gates such as NOR
and INHIBIT (INH) and IMPLICATION (IMP), NOR and AND logic functions. These logic
gates have three inputs such as Zn(II), pH 2, and Cu(II) for NOR and INH and four inputs
such as Zn2+, S2-, Cu2+, and pH 2 for IMP, NOR, and AND logic operation [57]. Recently, an
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integrative logic system based on dual readout logic devices with both magnetic resonance
(MR) and FI of holmium doped CDs was discussed by Fang et al. The multi-readout logic
circuits were developed by recording the same signal by two different readout techniques.
The chemical inputs were H+, Fe3+, and Fe2+, while the fluorescence output was recorded at
440 nm along with magnetic intensity. A fluorescence-based NOR-INHIBIT and MR-based
(XOR-INHIBIT)-OR sequential logic system was demonstrated successfully [58].

2.4. Reversible Output

The reversible system is interesting because it allows the reassessment of the out-
put [59]. The advantage of this process is that the logic operation can be performed
multiple times without adding more analytes constantly. The reversible system with the
activated condition can revert to its original state with the introduction of a reactivator.
CDs-based reversible logic gates work on the principle of quenching the FI signal, which
further recovers by a recovery agent [43]. This type of logic gate is a potential candidate for
low-power computing [60].

3. Sensing Mechanisms of CDs Based Logic System

The majority of the CDs based logic gates depend upon the changes in the fluorescence
response of CDs. These changes either in FI or wavelength make them potential candidates
for performing various logic operations, such as AND, OR, NOR, INHIBIT, IMPLICA-
TION, etc. [32]. Different sensing mechanisms are responsible for inducing the fluorescence
changes of the CDs based logic system. Initially, CDs interact with the quencher leading to
the OFF state, then with the introduction of the recovery agent, the FI of CDs is recovered
bringing it back to the ON state. These interactions can be noncovalent, which includes hy-
drogen bonding, π–π interactions, donor and acceptor, co-ordination based, or electrostatic,
and covalent interactions [61]. When CDs interact with the quencher molecule, the FI is
quenched due to nonradiative energy transfer from the donor to the acceptor. A different
mechanism, such as PET, FRET, and IFE, is responsible for the energy transfer process
as depicted in Figure 3. In the case of PET mechanism, there is a redox reaction upon
irradiation between CDs (donor) and the other analytes (acceptor), which can donate and
accept electrons, leading to the formation of a non-fluorescent complex. In the case of FRET,
the excited CDs while returning to the ground state transfers their energy non-radiatively
to the acceptor molecule. Theoretically, the rate of energy transfer depends on: (a) The
orientation of the donor and acceptor, (b) the extent of overlap between the donor emission
and acceptor absorption spectrum, and (c) the separation distance between the donor and
acceptor that should be less than 10 nm.

Between static and dynamic quenching, dynamic quenching dominates the FRET
quenching process as energy transfer takes place in an excited state [62]. Another mecha-
nism of FI quenching is IFE, primarily IFE due to excitation beam attenuation in highly
concentrated samples. In this case, the fluorophore facing the excitation fluoresce brighter
than the ones at the center, which strongly affects the detected signal. In secondary IFE,
there is a significant overlap between excitation and emission spectrum, and the emitted
light is reabsorbed by the sample, leading to the quenching of the FI signal. Most of the
CDs based logic gates operate on the mechanism of efficient FI quenching of CDs due to
the above-mentioned phenomena, and the occurrence of restoring agents brings back the
fluorescence effectively leading to the sensing of various analytes. The sensing mechanisms
of CDs based logic systems are shown in Figure 3.
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4. Carbon Dots Design for Logic Function

The design of CDs for performing logic functions is generally based on five cate-
gories (Figure 4): Pristine CDs, functionalized CDs, doped CDs, co-doped CDs, and other
complexes with CDs.
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Figure 4. Five different categories of CDs design for logic function.

