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Abstract: In this study, oxidative desulfurization (ODS) of modeled and real oil samples was in-
vestigated using manganese-dioxide-supported, magnetic-reduced graphene oxide nanocomposite
(MnO2/MrGO) as a catalyst in the presence of an H2O2/HCOOH oxidation system. MnO2/MrGO
composite was synthesized and characterized by scanning electron microscope (SEM), energy disper-
sive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction
(XRD) analyses. The optimal conditions for maximum removal of dibenzothiophene (DBT) from
modeled oil samples were found to be efficient at 40 ◦C temperature, 60 min reaction time, 0.08 g
catalyst dose/10 mL, and 2 mL of H2O2/formic acid, under which MnO2/MrGO exhibited intense
desulfurization activity of up to 80%. Under the same set of conditions, the removal of only 41% DBT
was observed in the presence of graphene oxide (GO) as the catalyst, which clearly indicated the
advantage of MrGO in the composite catalyst. Under optimized conditions, sulfur removal in real
oil samples, including diesel oil, gasoline, and kerosene, was found to be 67.8%, 59.5%, and 51.9%,
respectively. The present approach is credited to cost-effectiveness, environmental benignity, and
ease of preparation, envisioning great prospects for desulfurization of fuel oils on a commercial level.

Keywords: metal oxides catalyst; GO support; desulfurization; reduction of GO; H2O2/HCOOH

1. Introduction

Oxidative desulfurization (ODS) is currently enjoying popularity as a highly efficient
and conveniently operating alternative or complementary to hydrodesulfurization (HDS)
technique for resilient sulfur compounds removal from petroleum distillate fractions used
as transportation fuels [1,2]. The process is performed at ambient operating conditions
in two steps, i.e., oxidation of sulfur-containing compounds followed by extraction via a
polar solvent [3]. ODS converts sulfur-containing compounds into highly polar sulfones,
which can be easily separated by a polar solvent like acetic acid, dimethyl sulfoxide,
and methanol [4]. ODS process offers manifold advantages over the conventional HDS
one, which can be operated at liquid phase under mild operating conditions, i.e., close
to ambient. In this context, the use of hydrogen gas, a specialized high-pressure and
high-temperature reactor, as well as high efficiency and selectivity for alkylated dibenzoth-
iophene removal, are not considered as requirements [5]. Due to the electron-donating
character of alkyl groups in alkylated dibenzothiophenes, the high electron density in a
sulfur atom increases its ease of oxidation, and therefore, alkylated dibenzothiophenes are
conveniently treated during the ODS process, unlike in the case of HDS [6].
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In the ODS process, the selective oxidation of sulfur compounds is achieved by
various types of oxidants, such as H2O2, molecular oxygen, hydrogen peroxide, formic
acid, tert-butyl hydroperoxide, ozone, perchlorate, hypochlorite, potassium perman-
ganate, and nitrogen oxide [7–9]. Since ODS efficiency can be further enhanced by us-
ing a variety of catalysts, different types of catalyst-oxidant systems like NaClO/Mn–
Co–Mo/Al2O3 [10], H2O2/Mo/γ–Al2O3 [11], H2O2/WOx/ZrO2 [12], H2O2/V2O5 [4],
H2O2/activated carbon TBHP/(Me3TACN)Mn [13], TBHP/Bi–Mo/Siral [14], TBHP/Ti–
MCM-41 and MMO/GO [15], and various types of polyoxometalate [16,17] have been
studied. Each of these catalytic ODS systems follows different oxidation mechanisms of
sulfur compounds [18]. Sulfur removal has also been investigated by photooxidation using
various photocatalysts [19,20].

