nanomaterials

Review

Heat Transport Control and Thermal Characterization of
Low-Dimensional Materials: A Review

Alexandros El Sachat 1*

check for

updates
Citation: ElSachat, A.; Alzina, F,;
Sotomayor Torres, C.M.;
Chavez-Angel, E. Heat Transport
Control and Thermal
Characterization of Low-Dimensional
Materials: A Review. Nanomaterials
2021, 11, 175. https://doi.org/
10.3390/nano011010175

Received: 10 December 2020
Accepted: 8 January 2021
Published: 13 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Francesc Alzina

1 1,2

, Clivia M. Sotomayor Torres and Emigdio Chavez-Angel !

1 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra,
08193 Barcelona, Spain; francesc.alzina@icn2.cat (F.A.); clivia.sotomayor@icn2.cat (C.M.S.T.);
emigdio.chavez@icn2.cat (E.C.-A.)

ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain

*  Correspondence: alexandros.elsachat@icn2.cat

Abstract: Heat dissipation and thermal management are central challenges in various areas of science
and technology and are critical issues for the majority of nanoelectronic devices. In this review,
we focus on experimental advances in thermal characterization and phonon engineering that have
drastically increased the understanding of heat transport and demonstrated efficient ways to control
heat propagation in nanomaterials. We summarize the latest device-relevant methodologies of
phonon engineering in semiconductor nanostructures and 2D materials, including graphene and
transition metal dichalcogenides. Then, we review recent advances in thermal characterization
techniques, and discuss their main challenges and limitations.

Keywords: phonon engineering; nanoscale thermal transport; thermal characterization; semiconduc-
tors; 2D materials

1. Introduction

Advances in the electronics industry have led to an increased need for novel ap-
proaches to thermal management to improve devices performance and reliability, by con-
trolling the dissipation of the energy generated in the devices. In particular, the possibility
of controlling heat propagation by engineering the phononic properties of the fundamen-
tal components is of great interest in nanoelectronics—where heat dissipation will play
a major role in determining the performance of high-density nanoscale circuits —or in
thermoelectric materials—where materials with low thermal conductivities are desired.
The main heat carriers in these materials are phonons, thus understanding and control-
ling phonon transport are issues highly connected with the successful development of
low-power electronics and efficient thermoelectric energy harvesting.

However, with the continuous miniaturization of electronic devices reaching physical
limits, heat transport and thermal management are becoming increasingly more challeng-
ing. For instance, the characteristic dimensions of electronic components have become
comparable to the phonon mean free path (MFP), which inevitably increases the power
density and complicates heat removal [1,2]. In addition, the large density of interfaces,
contacts, and boundaries that appear at extremely small length scales in today’s electronics
indicates the importance of further optimizing nanoscale thermal characterization tools.
Advances in measurement techniques together with theoretical efforts have enabled a better
understanding of novel heat transport mechanisms, e.g., hydrodynamic phonon transport,
coherent and ballistic transport, thermal localization, and finally phonon propagation at
the nanoscale, opening exciting prospects for thermal investigations of materials even at
the atomic level [3,4]. In parallel, progress in material growth and nanofabrication have
enabled remarkable advances in thermal transport engineering. The concept of phonon
engineering has been employed in various nanomaterials during recent decades, showing
its potential in thermal management.
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Here, we review recent works that have demonstrated efficient ways to control heat
conduction in nanomaterials by phonon engineering, focusing mainly on semiconductor
nanostructures and two-dimensional materials. Then, we review recent advances in the
most commonly used experimental techniques that have enabled heat transport measure-
ments and thermal characterization at the nanoscale. We also discuss the main limitations
and challenges of these techniques and suggest future directions for nanoscale thermal
characterization.

2. Engineering the Phonon Thermal Conduction in Semiconductor Nanostructures
and 2D Materials

In semiconductor and insulators, the dominant carriers of heat conduction are lattices
waves or phonons. A phonon is a quasi-particle which represents quantized modes of the
vibrational energy of an atom or group of atoms in a lattice. Considering that phonons
are pseudo-particles, it is possible to associate energy hw (where h is the reduced Planck’s
constant h = h/(2n) and w is the angular frequency) and a pseudo-momentum p = hq
(where q is the wavevector), which obey Bose-Einstein statistics [5,6]. The wavelength
dependence of the phonon energy can be represented as a dispersion relation, i.e., a re-
lationship between the phonon frequency and its wavevector. The slope of a dispersion
relation curve determines the phonon group velocity.

The ability to transport heat is denominated thermal conductivity. It plays a funda-
mental role in the design and performance of the technological devices. The calculation of
the thermal conductivity (k) in semiconductor material requires the knowledge of three
major frequency-dependent parameters, namely, specific heat (Cy), phonon group velocity
(vg), and phonon mean free path (A). Finally, the expression for thermal conductivity from
the kinetic theory of gases is given by: k= Cy-vg-A.

A major limitation to determine k is the knowledge of mean free path A = Vg /T, where
T is the effective or total phonon lifetime. In general, T is estimated using the Matthiessen’s
rule assuming that each scattering mechanism is independent of each other. The phonon
lifetime is mainly limited by: phonon-phonon scattering (tpp), impurity scattering (ty)
and boundary scattering (tg). The latter is pronounced in low-dimensional materials due
to the dimensionality confinement, which results in modified heat transport properties.
The possibility of tuning the thermal conductivity of low-dimensional materials via phonon
engineering is of high importance and might lead in multiple breakthroughs (e.g., high
figure of merit, improved energy efficiency).

2.1. Semiconductor Nanostructures

Modifications of the dispersion relation have a direct impact on the acoustic phonon
properties of nanostructures, such as phonon group velocity [7], polarization and density of
states. These can usually be induced either through boundary conditions in the individual
nanostructures, e.g., free-standing nanowires (NWs) or thin films, or via periodic bound-
ary conditions, e.g., superlattices (SLs) and phononic crystals (PnCs). In principle, heat
transport in such nanostructures decreases either due to classical size effects or phonon
confinement effects. The first is related to increased phonon-boundary scattering and is
pronounced when the characteristic dimensions of the nanostructures are comparable
to the phonon MFP [8]. When nanostructures dimensions are in the order of or smaller
than the phonon wavelength, phonon confinement or coherent effects appear, modifying
dispersion branches, which in turn modifies the group velocity, phonon density of states,
and phonon lifetime [9-11]. At room temperature, the impact of phonon confinement on
the thermal transport is almost negligible. Instead, the decrease of the thermal conductivity
is mainly attributed to diffuse scattering of phonons at the boundaries. Although this
mechanism has been widely explored and exploited, several works propose the use of the
phonon confinement effect as a mean to control the heat flow [12,13].