4.1. Pristine CDs

The first category of design based on the synthesis procedure is the direct interaction
of CDs with the analytes in their pristine form. The interaction is possible due to the
presence of the different functional groups on the CDs surface. Hu et al. have used the
as-prepared CDs for the determination of auramine O. In their work instead of fluorescence
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intensity (FI), the appearance of two peaks was taken as an output. They demonstrated
dual emission, which is the auramine O-stimulated response [63]. Chattopadhyay and
co-workers have synthesized CDs for logic operation in two different phases, i.e., solid
and liquid phases. The direct interactions of CDs with organic molecules and metal ions in
both phases achieved the basic and integrated logic operations [64]. This kind of operative
multiphase logic response are scarce in literature, developing a solid phase integrated logic
function could be a good option. In the year 2016, Hu et al. prepared a D- Penicillamine
sensing fluorescence switch sensor whose logic gate function was based on the luminescent
recovery of CDs (Figure 5). The quenching of FI was done through Hg2+ ions, which was
retrieved with the addition of D- Penicillamine [65].
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The following year, in 2017, Hu et al. designed CDs for sensing glyphosate (Gly)
based on fluorescence resonance energy transfer (FRET). The logic function is based on
FI quenching of CDs in presence of Gly due to energy transfer between the donor (CDs)
and acceptor (Gly) [66]. In the same year, two other research groups, Zhao et al. and Dong
et al., used pristine CDs for intracellular pH sensing, and arginine and Cu2+ detection [11],
respectively. A three-state switch was obtained by controlling the fluorescence emission
at different pH levels [52]. Later, Vishwanathan et al. derived CDs from pineapple peels.
Logic operations, such as implication (IMP) and NOT gate, were generated using Hg2+ and
cysteine as inputs [56]. Chromium (Cr6+) and cysteine were detected using red emissive
CDs via dual modes, such as colorimetry and fluorescence by Dong et al. The red-emitting
CDs constructed an AND logic gate [37]. A dual signal sensing of Hg2+ and glutathione
was achieved by down and upconversion CDs with high quantum yield (QY) −62%. The
logic operation was obtained through the “ON-OFF-ON” process [38]. Recently, Shuang
et al. prepared blue CDs that are excitation independent and used them for Fe3+ and F-
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sensing. An AND molecular logic gate was devised with the help of Fe3+ and F- as chemical
inputs [40].

4.2. Functionalized CDs

The second category includes the functionalization of the CDs. The functionaliza-
tion imparts specific molecular recognization abilities to the CDs depending upon the
organic molecule used to functionalize the surface. Qu et al. for the first time reported
spermine-functionalized CDs (SC-dots) to induce right-handed B DNA to left-handed
Z DNA transition under physiological conditions. Furthermore, a variety of logic gates
were constructed based on FRET between fluorescent CDs and DNA intercalators, such
as Ethidium bromide (EB) and FI quenching of CDs with iodide ions [54]. Namasivayam
Dhenadhayalan and King-Chuen Lin prepared two types of CDs, COOH functionalized
CDs and amine-functionalized CDs. The significant observation of their study was that
the functional group present on the CDs surface plays an essential role in both cation
and anion detection. In addition, the interaction of these functional groups with the
ions and anions leads to the construction of different types of logic gates, as shown in
(Figure 6) [35]. This study confirms that the functional groups present on CDs surfaces
imparts certain association affinity of CDs towards certain metal ions. Xia et al. developed
phosphorescence-based logic gates using surface-modified CDs, ssDNA, and graphene
oxide (GO). Room temperature phosphorescence (RTP) based logic operations, such as
INHIBIT, OR, and OR-INHIBIT were designed using inputs such as Hg2+, DOX, and tDNA
and phosphorescence-ON as an output signal [55].
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For the limited tunability of the CDs spectrum, it is essential to improve the homogene-
ity of local electronic structure by controlling the size of sp2 domains, the surface functional
group through surface passivation. Thus, the electronic properties of CDs were systemati-
cally modulated with ethylenediamine and different amino acids, such as cysteine, lysine,
histidine, and arginine by Kuei and group. This kind of derivatization resulted in tuning
the selectivity of sensing metal cations. The logic gates obtained from the fluorescence
response of CDs depend on the fluorescence quenching in presence of metal ions [41]. Das
et al. surface quaternized the CDs with benzalkonium chloride, which was synthesized
from seaweed and lemon juice abbreviated as KLBC-dots. The functionalized probe acts
both as a bifunctional fluorescent sensor for Cr6+ and ascorbic acid (AA), and also as an
antibacterial agent. The logic operation was based on the inner filter effect (IFE) [67]. In
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another study, Zhang et al. capped CDs with polyethyleneimine and used them bioassay
of Cu2+ and S2. The INHIBIT Boolean logic is influenced by the FI quenching and recovery
process in presence of analytes [43].