In general, metal oxide catalysts lead to the formation of peroxo-complexes, which
further oxidizes dibenzothiophene (DBT) in the non-polar phase. Commonly used metal
oxides for ODS of modeled and real oil samples include MoO2, MnO2, PdO, TiO2, CoO,
etc. [21–23]. In order to enhance their catalytic activity and increased surface area, metal
oxides are loaded on various supports. For this purpose, studies have been reported
in the literature, including supporting materials such as montmorillonite (MMT), TiO2,
Al2O3, and graphene oxide (GO) [24]. The utilization of graphene-related materials as
support frameworks for functional nanoparticles has emerged as a promising research
area, utilizing a combination of properties such as high specific surface area, lightweight,
chemical inertness, mechanical robustness, and excellent electrical and thermal conductiv-
ity [25]. Many studies have shown that when using graphene derivatives as supports, the
catalyst’s activity is manifoldly enhanced due to their unique mechanical, morphological,
and electrical properties, in addition to their high specific surface area [26]. Other studies
have demonstrated that GO exhibits high compatibility with oxidative adsorptive desulfu-
rization systems [27], while reduced GO (rGO) can also enhance the activation of oxidants
during the ODS process [28]. Likewise, due to the matching of 2D geometry and charge
complementarity, rGO is expected to be an excellent support for metal oxide [15].

Hence, in the current study, ODS of DBT was performed using a composite of man-
ganese dioxide-supported and magnetic-reduced graphene oxide (MnO2/MrGO) in the
presence of an HCOOH/H2O2 oxidation system under ambient operating conditions. The
composite catalyst was characterized by scanning electron microscope (SEM), Fourier-
transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), and X-ray diffrac-
tion (XRD) techniques. DBT conversion was investigated under various reaction conditions
like different reaction times and temperatures, oxidant and catalyst dose, etc. Finally, the
activity of the catalyst was also tested for ODS of real gasoline, diesel, and kerosene samples
under the optimized conditions set.

2. Experimental
2.1. Chemicals and Reagents

All chemicals and reagents used were of analytical grade. Graphite powder, potassium
permanganate (KMnO4) 99%, sulfuric acid (H2SO4) 98%, hydrogen peroxide (H2O2) 30%
(v/v), iron (III) chloride hexahydrate (FeCl3·6H2O) 98%, iron (II) sulfate heptahydrate
(FeSO4·7H2O) 99%, ammonia (NH4OH) 25%–28%, diamine hydrate (H2NNH2·H2O) 80%,
manganese sulfate monohydrate (MnSO4·H2O) 99%, potassium hydroxide (KOH) 85%,
formic acid (HCOOH) 95%, and n-heptane 99% were purchased from Sigma-Aldrich,
St. Louis, MO, USA. Methanol (CH3OH) 99% was provided by Fisher Scientific, Pittsburgh,
PA, USA. Gasoline (RON 92), kerosene, and diesel oil were collected from a Shell oil filling
station in Peshawar City, Pakistan.

2.2. Preparation of MnO2/MrGO Composite Catalyst

Graphene oxide was synthesized from commercial graphite powder by a modified
Hummers method [22]. More specifically, powder graphite (2 g) was dispersed in a mixture
of H2SO4 (92 mL) and NaNO3 (1 g). The mixture was cooled down to less than 10 ◦C,
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over an ice bath. KMnO4 (12 g) was added to the mixture, stirred for 30 min, and then
allowed to settle down overnight. Deionized water (184 mL) was added to the suspension
and heated up to 95 ◦C for 15 min; after this, H2O2 was added dropwise till the color of
the suspension changed to yellow, which indicated the formation of graphene oxide in
the suspension.

For the reduction of graphene oxide, the mixture was refluxed at 90 ◦C for 4 h in the
presence of diamine hydrate as a reducing agent. A black precipitate of reduced graphene
oxide (rGO) was then produced. rGO was collected by filtration, washed thoroughly with
deionized water, and finally, dried under vacuum.

Reduced graphene oxide was magnetized through in-situ magnetization [29] to pre-
pare magnetic-reduced graphene oxide (MrGO). To this end, about 0.1 g of rGO was
dispersed in 50 mL of distilled water and then added to an aqueous solution of FeCl3.6H2O
and FeSO4.7H2O (2:1) at 90 ◦C. The mixture was turned alkaline by the addition of 15 mL
of ammonia solution, and then H2O2 was added under vigorous stirring until the black
precipitate of magnetic reduced graphene oxide was formed, which was collected, washed,
and dried.