The real impact of the phonon confinement on thermal transport at room temperature
has only been observed using superlattices [14,15]. However, in most cases nanofabrication
processes result in nanostructures with length scales larger than the phonon wavelength
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of the dominant heat carriers (at room temperature <5 nm) and limits the observation of
confinement effects. Cryogenic temperatures (T < 10 K) can overcome this problem [16,17].
In the next sections we present recent experimental works that have demonstrated efficient
heat transport control in semiconductor nanostructures.

2.1.1. Membrane-Based Structures

In membrane-based structures, the reduction of in-plane thermal conductivity (k)
due to phonon-boundary scattering has been clearly demonstrated in thermal transport
experiments in silicon layers of different thickness, performed over a large range of temper-
atures [18-21]. The results from these studies showed that the thermal conductivity of Si
can be effectively tuned by decreasing its thickness. In parallel, experimental works have
demonstrated that the fabrication of Si thin films with two-dimensional periodic patterning,
i.e., phononic crystals (PnCs), is an efficient way to modify the phonon spectrum, control
heat conduction and improve the thermoelectric efficiency [22,23].

Recent thermal transport studies have shown that the in-plane thermal conductivity of
silicon and its temperature dependence can be effectively reduced and tuned by patterning
periodic arrays of holes [24-26] or arrays of pillars [27-29]. In silicon membranes with
patterned arrays of holes (see Figure 1a-d) a strong reduction of ~90% of the thermal con-
ductivity was found compared to unpatterned Si membranes of equal thickness. Figure 1e
displays the thermal conductivity of PnCs with different filling fraction. At room tempera-
ture the reduction of the thermal conductivity was attributed mainly to the shortening of the
phonon mean free path due to diffuse (incoherent) phonon-boundary scattering. Although
the increase of the surface-to-volume ratio leads to increased boundary scattering, at higher
temperatures the phonon—-phonon scattering dominates over the boundary scattering. This
is observed through the smaller relative reduction in k, compared to room temperature.
The impact of coherent phonon scattering was found to be significant in the thermal con-
ductivity reduction of similar structures only at low temperatures, where thermal phonon
wavelengths become longer and comparable with the period of the holes [30-32].

In pillar-based PnCs the reduction of the thermal conductivity was weaker in compar-
ison with the hole-based PnCs while coherent effects were found to be insignificant even at
low temperatures. This was observed for pillar-based PnCs fabricated by patterning Al
nanopillars of different diameters on suspended Si nanobeams [28]. Figure 1f-h shows the
geometry of the investigated Si nanobeam with one-dimensional arrays of pillars with a
period of 560 nm and various pillar diameters. The thermal conductivity of these structures
at room temperature was observed to decrease with increasing diameter, with a maxi-
mum thermal conductivity reduction of approximately 20% (see Figure 1le). The authors
attributed this behavior to the increased phonon scattering at the pillar/beam interface
due to the intermixing of aluminum and silicon atoms. The same group later fabricated
nanopillars on suspended silicon membranes and investigated the impact of nanopillars
on the thermal conductivity at low temperatures (4-300 K) [29]. They found the thermal
conductivity reduction caused by the nanopillars to be approximately ~16%, which was
attributed mainly to incoherent phonon boundary scattering. It is interesting to note that
although the rate of the thermal conductivity reduction in these structures was much lower
than the hole-based PnCs, the electrical conduction remained unaffected, or even increased,
since no volume removal was required.

Other phononic structures have been fabricated by introducing short-range positional
disorder in PnCs, which showed similar values of the thermal conductivity at room temper-
ature compared with the fully periodic structures [16,33]. Although the phonon spectrum
in the GHz range may be modified, these works evidenced that at room temperature,
thermal transport is mainly diffusive (particle-like) and dominated by phonons in the
THz range.
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Figure 1. Phonon engineering in membrane-based structures. (a) Schematic of a hole-based PnC—square lattice of

cylindrical holes in a 250 nm thick suspended membrane, where d is the hole diameter, a is the lattice parameter, and n is the

neck size. (b) Schematic of a sample design showing relative laser heating and probing positions and (c,d) scanning electron
microscope images of a PnC with a = 250 nm and d = 140 nm. Scale bars in (c,d) are 20 and 2 um, respectively. (e) Thermal
conductivity of hole-based PnCs as a function of temperature and filling fraction S with S1 = 0.159, S2 = 0.246 and S3 = 0.332.
(f,g) SEM images of a pillar-based PnC—Si nanobeam with one-dimensional arrays of pillars with a period of 560 nm and

pillar base diameters of 229.5, 243.5 and 335 nm and (h) SEM image of a single nanopillar. Scale bars are (f) 5 um and

(g-h) 500 nm. (i) Thermal conductivity of different nanobeams as a function of pillar diameter at 295 K. (a—e) reproduced
with permission from [24]. Copyright Springer Nature, 2017. (f-i) Reproduced with permission from [28], Copyright Royal

Society of Chemistry, 2017.

Since phonons are intrinsically waves, the control over their coherence can open
fundamentally new routes for manipulating the heat flow. Venkatasubramanian was one
of the first who discussed about coherent effects on thermal measurements in superlattices
(SLs). He presented a physical model to understand the reduction of the k based on the
coherent backscattering of phonon waves at the superlattice interfaces [34]. Since then, the
coherent concept was adopted by several authors to explain thermal conduction processes
in superlattices and phononic crystals [35]. However, the interpretation of coherent thermal
transport is still under debate and the experimental reports still remain inconclusive [36].
Some experimental reports that claimed coherent effects [37-39] have been contrasted by
numerical simulations [40,41]. Concluding that some of these claims could be explained by
particle-based models without considering coherent phonon transport [40,41].
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Part of these controversies comes from the nature of the coherent transport in the
context of thermal transport which is not well understood. In general, coherence involves
a measurable phase-dependence between waves over a given time interval, e.g., the inter-
action of monochromatic waves. However, this notion cannot be applied directly in case
of heat conduction, which involves all the thermally excited phonons in a structure [14].
Latour et al. tackled this problem by treating the phonon-coherence length in terms of cor-
relation functions in superlattices [42]. The discussion about coherent effect in superlattices
will be given in the Section 2.1.3.