4.3. Doped CDs

The third type of design is based on doping. The electronic characteristic of the CDs
can be effectively adjusted with chemical doping, which further improves their optical
properties [68]. Zhao et al. reported the green synthesis of nitrogen-doped CDs and
silver nanoparticles composites (AgNPs/N-CDs), with surface-enhanced Raman scattering
(SERS) properties. A simple AND logic system was obtained based on AgNO3 (silver
nitrate) and NaOH (sodium hydroxide) as inputs. The output signal was the presence of
an absorption peak at 405 nm due to the formation of AgNPs/N-CDs nanocomposites [36].
There are very few reports where the absorption is used as an output signal for logic
operation. Most of the available CDs showing logic gate application emits in the blue
region, however, it is better to shift to a longer wavelength, which increases the penetration
depth and is harmless to tissues. Dong and co-workers used bright green emissive nitrogen-
doped CDs for Fe3+ and AA sensing, cellular imaging, and logic gate applications. The FI of
doped CDs was quenched with the addition of Fe3+ due to photoinduced electron transfer
(PET), which was further recovered by AA addition [69]. In another study by Chen’s group,
they have synthesized three different types of nitrogen-doped CDs using citric acid as a
source and small molecules such as ethanediol, ethanolamine, and ethidene diamine as the
dopant. They were used for Hg2+ and biothiol sensing and further an IMPLICATION logic
gate was created [48]. The N doped CDs were also used for sensing Cu2+ and GSH and
an AND logic gate was constructed based on their sensing behavior [39]. Not only doped
CDs were used for metal ion, biothiols, ascorbic acid detection. In the next research, Yang
et al. used doped CDs for recognition of a phenothiazine drug known as chlorpromazine
hydrochloride (CPH). An AND logic gate was constructed using N-CDs and CPH as inputs
and quenching of FI as an output (Figure 7) [70].
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For better feasibility and biomedical application, it is important to investigate dual
readout logic devices. Yi et al. synthesized holmium (Ho3+) doped CDs (Ho-CDs), which
exhibited pH responsiveness for both FI and magnetic resonance (MR) signals. In this
study, the inputs were H+, Fe2+, or Fe3+, and the change in FI and MR signals served as an
output for multilevel logic operations [58].
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4.4. Co-Doped CDs

Co-doping is another important strategy for tuning the dopant population, magnetic
properties, and electronic properties. It is used to enhance the solubility of CDs along with
improving their stability and optical properties [71]. Li et al. developed novel magnesium
and nitrogen co-doped CDs for selective sensing of Hg2+ and cysteine via FI quenching
due to the formation of a non-fluorescent complex of CDs and Hg2+, and the recovery
was done with the addition of cysteine. An IMP logic gate was constructed using Hg2+

and Cys as chemical inputs, and a change in the FI of Mg-N-CDs as an output signal [45].
Nitrogen and sulfur co-doping plays a vital role in enhancing the QY of CDs, as nitrogen
and carbon have almost the same size which makes nitrogen doping easy and feasible.
While sulfur tunes the fluorescence emission toward a longer wavelength by providing
emissive traps for excited electrons. The work reported by Guttena’s group emphasizes
converting toxic cigarette butts into nontoxic fluorescent N, S (nitrogen, Sulphur) co-doped
CDs. In this work, the waste cigarette butts were converted to fluorescent CDs by a simple
hydrothermal process without using any expensive instruments and having a variety of
application. The synthesized CDs used for the detection of Fe3+ and AA, based on their
sensing characteristic an IMPLICATION logic gate, was constructed. Apart from this,
these co-doped CDs were used as invisible ink for security applications [47]. In another
study, N-S doped CDs were used for sensing Cr6+ and AA based on the IFE and redox
reaction. The fluorescence behavior of co-doped CDs was used to design molecular logic
gate operations [72]. Mobin et al. synthesized the N, S co-doped CDs (N_S@RCD) from
green alternatives such as Rosa indica, and use it for Au3+ and S2- detection. This was
the first report in which CDs act as a turn-on sensor for S2- without the formation of any
intermediate quencher complex. The system exhibits a single input ‘YES’ and multilevel
INHIBIT logic functions (Figure 8) [73].
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4.5. Other Complexes with CDs