MnO2/MrGO nanocomposite was synthesized by dispersing MrGO in a solution of
manganese sulfate monohydrate (MnSO4·H2O) at 80 ◦C and a mixture of KMnO4 (0.16 g)
and KOH (0.23 g), dissolved in deionized water (5 mL), followed by rapid addition to the
mixture. The mixture was refluxed for 1.5 h, and a black precipitate of 1.69 g of MrGO-
MnO2 nanocomposite was formed, which was separated by an external magnet, washed,
and dried in an oven under vacuum. About 1 g dry mass was recovered and stored in vials.

2.3. Characterization of the Catalyst

The catalyst MnO2/MrGO, synthesized in the lab, was characterized by SEM, EDX
and XRD, and FTIR analyses. SEM and EDX analyses were carried out using a SEM
(Model JEOL-Jsm-5910; Tokyo, Japan), while XRD patterns were conducted using X-ray
diffractometer (XRD; model JDX-9C, JOEL, Tokyo, Japan) with CuKα radiation (1.54178 A◦

wavelength) and a nickel filter. FTIR analysis of the catalyst was carried out by an FTIR
spectrophotometer (Schimadzu-A60, Kyoto, Japan).

2.4. ODS Activity of the Catalyst

ODS of the modeled oil sample (0.03 g DBT in 15 mL n-heptane) with a concentration
of 1200 ppm DBT was conducted with ultrasonication in the presence of MnO2/MrGO
catalyst and H2O2-HCOOH oxidation system. In a typical experiment, DBT in solution
(15 mL), the catalyst (0.06 g), and H2O2 and HCOOH (2 mL) in 1:1 were taken in a two-neck
flask fitted with a reflux condenser. The flask was put in an ultrasonic bath and sonicated
for 1 h, under atmospheric pressure at ambient temperature (about 27 ◦C). After oxidation,
the catalyst was collected by the external magnetic field, and the sample was subjected to
analysis for change in DBT concentration (ppm).

Catalytic ODS experiments were further carried out under different conditions of
temperature, reaction time, catalyst dose, and oxidant concentration, in order to optimize
the process parameters. The catalytic ODS of the real oil samples was studied under
optimized conditions, using the same procedure as adopted for the modeled oil sample.

2.5. Analyses

The concentration of DBT in the modeled oil sample was analyzed by HPLC (Sykam,
Eresing, Germany), equipped with BDS Hypersil C18 column (dim. 250 × 4.6 mm) and a
UV detector. Methanol was used as the mobile phase; analysis was carried out at λmax of
320 nm. % DBT conversion was calculated using Equation (1),

DBT conversion (%) =
Co − C

Co
× 100 (1)

where Co and C represent the initial and post ODS concentrations of DBT, respectively.
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Total sulfur in gasoline, kerosene, and diesel oil was determined by a CHNS elemental
analyzer (EL-III, Hanau, Germany) provided with an auto-sampler and a TCD detector.
The percentage of desulfurization in real oil samples was calculated using the relation as
given above (Equation (1)).

3. Results and Discussion
3.1. Characterization of the Catalyst

FTIR spectra of GO and MnO2/MrGO are displayed in Figure 1. The spectrum of GO
shows prominent peaks at 3618.87 cm−1, which corresponds to O–H stretching vibrations of
carboxylic acids [30]. Characteristic absorption peaks appearing at 1428.84, 1624.18, 1007.33,
and 1488.84 cm−1 in the FTIR spectra of pure GO showed the presence of carboxyl O=C=O,
C=O aromatic, C=C, alkoxy C–O stretching vibrations, and epoxy C–O, respectively [30].
Furthermore, the FTIR absorption band of pure GO at 3618.87 cm−1, displayed in Figure 1a,
is due to the presence of OH of the absorbed molecules of water. Compared with Figure 1b,
it shows an additional sharp peak at around 552.16 cm−1 which is attributed to Fe–O
vibrations of Fe3O4 [31,32]. Another sharp peak at 630.71 cm−1 appears in Figure 1 for the
Fe3O4–rGO–MnO2 sample, which is absent in the other spectra. This fact is attributed to
some interactions between iron and manganese atoms [30,33].
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Figure 1. Fourier-transform infrared spectroscopy (FTIR) spectra of (a) graphene oxide (GO) and 
(b) MnO2/MrGO. 
Figure 1. Fourier-transform infrared spectroscopy (FTIR) spectra of (a) graphene oxide (GO) and
(b) MnO2/MrGO.