The sample quality is also another important parameter to take into account to observe
coherent effects. The structures have to have periodicities in the order of the wavelength of
the dominant thermal phonons (few nm) with atomically smooth surfaces (or interfaces) to
avoid diffusive scattering of the heat carriers. For the case of silicon, the dominant phonon
wavelength at room temperature is 1-2 nm [41]. On the other hand, the present state of the
art in nanofabrication can produce patterned structures with dimensions down to several
tens of nanometers with block-copolymer technologies and hundreds of nanometers via a
top-down approach [43]. Such dimensions can tailor the dispersion relations of phonons in
the GHz range with a poor contribution to the thermal properties at room temperature [33].
Lee et al. demonstrate that phonon coherence is negligible in the thermal transport of
silicon nanomeshes with periodicities >100nm and T > 14K. Xiao et al. also found a
negligible contribution of wave effects in the total thermal resistance of Si thin film with
increased rows of nanopores with temperatures ranging from 85-300 K [44].

On the other hand, at lower temperatures, Zen et al., demonstrated the impact of
the coherent effect in the thermal transport in patterned silicon nitride membranes in
the sub-Kelvin regime. They showed the direct correlation between the thermal con-
ductance, calculated from the modified phonon dispersion relation, and experimental
measurements [32]. Maire et al. measured the reduction in the k in a patterned Si phononic
crystal at 4 K. They claimed that the presence of phonon interference is the origin of the
reduction in k of a phononic crystal with an ordered array of holes as compared to the
thermal conductivity of structures with randomly positioned holes [16].

2.1.2. Nanowires

Tuning phonon properties and heat conduction via phonon engineering has been
demonstrated in NWs consisting of different materials, shapes, geometries and compo-
sition. The influence of diameter of NWs on the phonon thermal conductivity at room
temperature has been thoroughly investigated in previous studies [45—48]. In these ex-
periments, classical size effects were dominant and the thermal conductivity of the NWs
was found to be suppressed by almost two orders of magnitude compared to their bulk
counterparts, mainly due to the increased phonon boundary scattering. The dependence
of the thermal conductivity on diameter is still valid at high temperatures as has been
recently demonstrated by Lee et al. [48]. Additionally, in this work the authors showed an
increasing contribution of high-frequency phonons as the temperature increases and the
NW diameter decreases.

Furthermore, recent works have experimentally demonstrated ballistic heat conduc-
tion in Si, SiGe, and GaN NWs of different lengths at room temperature [49-51]. The length-
dependent thermal conductivity measured in these studies showed that ballistic heat
conduction can be preserved at room temperature for several micrometer length wires. For
instance, Vakulov et al. [51] showed that in 25 nm diameter GaN NWs a room-temperature
ballistic heat flow persist at least 15 um. Such evidence showed the great potential of
semiconductor NWs to be used for improved thermal management in applications such as
phonon transistors [52,53] and computer chips, where rapid heat removal is required.

In parallel, different methods to further modulate the thermal conductivity of NWs
have been proposed such as the fabrication of core-shell NWs. For example, a strong
thermal conductivity reduction was found in Si and SiGe alloy NWs with diameters of few
tens of nanometers, indicating the important effect of the core-shell interface on phonon
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transport [54]. Juntunen et al. also found up to ~60% reduction of the thermal conductivity
of GaAs NWs coated with AlAs shells [55]. A different study showed that the k along
a single Si nanowire can be tuned (between crystalline and amorphous limits) through
selective helium ion irradiation with a well-controlled dose [56]. Figure 2a displays a
SEM image of a single Si nanowire, which was irradiated at different positions with well-
controlled helium ion doses. Figure 2b shows the reduction in k as a function of the helium
ion doses, where a clear transition from crystalline Si to amorphous phase can be observed
at a dose between 1.5 x 10'® and 2.5 x 10'® cm~2.
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Figure 2. Phonon engineering in nanowires. (a) SEM image of a Si NW damaged by helium ions (sample #1). The portions
colored orange denote the parts damaged by helium ions; the uncolored portions denote the intrinsic Si NW. Scale bar,
1 mm. (b) Measured k of samples #1-#8 versus dose. Inset: the same data plotted on a logarithmic scale. The solid black
square denotes the k of intrinsic NWs (namely, with zero dose). (c) Plot of the measured power density as a function of the
laser heating for different isotopically engineered Si NWs. (a,b) Reproduced with permission from [56]. Copyright Springer
Nature, 2017. (c) Adapted from Mukjerjee et al. [57].

More recent experimental studies demonstrated that manipulation of crystal phase,
isotope composition and mass disorder are effective ways to control heat transport in
silicon NWs. For instance, Mukherjee et al. showed that isotopically mixed metal-catalyzed
28Gi,30Si; . NWs exhibit enhanced phonon scattering and approximately 30% decreased
thermal conductivity induced by mass disorder in comparison with isotopically pure 2Si
NWs [57]. Figure 2c shows the measured power density as a function of the laser heating
for the two types of NWs, which was used together with a model to extract the local
temperature and thermal conductivity of the NWs. The same authors later found that the
thermal conductivity of Si NWs with tailor-made isotopic compositions can be reduced by
up to ~40% relative to that of isotopically pure NWs [58]. The lowest k value was found
for a thombohedral phase in isotopically mixed 2Si,*’Si; _, nanowires with composition
close to the highest mass disorder. Similarly, the authors used the same methodology to
extract the thermal conductivity of the NWs.

2.1.3. Superlattices

The first attempts to manipulate the wave nature of phonons were carried out by
using alternating thin layers of dissimilar materials to realize a super periodicity of atomic
position, i.e., a superlattice (SL). Due to the possibility to modify the dispersion relation
as well as to create miniband and minigaps, stop bands and acoustic mirrors, the thermal
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transport community envisioned a very large potential to control the heat propagation
with SLs [59]. The thermal transport in nanoscale SLs shows a crossover between coherent
and incoherent phonon transport along the layered axis. The transition depends on the
period thickness (dg;, = dq + dy, where d; and d; are the thickness of each layer) and the
coherent length of the phonons. The crossover occurs when the interface density, 1/dg;,
is large enough to limit the propagation of high frequency phonons (particle-like) so that
the thermal transport is governed by low frequency phonons (wave-like). The transition
between coherent-incoherent (wave-particle) transport is observed as a minimum in the k
as a function of dgy, [15,34] as is shown in Figure 3a. Although this behavior was predicted
in 2000 [34], this observation has been hidden probably by the low quality of the inter-
faces, which destroys the otherwise perfect periodic system, disallowing coherent phonon
transport. Recently, Ravichandran et al. [15] presented the first unambiguous experimental
demonstration of this crossover using epitaxial perovskite-based SLs. Luckyanova et al. [14]
presented another fingerprint of coherent thermal transport, namely, a linear dependence
of k with respect to the number periods N (see Figure 3b). This behavior arises when, in the
coherent regime, the phonon mean free paths are equal to the total SL thickness, resulting
in a linear dependence between k and N.
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Figure 3. Phonon engineering in superlattices. Experimental k as a function of: (a) period thickness of (TiNiSn):(HfNiSn)
half-Heusler superlattices, (b) number of periods of GaAs/AlAs superlattices. Adapted from Holuj et al. [60] and Luckynova
et al., [14], respectively. (a) The crossover between coherent-incoherent (wave-particle) regimes is observed as a minimum