Blue and green emission of CDs limits their use in biological applications as the
penetration depth is low and autofluorescence is maximum. Therefore, it is important to
have CDs that emit towards a longer wavelength. To achieve this goal Song et al. fabricated
silver-CDs nanohybrid with infrared fluorescence. The FI signal was enhanced with metal
enhanced fluorescence. The nanohybrid was used to detect AA, an antioxidant. An IMP
logic gate was constructed using Fe3+ and AA [46]. Satnami et al. used the aggregation



Nanomaterials 2021, 11, 232 11 of 16

and dispersion of gold nanoparticles (AuNPs) in the presence of CDs to sense pesticides.
A FRET-based logic gate was designed using toxic pesticides as inputs. A combination
circuit consisting of INHIBIT and OR circuit was developed [25]. Similarly, Fang et al.
used AuNPs and CDs hybrid for sensing fluoride ions using a bridge of 3-mercapto-l,2-
propanediol. An AND molecular logic gate was developed based on anions and metal
ions as inputs [74]. External factors, such as temperature, concentration, and solvent, affect
the emission of the fluorescence sensing system. In order to overcome these limitations,
researchers shifted their focus to ratiometric sensing, as it depends upon the calibration
of two peaks and avoids the influence of the external and instrumental factors. Singh
et al. used CDs and rhodamine-based ratiometric complex for the detection of histidine.
The sensing systems depend on the FRET between CDs and rhodamine derivatives. An
INHIBIT logic gate was implemented using Fe3+ and histidine as the inputs [74]. Later, Gui
et al. used CDs and DNA template copper nanoclusters for ratiometric sensing of arginine
and acetaminophen. Based on the FI response, an INHIBIT logic gate was designed [44].

5. Conclusions

In the present review, a comprehensive study was made on the advancement of
CDs-based logic gates during the year 2013–2020. It consists of their synthesis, sensing
mechanism, different types of possible logic operation, and we have also discussed the
design of the CD sensor for logic operation based on the nature of CDs. This review
can help researchers develop more low cost and biocompatible CDs-based chemosensors
for logic gate applications. Developing molecular logic devices with small molecules or
biomolecules gives a huge impact on modern-day science. With the current pandemic
situation, the development of smart medicine will be very helpful. There are some reports
available that discuss one of the strategies to fight the outbreak of COVID 19 is the real-
time monitoring of proteolytic activity with potential protease inhibitors as biosensors for
COVID 19 [75]. In one of the reports, COVID 19 genome was used as the input for an AND
logic function. Two types of fragments were used as inputs. This detection was based on
exonuclease III and DNAzyme [76]. Thus, CDs based logic gates can act as smart materials
that can respond to various analytes resulting in the development of smart nanodevices.
Table 1 summarizes most of the logic systems discussed in the text ordered by their year
of publication.

Table 1. Summary of CDs-based logic systems.

Types of CDs Application Logic Function Type of Logic Output Ref.

Spermine functionalized CDs B to Z DNA transition AND, NAND, AND + INH,
NAND + INH Single and sequential [54]

Pristine CDs O auramine detection NOR-AND Sequential [63]

Pristine CDs
Metal ions (Fe2+, Fe3+) and
organic molecules (Picric
acid and H2O2) detection

NOT, OR, AND, NOR,
NAND, NOT-NAND Single and Integrated [64]

Acid and
amine-functionalized CDs Cations and anions sensing YES, OR, XOR, NOT, IMP Single [35]

Nucleic acid functionalized
carbon dots

Phosphoresce logic gates
were developed using cd,

DNA, hg2+, dox

OR, INHIBIT,
OR-INHIBIT Single and sequential [55]

Surface quaternized
cationic CDs Phosphate detection YES, two INHIBIT Combination [51]

Silver
Nanoparticles/N-Doped

CDs Nanocomposites
SERS AND Single [36]
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Table 1. Cont.