The mineralogical composition of the catalyst was studied by EDX; the EDX profiles
of GO and MnO2/MrGO composite are given in Figure 2a,b. From the data, it is clear that
although GO consists of C and O as its major elements (59% and 38%, respectively), trace
quantities of Si, S, Mn, and Fe are also indicated with a total amount of less than 1%, which
may be due to impurities in the commercial graphite. In the case of MnO2/MrGO, the
major elements present were C (10%), O (28%), Fe (58%), and Mn (2%). The presence of Mn
clearly confirms the successful synthesis of MnO2/MrGO composite. Moreover, the data
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show that the percentage weight of Mn in MnO2/MrGO is close to its theoretical weight%
loaded in MrGO.
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The SEM micrographs of GO and MnO2/MrGO, are presented in Figure 3a,b. The
micrograph of GO shows a rough, layered, and wrinkled morphology, while major fis-
sures and caves are visible. The texture resembles layered sheets like the two-dimensional
structure of graphene oxide [34]. The void spaces between the layer and edge can be
also seen in the image, suggesting that the material can offer a high surface area for the
reaction, while some bulk aggregates on the surface of GO in Figure 3b correspond to the
proper agglomeration of catalyst. More interestingly, the surface of MnO2/MrGO differs
compared with that of pure GO, as shown in Figure 3b. It shows a uniform spreading of
MnO2 particles on the MrGO matrix, illustrating their successful composition. On the other
hand, the micrograph of MnO2/MrGO shows an irregular, non-uniform particle size distri-
bution. Figure 3c shows the field emission scanning electron microscope (FESEM) image
of MnO2/MrGO with up to 200 nm magnification, which clearly reveals that magnetic
iron oxide and MnO2 nanoparticles resemble fine granular particles with the particle size
below 50 nm, which are dispersed on graphene flakes. The size of the graphene flakes is
non-uniform, but some are nearly 400–800 nm in diameter.

The crystallinity and composition of GO and MnO2/MrGO composite were inves-
tigated by XRD analysis, as shown in Figure 4a,b. The XRD pattern of GO (Figure 4a)
shows sharp peaks, indicating better crystallinity. The characteristic GO peak appears at
10.5◦ 2θ, confirming its successful preparation [30]. A sharp peak at 26.7◦ corresponds
to the existence of some unoxidized graphite fractions in the sample [35]. In the case of
MnO2/MrGO, the sharp peaks centered at 30◦, 35◦, and 57◦ correspond to crystalline pat-
terns of magnetite (α-Fe3O4) and peaks positioned at 43◦, 53◦, and 63◦ indicate maghemite
(β-Fe2O3), which agree with the corresponding standard JCPDS card No. 75-0033 and card
No. 39-1346, respectively [36]. These confirm the presence of magnetic iron oxides loaded
on the surface of GO. Several low intense peaks positioned at 28.6, 37.5, 49.8, 60.1, and 69.1◦

are attributed to the characteristic crystalline patterns of manganese dioxide (α-MnO2)
which match with its reference card No.01-072-1982 [37]. The low intensity of these peaks
may be due to the small concentration of MnO2 in the composite catalyst.
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3.2. ODS Activity of MnO2/MrGO

ODS activity of MnO2/MrGO composite catalyst was investigated using a modeled
oil sample, while the catalyst’s activity was determined in terms of the percentage con-
version of DBT. DBT removal was investigated under different conditions of time, initial
concentration, temperature, catalyst dose, oxidant dose, and catalyst recycling.