in k vs. dsr, while in (b), the linearity of the k vs. N suggests that phonon heat conduction is coherent.

As we mentioned above, the concept of coherency cannot be applied directly in case
of heat conduction because the thermal transport involves all excited phonons of the
structure. However, Latour et al. [42] showed that coherence can be formalized in other
physical fields as correlation, e.g., the spatial coherence of the light can be expressed in
terms of spatial correlations of electromagnetic fields. Inspired by this theory, Latour et al.
extended this concept to the thermal phonons in superlattices. They postulated that the
spatial phonon coherence length (I¢) can be related to the spatial correlations of the atomic
displacement fluctuations at equilibrium. The authors noted that if two atoms separated
by a distance I and oscillating with a given phase and frequency (i.e., nonrandom), their
motion is correlated. Hence, the finite spatial extension in which this correlation remains
preserved is defined as spatial coherence length I. This correlation arises from the presence
of phonon wave packets composed by atoms vibrating in phase. Using this approach,
the authors were able to distinguish different regimes of heat conduction characterized
by the coherent length (Ic), mean free path of the packet (A), period thickness (dsy.) and
total thickness of the superlattice (L). Then, the nature of the thermal transport will be
given by the combination of these parameters as is shown in Figure 4. From the figure
we can note that when /¢ > dg;, (Figure 4a,c), the phonon transport is coherent. However,
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Ic cannot be larger than the bulk mean free path (Ic > Ay, see Figure 4e). The wave
package cannot travel a distance larger or equal to its spatial extension without scattering,
i.e., it is a nonphysical phenomenon. For each of the rest of the cases shown in the figure,
two trends for the thermal conductivity are depicted: one as a function of the dg; with a
constant L and as a function of L with constant dg; . The crossover of thermal conductivity
happens in Figure 4b,d f. In these cases, the thermal conductivity becomes independent of
the system size and increases with the SL period.

l->dg Coherent [-<dg Incoherent

Apug 12> L

Q)

Phonon
package

Apur 12> dgp
Abulk, 1,2 <L

Apuir 12 < dgp

(e)

Nonphysical

]('%Ik 1,2

kst
ks

Figure 4. (a-f) Schematic representation of coherent and incoherent thermal transport in superlattices (adapted from Latour

et al. [42]).

To observe coherent thermal transport, it is necessary that the incoming thermal
wave retains its phase after it has been reflected or transmitted across the interface. This
implies that the scattering mechanisms should not be purely diffusive, otherwise the phase
information will be destroyed. Consequently, the presence of atomically smooth interfaces
becomes mandatory. Although numerical simulations carried out by Qui et al. found the
same linear dependence in rough periodic and aperiodic Si:Ge SLs [61], the results of their
simulations were associated to the low interface densities and weak disorder scattering.
Under these conditions, the dominant thermal phonons would not be affected by the
disorder and could ballistically transverse the SLs regardless of aperiodicity or interface
roughness. Similar results were found by Wang et al. [62] and Chakraborty et al. [63] in
rough periodic SLs and random multilayer structures (RML) made of artificial atoms. Both
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simulations showed the same linear-like behavior of k| vs. N. However, the absence of a
minimum in k| as a function of dg; in the simulations performed by Wang et al. suggest a
ballistic phonon transport rather than coherent effects [62].

On the other hand, the introduction of very small-periods (10s of nm) have also shown
a large impact on lowering k. Values close or smaller than the amorphous limit of one
(or both) component of the SLs have been reported. Costescu et al. [64], Pernot et al. [65],
and Chavez-Angel et al. [66] measured cross-plane thermal conductivity values (k) below
the amorphous limit of Al,Os3, Si, and HfNiSn in Al,O3:W, SiGe:Si and HfNiSn:TiNiSn
SLs, respectively. Niemela et al. [67] also overtook the amorphous limit of TiO, using
organic-inorganic (TiO,):(Ti-O-C¢H4-O) SLs.

Ultralow values of k were also reported by Juntunen et al. [68] in aperiodic Si:Ge SLs.
The authors explained their observation in terms of wide range Anderson localization,
which leads to a destructive interference of coherent phonons and consequently a drastic
reduction of k by quenching the wave transport under structural disorder. Phonon local-
ization was also reported by Luckynova et al. [69] using GaAs/AlAs superlattices with 8
and 25% of ErAs nanodots randomly distributed at the interfaces. They observed peaks in
the normalized k of SLs as function of number of periods at 30 K and 50 K for 25% ErAs
sample. Their observations were supported by theoretical calculations and explained in
terms of a new heat conduction mechanism related to the presence of phonon localization
in these SLs.

2.2. Two-Dimensional Materials
2.2.1. Graphene

The emergence of graphene has provided with a platform for the study of 2D phonon
transport [70-73] and, at the same time, it’s extremely high thermal conductivity has driven
applications in thermal management [74] and energy conversion [75]. Experimental studies
have shown the possibility of tuning graphene’s thermal properties with different methods
such as the control of isotope composition [76], metal deposition [77], introduction of
defects [78-80], and orienting the grain size in polycrystalline graphene [81-83].