Types of CDs Application Logic Function Type of Logic Output Ref.

magnesium and nitrogen
co-doped CDs Hg2+ and cys detection IMPLICATION Single [45]

Pristine D-Penicillamine detection AND Single [65]

Silver-CDs nanohybrid AA detection IMPLICATION Single [46]

Pristine CDs Glyphosate detection AND Single [66]

CDs-MnO2 adduct NAC detection YES Single [77]

Pristine CDs Intracellular pH sensing XOR-AND, INHIBIT-XOR Combination [52]

Pristine CDs Arginine and Cu2+ detection AND Single [11]

Amino acid derivatized CDs Detection of Pb, Hg2+, Fe3+,
Zn2+, Cr3+, Cu2+ AND, INHIBIT Single [41]

Nitrogen doped CDs Fe3+ and AA detection AND Single [69]

Pristine CDs fluoride ions detection NOT, IMP, NOT-AND-OR Single, sequential [56]

Pristine CDs Cr6+ and Cys detection AND Single [37]

Polyamine coated CDs Zn2+, Cu2+, S2- and
H+ detection

IMP-NOR-AND,
NOR-INH Integrative [57]

N, S-Codoped CDs
Fluorescent Film, Security

Ink, Bioimaging, Fe2+, Fe3+,

and AA Sensing
IMP Single [47]

Pristine CDs Hg2+ and
glutathione detection

AND Single [38]

N,S- Codoped CDs Cr6+ and AA detection AND Single [72]

N,S- Codoped CDs Au3+ and S2−detection AND Single [73]

Nitrogen-doped CDs Hg2+ and biothiols Detection IMP Single [48]

Benzalkonium chloride
functionalized CDs

Cr6+ sensing and
antibacterial activity

AND Single [67]

N-doped CDs Hg2+ and glutathione
detection, cell imaging

IMP Single [49]

Polyethyleneimine-capped
fluorescent CDs Cu2+ and H2S detection INHIBIT Single [43]

CDs-gold nanoparticle Detection of pesticides INHIBIT-OR Combination [25]

Nitrogen-doped CDs Cu2+ and GSH detection AND Single [39]

Nitrogen-doped CDs chlorpromazine
hydrochloride detection AND Single [70]

Pristine CDs Fe3+ anf F- sensing AND Single [40]

Holium doped CDs dual imaging XOR+INH-OR Integrative [58]

6. Future Perspectives

CDs-based logic gates serve as potential agents for sensing various analytes, and thus
can be used to design smart biocompatible nanodevices in the future. With the significant
advancement in computational power, it will be interesting to develop computation in
human bodies using these CDs-based logic systems. Fluorescent lifetime (FLT) may provide
great applications for CDs-based logic gates owing to its advantages over steady-state FI
detection [78–80]. This phenomenon is concentration and excitation quality independent.
Other factors, such as sample thickness, absorption by sample, FI, and photobleaching
also do not affect FLT measurements. FLT imaging microscopy (FLIM) is another imaging
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technique that can be effectively used to monitor the biologically driven logic gates. Most
of the CDs based logic gates outputs are based on FI technique that can be replaced
by phosphorescence as it has many key merits, such as longer emission FLT, minimum
interference from scattered light, and short-lived autofluorescence species, and a wide
gap between emission and excitation spectra. Though CDs are good replacements for
toxic quantum dots and silicon-based technology, low QY and blue emission restrict their
applications in biological applications. Therefore, it is important to take measures to
increase the QY and to shift the spectra towards longer wavelengths, as the penetration
depth of electromagnetic radiation is higher and the autofluorescence of tissue is minimum
at the near infra-red window. There are very few reports on red-emitting CDs based logic
gates. Recently, Gadolinium-doped [81] and holmium-doped CDs were used as contrast
agents for generating MRI signals, to construct the dual emission mode CDs based logic
gates. Both of them are unsuitable for biological applications due to the toxicity issues,
hence it is essential to synthesize a biocompatible contrast agent.
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