It was shown that the catalyst’s activity is strongly affected by DBT concentration
because of the interaction between the reactive active sites of the catalyst and the reac-
tant [38]. DBT oxidation was conducted at different initial concentrations ranging from
600 to 2000 ppm, while other experimental conditions, i.e., catalyst dose (0.08 g), reaction
temperature (40 ◦C), reaction time (1 h), and oxidant ratio were kept constant. The results
are shown in Figure 5a, indicating that when the initial concentration of DBT was raised
from 600 ppm to 1200 ppm, DBT removal linearly increased from 57.45% to 80.11%, albeit
with a further increase of the initial DBT concentration, the efficiency declined. It should
be mentioned that because the fixed catalyst amount bears a limited number of active sites,
which can only carry a proportional number of DBT molecules, over a certain concentra-
tion, i.e., 1200 ppm, the number of active sites are insufficient for DBT oxidation [39]. On
this basis, the modeled oil sample with 1200 ppm DBT concentration was employed for
further study.Nanomaterials 2021, 11, x FOR PEER REVIEW 8 of 18 
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DBT conversion was investigated as a function of temperature in the range of 25 ◦C to
60 ◦C, keeping other parameters constant. The extracted results are displayed in Figure 5b,
which exhibit that maximum DBT conversion of up to 80% is achieved at 40 ◦C, whereas
above and below 40 ◦C, DBT conversion declines. It is proved that higher temperatures lead
to side reactions and cause rapid dissociation of H2O2, which leaves DBT unoxidized [40],
leading to a lower DBT conversion degree. The majority of literature studies report on the
optimum temperature of catalytic ODS in the range of 60 ◦C to 70 ◦C. Likewise, the obtained
high DBT conversion of 80% at 40 ◦C demonstrates superior efficiency of the current
catalyst-oxidation system. The increase of DBT removal from the modeled oil sample with
increasing temperature and reaction time is in agreement with the literature [41].

DBT conversion under different catalyst doses ranging from 0.05 g/15 mL to 0.3 g/15 mL
of the modeled oil sample is shown in Figure 5c. The results indicate that maximum
DBT conversion of 79% is attained at the catalyst dose of 0.08 g/15 mL, although with
further increase in the catalyst dose, a decline in DBT conversion is observed. Although a
high catalyst dose provides more active sites for interaction with DBT, leading to higher
desulfurization efficiency [42], in the current study, the high activity of the catalyst and the
strong oxidizing power of oxidant seem to favor high DBT removal at very low catalyst
dosage. The catalyst dose above the optimum level may lead to agglomeration, which
blocks the active sites, hence causing a decrease in DBT conversion activity.

In the ODS process, the amount of oxidant consumed directly affects the efficiency
and the processing cost [2]. Formic acid and H2O2 have been used as oxidants for ODS
of modeled or real oil samples in the presence of various catalysts during the process
when H2O2 reacts with HCOOH to produce performic acid, which further oxidizes DBT to
sulfones [43]. The effect of different concentrations of H2O2 and formic acid was tested in
the presence of MnO2/MrGO catalyst by using different volumes, i.e., 0.5, 1.0, 1.5, 2.0, and
2.5 mL of both species. In Figure 5d, it is proved that for both H2O2 and formic acid, the
maximum sulfur conversion of up to 80% is attained when the volume is 2 mL. It has been
reported that using an excess amount of aqueous oxidant is helpful for DBT conversion and
assists in the extraction of the oxidized product [44]. Apart from the reduction potential,
S in DBT acts as a soft base according to the Pearson theory, which would prefer to react
with a soft acid [45,46].