The development of methods for labelling [84] and growing [85] large grain-size
monolayer graphene with regions of different concentrations of >C and 3C has made
possible the study of the impact of isotope concentration on the thermal properties. It was
found that the k of suspended isotopically pure '2C (0.01% '3C) graphene can reach values
higher than 4000 W m~! K~! close to room temperature (T~2320 K), which is more than
a factor of two higher than the value of k in graphene sheets with an equal composition
of 2C and '3C [76]. In addition, Malekpour et al. [78] found that as the defect density
in suspended graphene increased from 2.0 x 10!° cm~2 to 1.8 x 10! cm~?2 the thermal
conductivity decreases more than a factor of ~4 near room temperature. The defects in
this work were induced by irradiating graphene with a low-energy electron beam (20 keV).
A different study also used oxygen plasma treatment to induce defects in suspended
graphene and reduce its thermal conductivity more than 90% [80].

Moreover, the CVD method allows the growth of polycrystalline suspended single-
layered graphene with controlled grain sizes by changing growth conditions (cf. Figure 5a)
[82]. The k of the polycrystalline suspended graphene samples was found to decrease
with decreasing grain size with a reduction up to a factor of ~5 at 300 K for grain sizes
of 0.5 um. In addition, there is an evident vanishing of the k vs. T dependence with
decreasing grain size (cf. Figure 5b). Here, and similarly to the effect seen in Figure 1e for
Si PnCs, the increased phonon boundary scattering with decreasing grain size competes
with the temperature dependent phonon-phonon scattering as mechanism to reduce the
thermal transport. Since the earliest measurements on graphene, it is well known that
the boundary interaction between graphene and an adjacent dielectric such as SiO, [86]
has a large degradation effect on the thermal conductivity. The drastic reduction was
attributed to the damping of the acoustic phonons of graphene in general, and of the
flexural acoustic phonons in particular, owing to the scattering in the graphene-SiO, rough
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interface and the symmetry breaking by the presence of the substrate [87]. The suppression
of the in-plane thermal conductivity is even more drastic when graphene is encased within
silicon dioxide layers, showing a thermal conductivity value below 160 W m~! K~ at

room temperature [88].
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Figure 5. Phonon engineering in graphene. (a) Schematic illustration of the scattering mechanisms in polycrystalline
graphene, i.e., phonon-phonon scattering and grain boundary scattering, and SEM images of samples with different
nucleation densities. (b) The k as a function of the measured temperature for suspended graphene samples with grain
sizes of 0.5, 2.2 and 4.1 nm. The symbol “{” represents the k of exfoliated graphene. The k of “X” were measured for the
suspended graphene on the hole of 9.7 um in air and the k of “+” were measured for the suspended graphene on the hole
of 8 pm in vacuum condition. (c) Schematics of the structure of the graphene films with different sized graphene oxides
(large and small size graphene oxide: LGGO and SMGO, respectively) and (d) thermal and electrical conductivities of the
graphene oxide films with different contents of small-sized graphene oxides (SMGO). (a,b) Reproduced with permission
from [82]. Copyright American Chemical Society, 2017. (c¢,d) Reproduced with permission from [89]. Copyright American

Chemical Society, 2020.

Other works have reported the use of hydrogen-bonded graphene-polymer inter-
faces [90] or functionalized self-assembled monolayers on graphene [91] to enhance the
thermal boundary conductance (TBC) up to an order of magnitude. In addition, graphene-
polymer composites with enhanced cross-plane thermal conductivity have been success-
fully engineered, showing their potential to be used as thermal interface materials [92].
Moreover, Kim et al. measured significant changes in the TBC of graphene-metal interfaces
by generating physical and chemical defects [93] while Hopkins et al. used chemical
adsorption on the graphene surface through plasma oxygen in order to control the heat
flow across metal-graphene interfaces [94]. The heat transport across Al/graphene inter-
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faces increased by a factor of ~2 after the oxygen exposure of the graphene due to the
enhancement of the bond strength between the Al and graphene atoms.

Furthermore, thermal measurements on graphene laminate films on polyethylene
terephthalate substrates have also indicated that the average size and the alignment of
graphene flakes on the substrate are key parameters defining the heat conduction [95].
Finally, thermally conductive graphene films with an in-plane thermal conductivity up to
1102.62 W m~! K~ have recently been produced by simple chemical reduction of graphene
oxide [89]. The structure of the graphene films with different sized graphene oxides is
illustrated in Figure 5c. The graphene films with equal percentage of small (SMGO) and
large sized graphene oxides (LSGO) showed minimized phonon scattering and maximum
k, as is shown in Figure 5d.

2.2.2. Transition Metal Dichalcogenides and 2D Heterojunctions

Significant efforts have been made to tailor the thermal conductivity of transition metal
dichalcogenides (TMDC) materials with promising thermoelectric performance. Starting
with the MoS;,, a continuously tuning of the thermal conductivity of suspended exfoliated
(few layers) MoS, flakes was demonstrated by exposure to a mild oxygen plasma [96].
The value of the in-plane thermal conductivity underwent a sharp drop down to values
of the amorphous phase. In a recent experimental study, Li et al., showed that the in-
plane thermal conductivity of monolayer crystals of MoS, with isotopically enriched oxide
precursors can be enhanced by ~50% compared with the MoS, synthesized using mixed
Mo isotopes from naturally occurring molybdenum oxide [97]. Furthermore, suspended
polycrystalline MoS; nanofilms with average grain sizes of a few nanometers also have been
realized by using a new polymer- and residue-free wet transfer method, where a strong
reduction of the in-plane thermal conductivity was found due to scattering of phonons
on nanoscale grain boundaries [98]. The same group later systematically studied the
impact of the grain orientation on the thermal conductivity of supported polycrystalline
ultrathin films of MoS,. [99] The lowest k value (0.27 W m~! K~!) was obtained in a
polycrystalline sample formed by a combination of horizontally and vertically oriented
grains in similar proportion.

Different from MoS;, Chen et al. [22] studied the k anisotropy between the zigzag and
armchair axes in suspended Td-WTe, samples of different thicknesses. They found that as
the 2D layer thickness decreases, the phonon-boundary scattering increases faster along the
armchair direction, resulting in stronger anisotropy. Furthermore, recent studies showed
that the thermal conductivity of monolayer WS, (32 W m~1 K1) [100] is comparable to
the thermal conductivity of monolayer MoS; and that is possible to achieve an ultra-low
cross-plane thermal conductivity value (0.05 W m~! K1) in disordered WSe, sheets [101].
Moreover, it was found that the thermal conductivity of a 45 nm thick TaSe; film decreased
almost 50% compared to its bulk value [102].

Progress has also been made in engineering van der Waals (vdW) heterostructures
or interfaces consisting of stacks of 2D monolayers with different materials in the in-
plane and out-of-plane direction. Understanding and controlling the transport of thermal
phonons in such nanostructures is necessary for the effective thermal management of
devices based on TMDC materials. Therefore, there are currently significant experimental
efforts towards the investigation of the interfacial thermal property of 2D heterojunctions.
In particular, the majority of the experimental studies are focused on studying different
ways to increase the TBC of 2D interfaces by forming heterojunctions consisting of TMDC
materials and graphene or thin metal layers [103,104]. For instance, Brown et al. studied
heat transport across different metal-TMDC heterojunctions [103]. They found a higher
TBC value across Ti-MoSe,—-SiO; interfaces compared to Al-MoSe;-SiO; due to the better
interlayer adhesion between Ti and MoSe; atoms. Figure 6a—d show the probed regions of
these interfaces and thermal boundary conductance maps, respectively. A summary of the
TBC values across different MoSe,-based interfaces are shown in Figure 6e.
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Figure 6. Phonon engineering in TMDC-based interfaces. Optical images showing the probed region of (a) Al-MoSe,-SiO,
and (b) Ti-MoSe,-SiO; interfaces. (c,d) thermal boundary conductance (TBC) maps of the Al and Ti covered regions of the
sample obtained by using time-domain thermoreflectance method (TDTR). (e) TBC values obtained at several positions
across MoSe; islands. (f) Schematics of TBCs measured across heterostructures consisting of graphene (Gr), Gr/ MoS,,
Gr/WSey, and Gr/MoS, /WSe;. (g) Measured TBC values of 2D /2D and 2D/3D (with SiO;) interfaces (red diamonds,
left axis) and calculated values (open blue circles, right axis). The TBC were obtained by using single Laser Raman
thermometry technique. (a—e) Reproduced with permission from [103]. Copyright American Chemical Society, 2019.

(f,g) Reproduced with permission from [105]. Copyright American Institute of Physics, 2014.

On the other hand, when thermal isolation is desired, the engineering of interfaces
that exhibit high thermal resistance is highly desirable. For example, a recent study
demonstrated that ultrathin trilayer heterostructure consisting of stacks of monolayer
graphene, MoS,, and WSe, exhibit ultra-high interface thermal resistance resulting in an
effective thermal conductivity lower than air at 300 K [105]. A schematic of the different
heterostructures investigated in this work and the measured TBC values are presented in
Figure 6f,g, respectively.

3. Experimental Techniques for Thermal Characterization

Numerous experimental techniques have been developed for micro- and nanoscale
heat transport characterization, which can in general be categorized in to electrical and
optical techniques. First, we review the most common electrical techniques, including
the thermal bridge method, the electron-beam self-heating technique, the 3w-method and
scanning thermal microscopy (SThM). Then, we review optical techniques based on Raman



Nanomaterials 2021, 11, 175

13 of 33

spectroscopy, and on laser- thermo-reflectance, such as time-domain thermo-reflectance
(TDTR), frequency domain thermo-reflectance (FDTR), and the thermal transient grating
(TTG) method. We discuss the main limitations of these techniques, pointing out the main
challenges for thermal investigations in low-dimensional structures.

3.1. Electro-Thermal Techniques
3.1.1. Suspended Thermal Bridge Method

The thermal bridge technique is based on a microdevice consisting of two suspended
silicon nitride (5iNx) membranes, which are patterned with metal thin lines (Pt resis-
tors). The resistors are electrically connected to contact pads by four Pt leads and used
as microheaters and thermometers, providing Joule heating and four-probe resistance
measurements, respectively (see Figure 7a). The sample is placed between the two mem-
branes and bonded to Pt electrodes while the heat transfer in the suspended sample is
estimated by considering the generated Joule heating on the heated membrane and the
temperature rise on the sensing membrane. This method offers high temperature resolution
~0.05 K [106,107] in a temperature range from 4 to 400 K due to the high accuracy of the Pt
thermometers and direct temperature calibration. The experimentally measured thermal
conductance G and thermal conductivity k are obtained from the equations G = 1Ry
and k = LAAR), respectively, where Ry is the total measured thermal resistance, L is
the length of the sample and A the cross section area of the sample. Here, Ry is the
total thermal resistance of the full system, which includes the thermal resistance of the
suspended sample, the thermal resistance contribution from the part of the sample that is
connected with the membranes, the internal thermal resistances of the two membranes,
and the additional thermal resistance contribution from part of the membranes which are
connected with the heater/thermometers. This method was first introduced by Kim et al.
to measure the in- plane thermal conductivity of suspended multi-walled nanotubes [106].
Since then, it has been used to measure the thermal conductivity of various materials, in-
cluding nanofilms [108,109], 2D materials, such as graphene [77,110-113], boron nitride [3],
and TMDC materials [96,114].

However, there are still some technical challenges that need to be addressed. The pri-
mary challenge is the accurate estimation of the thermal contact resistance components
that inevitably contribute to the measured Ryy. The first is the thermal contact resistance
(R ) between the two ends of the suspended sample and the SiNx membranes [108,109].
The estimation of this resistance requires the use of a fin resistance model, as reported
elsewhere [113,115]. Another component of Ryy is the thermal contact resistance be-
tween sample-membrane interface and thermometer (R, ), which originates from the
non-uniform temperature distribution on the heating membrane. R ,; can be ignored, only
when a uniform temperature distribution in the membrane can be assumed, i.e., when
the thermal resistance of the suspended sample is large compared to the internal thermal
resistance of the membrane. However, this is not the case for high thermal conductivity
materials, such as graphene and carbon nanotubes. For instance, Jo et al. re-analyzed
heat transport results reported in CVD single-layer graphene samples and found that
such extrinsic thermal contact resistances contribute up to ~20% to the measured thermal
resistance [113].

To overcome these difficulties, numerical heat transfer calculations have been con-
ducted to estimate the exact temperature rise at the contact points between sample and
heated membrane [3,77,116,117]. Moreover, several recent works reported the use of resis-
tance line thermometers instead of a serpentine Pt thermometer in order to reduce the size of
the temperature measurement region (between heater/sensor and contact point) [118,119].
Based on numerical heat conduction calculations, it has been found that this approach
can reduce the contribution of R.,, to about 30-40% compared to the R, values that
correspond to serpentine resistance thermometer devices [113]. Other approaches have
been suggested to reduce R.;; and improve the membrane temperature uniformity, such
as adding high k materials to the membranes [120]. Furthermore, recent studies showed
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that the use of an integrated device fabricated from the same device layer as the membrane
minimizes the thermal contact resistance between sample and membrane [36,121].