The effect of reaction time on the catalytic ODS of the modeled oil sample is demon-
strated in Figure 5e. It is obvious that DBT conversion rises from 71% to 80% when the
reaction time increases from 15 min to 30 min but remains constant till 60 min and then
decreases onward from 80% to 69% when the time increases. This could be explained by
describing the interaction of oxidizing agents as time proceeds. The reaction of HCOOH
and H2O2 with DBT to produce sulfones needs enough time to be completed and pro-
moted as time increases. However, beyond the optimum time, i.e., 15 min, the drop in
sulfur removal degree may be ascribed to the oxidant decomposition, particularly of H2O2,
which is no longer available for oxidation. Hence, the exclusive loss of all oxidants, the
equilibrium change, and the oxidation power of reaction media decreases which result a
decline in DBT conversion as time progresses [47].

3.3. Effect of Temperature and Kinetic Study

The kinetics of oxidative conversion of DBT in the modeled oil sample in the presence
of MnO2/MrGO catalysts was studied by applying pseudo-first-order and pseudo-second-
order kinetic models to DBT conversion data. The pseudo-first-order kinetic model was
used in the following form:

Ln
Ct

Co
= −Kt

where Co and Ct are the DBT concentrations (mg/L) at equilibrium and at respective time
t, and K1 is the pseudo-first-order rate constant that was calculated from the intercept of
the plot of Ln.Ct/Co versus time (t). Figure 6a,b shows the pseudo-first-order and pseudo-
second-order kinetic models, respectively, for catalytic ODS of DBT in the presence of
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MnO2/MrGO catalysts, whereas the kinetic parameters are given in Table 1. As evident
from Figure 6a, a nonlinear plot was obtained for pseudo-first-order kinetic model, having
an R2 value of less than 0.99, which indicates that the catalytic ODS of the modeled oil
sample does not follow pseudo-first-order kinetics. The oxidative conversion of DBT was
also interpreted by the pseudo-second-order kinetic model, which is given by Equation (2),

t
qt

=
1

k2q2 +
1

qet
(2)

Table 1. Kinetic parameters for ODS of model oil in the presence of MnO2/MrGO catalysts.

Order of Reaction qe
(Experimental)

qe
(Calculated)

K
(min−1)

R2

Pseudo-first-order 326.54 247.15 0.029 0.75
Pseudo-second-order 334.44 357 0.0028 0.99
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A plot of t/qt against time (t) was constructed for DBT conversion which gives the
linear line (Figure 6b) with an R2 value of 0.99. The value of qexp. is also very close to
qcalc., indicating that catalytic ODS of DBT follows pseudo-second-order kinetics. The
values of pseudo-first-order and pseudo-second-order rate constants and other kinetic
parameters for DBT conversion are listed in Table 1, which represent the reactivity of the
sulfur compounds model in the presence of MnO2/MrGO catalyst.

3.4. Regeneration and Recycling of the Catalyst

Catalyst recycling is crucial for controlling the processing cost in terms of practical
implementation. Regeneration of MnO2/MrGO was assessed by carrying out five multiple
ODS experiments under similar optimized conditions. Upon the completion of each experi-
ment, the catalyst was recovered by an external magnetic field, washed with n-heptane and
methanol several times to remove leftovers of any DBT or DBT-sulfones from the catalyst’s
surface. The catalyst was dried in an oven at 110 ◦C and then reused in another batch
experiment. The result shows (Figure 7) that DBT conversion efficiency remained almost
the same after four consecutive cycles but then abruptly fell. The loss of sulfur removal
efficiency up to 11% after the fifth cycle was comparable with some earlier reports [15],
which were not adopted in the current study, taking into account cost and safety.
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The large drop in the catalyst efficiency for the fifth cycle may be attributed to a
decrease in the availability of active sites on the catalyst surface. The DBT or DBTO2
formed during the ODS process may be adsorbed on catalyst surface at the active sites, i.e.,
MnO2 through π-complexation [48], which cannot be removed by simply washing with
methanol and heptane during the regeneration step. In each cycle, a slight decrease in
active sites occurs, which consequently results in a large drop in efficiency for the fifth cycle.

3.5. Catalytic ODS of Commercial Oil Sample

The catalytic ODS of commercial oil samples, including gasoline, kerosene, and diesel
oil, having total sulfur contents of 3950 ppm, 6120 ppm, and 6530 ppm, respectively, was
studied under optimized conditions for the modeled oil sample. Figure 8 shows that
the total sulfur removal attained by catalytic ODS, in the case of gasoline, kerosene, and
diesel oil, was 59%, 51%, and 67%, respectively. These results imply that the catalyst also
performed well in the case of real oil samples, as in the modeled oil sample. The efficiency
of the present catalytic ODS system in the case of real oil samples is comparable with those
reported in the literature [44]. As reported, the ODS process, which includes the extraction
step to remove sulfur content for straight run gas oil (SRGO) and diesel oil, presented high
sulfur content up to 70% and 96%, respectively [49]. Another study reported on the ODS of
gasoline oil, in which the sulfur content was removed up to 56.3% at 55 ◦C after 30 min
of reaction time, followed by an extraction stage, which is a costly and time-consuming
process [50].

According to the data, it is speculated that among gasoline, kerosene, and diesel oil
samples, the highest sulfur removal is attained in the case of gasoline, followed by diesel
oil and kerosene oil. The highest desulfurization yield is also attained in the case of diesel
oil by MnO2/MrGO catalysts. This is possibly due to its high sulfur content because more
sulfur-containing active sites of the catalysts are available to interact compared to the
cases of kerosene or gasoline [51]. Similarly, the high level of sulfur removal in the case of
gasoline is explained based on the nature of sulfur compounds. Mostly in gasoline, sulfur
compounds are simpler and more susceptible to oxidation compared to those contained
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in high boiling point fractions [52]. However, in the case of kerosene oil, not only the
sulfur content is low but also the prevailing sulfur compounds are more complex, implying
high resistance to oxidation and therefore lower level of sulfur removal [53]. The efficiency
of the current catalytic ODS system surpasses those reported for ODS of modeled and
real oil samples in terms of cost-effectiveness, simplified operation, and utilization of
H2O2/HCOOH as oxidant.
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in the presence of MnO2/MrGO, fuel volume (15 mL), catalyst weight (0.08 g), oxidant volume
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3.6. Suggested Mechanism for ODS of DBT by MnO2/MrGO

In order to confirm the catalytic role of MnO2/MrGO composite, ODS of the modeled
oil sample was examined separately in the presence of GO, MrGO, and MnO2/MrGO
composite as catalysts using H2O2/HCOOH as the oxidation system. In Figure 9, it is
apparent that in the presence GO, MrGO, and MnO2/MrGO, DBT conversion was found
to be 41%, 53%, and 80%, respectively. These results show that the ODS activity of GO is
very small; moreover, the incorporation of magnetic iron oxide causes only a slight increase
(about 12%) in the ODS activity of GO. In contrast, the ODS activity was enhanced to
80% with the incorporation of MnO2. Therefore, it may be suggested that the GO and the
magnetic iron oxide may contribute to the DBT removal through the adsorption process [54];
however, the active component in the catalyst is MnO2, which causes a marked increase in
the ODS activity of the composite catalyst.

The advantage of the composite catalysts containing both MrGO and MnO2 is evident
because DBT removal is sufficiently increased compared to only GO as the catalyst. Several
studies showed that metal oxides loaded on GO and other such supports (i.e., zeolites
or alumina) increase the desulfurization yield in the presence of different oxidation sys-
tems [55,56]. In ODS reaction, these metal oxides lead to the formation of peroxo species,
which can oxidize sulfur compounds. For example, using MoOx/Al2O3 as a catalyst with
H2O2 as the oxidizing agent, DBT oxidation takes place through the formation of hy-
droperoxymolybdate species, which were formed upon the electrophilic attack of H2O2
over octamolybdate and heptamolybdate species [57]. In the current system, manganese
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dioxide supported on MrGO is assumed to enhance the oxidation of DBT, leading to higher
desulfurization yield than GO because MnO2/MrGO offered high DBT removal efficiency.
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Figure 9. ODS of the modeled oil sample in the presence of GO, MrGO, and MnO2/MrGO.