Other difficulties in this technique are related to the device fabrication and the sample
transfer, which is technically challenging and time consuming. The transfer of exfoli-
ated 2D materials to the thermal bridge structure is usually performed by a dry transfer
method, which usually results in polymer residues, defects and rough edges on the sample
surface that significantly affect the measured total thermal resistance [112,122]. The sus-
pended thermal bridge method is applicable within the temperature range from 4 to 400 K.
For sub-Kelvin measurements, a more sophisticated technique based on the tunnel current
in a normal-metal-insulator-superconductor junction has been proposed [123], with the
potential to operate down to 1 mK.

3.1.2. Electron Beam Self-Heating Technique

A new method for thermal characterization has been recently proposed, namely,
electron-beam self-heating technique, which provides direct measurements of R. and k
and overcomes the previously described limitations of the thermal bridge method [124].
Figure 7b shows a schematic of this technique, where a scanning electron beam is used as a
heating source while the two suspended membranes act as temperature sensors. During
the scanning of the focused electron beam along the length of the sample, a part of the
electrons energy is absorbed at each position of the sample, creating local hot spots. The
generated heat flux from the local spots flows towards the two membranes and rises their
temperature while the thermal conductivity of the sample can be calculated by the equation
k = A/(dR/dx), where A is the cross-sectional area of the sample, R is the measured thermal
resistance from one membrane to the heating spot and x is the distance between membrane
and heating spot.

The main advantage of this technique is that the measured R contains the diffusive
thermal resistance of the suspended part (R;) and the thermal contact resistance between
the suspended sample and contact electrodes (R.), given by the equations: R = R; + R, with
Ry =L/ktWand RW =L/kt + R:-W, wherek, L, t, and W are the thermal conductivity, length,
thickness, and width of the suspended sample, respectively. R; decreases with increasing t
and decreasing L and R, can be derived by taking the limit of L/t— 0. However, in general,
the spatial resolution is limited by the heating volume within the sample rather than the
spot size, as it is the case in laser-based techniques. Therefore, the spatial resolution of
this technique depends on the investigated materials properties [125]. The electron-beam
self-heating technique has been used in recent works to measure the thermal conductivity
and thermal resistance of suspended Si and SiGe nanowires, MoS, ribbons [56,125,126],
and the interfacial thermal resistance between few-layer MoS, and Pt electrodes [96].

The primary difficulty in this technique is to generate sufficient temperature gradients
from the electron beam spot to the two membranes, in particular in thin samples where
the absorbed electron energy is relatively low. The low temperature rise at the sensors
leads to a weak signal with low signal-to-noise ratio that is difficult to detect. Furthermore,
this technique requires high-quality samples with flat and clean surface since the electron
beam is strongly affected by defects, rough edges, and polymer residues that result in
an increased error in the acquired thermal resistance signal. Optimization methods have
been discussed related to the use of better electronics and data acquisition system with
more sensitive, stable and high-precision signal processors and amplifiers [124]. Finally,
Monte Carlo simulations have suggested that the enhancement of the acquisition signal
can be achieved by modifying the acceleration voltage and spot size of the incident electron
beam [116].

3.1.3. Conventional Three-Omega Method

The conventional three-omega (3w) method is based on the measurement of the
third harmonic voltage of a thin metal line deposited on the material to be measured.
The metal line serves both as the heater and the thermometer. This technique is an electro-
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thermal method widely used to determine the thermal conductivity of solids [127], lig-
uids [128,129], and gases [130]. The experiment consists of applying an alternating current,
Lapp(t) = Ipcos(wt) (where I is the current amplitude, w is the angular frequency, i.e., w = 27tf
and f is the modulation frequency), to metal line (wire) deposited onto the sample surface.
Due to the Joule heating, the temperature across the metallic strip (or 3w -heater) oscillates
with a frequency 2w given by:

2u3w ZUSw rms
ATy, = = :
2w ﬁUO ,Buw, rms

where U is the measured voltage of the wire, U3, is the three-omega voltage, i.e., the third
harmonic component of the oscillating voltage and f3 is the temperature coefficient of the
electrical resistance of the strip with R(T) = Ry (1 + BAT). Since the Us,, is at least three
orders of magnitude smaller than the first harmonic (Uy,,), a lock-in technique is required.
The thermal fluctuation can therefore be obtained from the 3w component in terms of root
mean square quantities (rms). It is important to note that the noise of the whole 1w signal
is in the same order as the 3w signal itself. Then, it is advisable to not measure Us,, directly
but rather with a passive circuit. Once the relationship between the AT and U3, is known,
the thermal conductivity can be obtained by solving the transient heat equation for a finite
width line heater, deposited onto a semi-infinite substrate. The temperature rise is given by:

p e sin(xb))2 dx
ATw:——/) 2
2 0 ( xb /X2 +ig? @

where P is the applied power, b and [ are the half-width and the length of the heater,
respectively, ¢ = 1/A = /2w /w is the inverse of the thermal penetration depth (A), « is the
thermal diffusivity, and i is the imaginary number. Equation (2) does not have an analytical
solution, however, Cahill [127] showed that for A >> b the heater can be approximated as
line source. The upper limit of the integral can be replaced by 1/b and the sinusoidal term
sin(xb)/(xb) — 1 in the limit of b — 0 and analytical solution is given by:

P k P .

where v is constant. Finally, the k can be extracted from the slope of the real part of ATy,

vs. In(2w): »
I~ P (d(AThw)
2rl \ dIn(2w)

This approximation is known as the slope method. For a film on a substrate, the esti-
mation of k is carried out using the differential method [131,132]. To apply this method,
the film has to have a k smaller than those of the substrate one and the heater width has to
be larger than the film thickness. Under these conditions, it is possible to model the film as
a frequency independent thermal resistance assuming that the heat flows cross-plane from
heater to the substrate. The cross-plane thermal conductivity (k) of a film on a substrate is
given by:

@

4)