An appropriate pathway is presented for a better understanding of the mechanism
of ODS by the H2O2/formic acid system in the presence of MnO2/MrGO as the catalyst.
In the current study, the reaction is initiated by MnO2, involving the heterolytic cleavage
of H2O2, and thus producing active hydroxyl radical (OH.); hydroxyl radicals are strong
oxidizing agents [40], which further attack formic acid to produce performic acid. Performic
acid offers its oxygens to DBT in order to form DBT sulfoxide and then DBT sulfone. It is
also possible that the peroxyl group, produced by the reaction between H2O2 and HCOOH,
interacts with the surface of MnO2, which carries out the selective oxidation of the S atom
when DBT is adsorbed on the catalyst’s surface [58]. The proposed mechanism is presented
in Scheme 1.
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Here, GO acts as support, but due to its two-dimensional geometry, electron transfer
capability, and ability to form π-complexes with sulfur compounds, it further enhances the
desulfurization yield [59].

The comparison between the efficiency of the current catalytic ODS processes using
MnO2/MrGO catalyst and those reported in the literature are provided in Table 2. Various
catalytic ODS processes that removed sulfur from modeled and real oil samples using
different types of catalysts through the ODS process operated at longer reaction times and
temperatures. In the current study, the ODS of modeled and commercial oil samples was
operated at mild operating conditions, i.e., 60 min at 40 ◦C with high desulfurization yield,
which is comparable to the reported ones. The current process exhibits high sulfur removal
efficiency in a relatively shorter duration and lower temperature. In addition, the current
process does not require an extraction step, which makes it economically feasible and a less
time-consuming process. These results have suggested that the combination of MnO2 and
GO could be an excellent support offering enhanced ODS activity [34].

Table 2. A comparative analysis of the performance of ODS processes containing various catalysts and supports.

Catalysts Oxidant Used Substrate Temp Time Desulfurization
(%) Ref.

Polyoxometalate K6
[α-P2W18O62]·14H2O
and K6P2W18O62/GO

Octanal/air DBT, BT and
4,6-DMDBT 60 ◦C - 96.10 [60]

HPW-GO H2O2
DBT, BT and
4,6-DMDBT 60 ◦C 30 min 100% [34]

MPc/RGO O2 DBT 60 ◦C 180 min 97.5% [61]

CuW/TiO2–GO H2O2 Gasoline oil 40 ◦C 1 h 100% [62]

SBA-15-supported
peroxophospho-

tungstate
catalysts

H2O2 DBT, Gasoline 70 ◦C 2 h 98%, 89% [63]

GO/COOH H2O2/HCOOH DBT 25 ◦C 300 min 95% [64]

Molybdenum
anchored/MOF TBHP DBT, diesel

fuels 70 ◦C 14.4 h−1 85%, 74% [65]

Methyltrioxorhenium
in ionic liquid H2O2

Thiophene,
gasoline 60 ◦C 2 h 99%, 91% [66]

Activated carbon H2O2/HCOOH, DBT, diesel
fuels 60 ◦C 1 h 98% [67]

K6P2W18O62/GO, Air/n-octanol DBT 60 ◦C 2 h 92.99% [60]

MnO2/MrGO H2O2/HCOOH DBT Real oil
samples 40 ◦C 15 min 80% Current study

4. Conclusions

To summarize, the ODS of modeled and commercial oil samples was investigated
using a MnO2/MrGO composite as the catalyst. The higher desulfurization efficiency
attained was up to 80% in 15 min at 40 ◦C, using 0.08 g of MnO2/MrGO as the catalyst. The
catalytic ODS was found to follow the pseudo-second-order kinetic model. MnO2/MrGO
catalyst realized high desulfurization efficiency for the fuel oil sample and decreased the
sulfur content up to 67.8%, 59.5%, and 51.9% in cases of diesel, gasoline, and kerosene oil,
respectively. The current study accredited that ease of operation, low cost, availability of
raw materials, operation at mild conditions, and high efficiency can be envisioned for fuel
processing on an industrial level.
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