Pd 1

% b AT, — AT ©)

where ATy, and AT; are the temperature rise of the film-substrate and substrate systems,
respectively. From Equation (5) is evident that for each film-on-substrate measurement,
it is necessary to create and measure at least two samples, i.e., one sample containing the
film of interest and another with the substrate alone for calibration. To avoid any impact of
the interface thermal resistance, it is advisable to deposit a small layer on the substrate to
be used as reference (Figure 7c). The second sample is used to account for any impact of
the interface thermal resistance in the measured temperature rise.
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This approach is mainly sensitive to k; . However, if the heater width is smaller than
the sample thickness d (2b < d), the heat flux will spread two-dimensionally with in- plane
and cross-plane components. In this regime the stripe is sensitive to the in-plane (k) and
cross-plane components of thermal conductivity and the temperature rise is given by [133]:

sin(bx) \ .
_mku/ A1B1< bx )d"’ with ©)

ki i B k .
Aj_= (A]kf] ]1 K — tanh((p]-_l))/(l —A].kj /1 W 1tanh(<p] )), j=23,...n 7)

;L 1/2
= (kH,]/kL]x + ZZCU/DCL’]') (8)
¢ = Bjd; ©)

where the subscript j corresponds to the jth layer and n is the last layer (substrate).
For the substrate (j = 1) three approximations can be considered: (i) semi-infinite layer
(A, = —1), finite thickness (d,,), and (ii) adiabatic (A, = —tanh(B,, d,)), or (iii) isothermal
(A; = —1/tanh(By d;;)) boundary conditions.

Another approach to measure the in-plane thermal conductivity is the 3w-Voélklein
method [134,135]. In this method, the 3w-heater is patterned in the center of a suspended
film or membrane. As the thermal sink is located at the edge of the structure, the in-plane
thermal flux is ensured and, consequently, the temperature rise is governed by k| .

Additionally, Lu et al. showed that it is possible to extract the specific heat capacity
and the thermal conductivity of filament- (rod-) like sample using the self-heating 3w-
method [136]. In this approach the sample is connected to four metals pads similar to
a standard four-probe resistance measurement. The two outer connectors are used to
pass an electrical current and the two inner pads measure the voltage. Three important
modifications are added to this approach: (i) the sample in between the two voltage probes
has to be suspended to allow temperature fluctuations; (ii) all the pads have to be highly
thermal conductive to be used as heat sink of the sample to the substrate; and (iii) the
measurement has to be carried out in vacuum and shielded at the same temperature than
the substrate to minimize the radial heat loss through gas convection (or air conduction)
and thermal radiation, respectively. In such configuration, the authors solved the one-
dimensional heat equation of wire heated by an AC current and connected to an infinity
heat sink from the voltage pads. For low frequency limit (<1 kHz), they found that the
thermal conductivity can be described in terms of the 3w-voltage as follows:

4I3RB I
u3w, rms = 7_[4k‘B S (10)

where S is the cross section of the sample, Ij is the current amplitude, R the electrical
resistance, 3 is the temperature coefficient of the filament and [ the length of the sample
measured from the voltage (inner) pads, while for high frequency they found that the
3w-voltage is sensitive to the volumetric specific heat (Cy) as follows:

~ IoRB

u3w, rms — m (11)

Using this approach Lu et al. measured the thermal properties of platinum wires
and multiwalled carbon nanotubes. Later several researchers used the same approach
to measure the thermal properties of Si nanowires, multi- and single-walled carbon nan-
otubes [137,138], and nanoporous Si films [121] among others.

In general, the 3w-heaters are patterned by photolithography using titanium, gold,
platinum, or aluminum for the metallic layer. Depending on the electrical conductivity
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of the sample, an additional oxide layer deposition is required to ensure the electrical
insulation of the heater. The deposited metallic strip is composed of four pads connected
by pins to the narrow heating wire. The width of the heating line is defined as 2b and the
length as [, the latter being determined by the distance between the inner pads. The outer
two pads are used to apply the AC electrical current that generates the Joule heating (I5yp).
The inner two pads are used to measure the voltage (Up3.,), which contains the third
harmonic component (see Figure 7c).

For bulk systems, the determination of k using the 3w-method is straightforward.
The main limitation comes from the fabrication of the 3w-heaters and the growth of an
insulation layer for electrically conductive substrates. For the case of thin films, the method
is most sensitive if the k of the film is much smaller than the substrate. Borca-Tasciuc
et al. [133] showed that the error in the estimation of the thermal conductivity of the film
scales as (kfi / ks, pstrate) >~ For films with thermal conductivities of the order of or larger than
the substrate, the effect of the two-dimensional heat spread must be taken into account,
i.e., the temperature rise has to be estimated using Equation (6). Other limitations of this
technique include the impact of the surface roughness, i.e., a rough surface may lead to the
breakage of the thin deposited wire deposited on to it.

3.1.4. Scanning Thermal Microscopy

Scanning thermal microscopy (SThM) is an atomic force microscopy (AFM)-based
technique that has been extensively used for quantitative nanothermal measurements,
including temperature [139-143] and thermal conductance [144-148] measurements. De-
pending on the material under investigation and the required material property that needs
to be measured different tips and modes of operations have been implemented. For thermal
measurements, a typical SThM setup consists of a sharp tip acting as a heater /temperature
sensor, a cantilever with a feedback system (e.g., an electromechanical system) to control
the tip-sample interaction and several electronic components.

For temperature measurements the SThM setup is used in a passive mode of operation,
where the tip acts as a thermometer while an external heat source, e.g., electrical contacts
or laser, provides Joule heating to the investigated structure. Passive SThM requires low
power bias applied to the tip sensing element to avoid self-heating. In the case of resistive
thermometers, the temperature measurements rely on the temperature dependence of the
electrical resistance of the tip, which is given by R, (T) = Ro (1 + B(T — Ty)), where Ry is
the electrical resistance of the probe at a reference temperature T and S is the temperature
coefficient of the electrical resistance. In the case of metallic contacts, the local temperature
at the sample surface can be obtained also by measuring the thermoelectric voltage at the
point contact [140]. Nevertheless, the main challenge in temperature measurements is to
accurately relate the sensor signal to the temperature of the surface. This is a difficult task
due to the fact that non-equilibrium processes take place at nanoscale contacts and the tem-
perature distribution across the tip-sample interface appears discontinuous. In particular,
the heat flux-related signal acquired from the temperature difference between tip-sample,
is also influenced by an unknown thermal contact resistance [149], which increases as the
tip-sample contact size decreases. In addition, topography related artifacts due to modu-
lation of the effective tip-sample contact area result in additional errors in the measured
temperature. Consequently, temperature measurements with nanoscale resolution are
not straightforward.

To overcome these issues different methods have been developed, such as the null-
point method [150] and the dual-sensing technique [139]. The former is based on creating
a thermal equilibrium between tip and sample surface to eliminate the heat flux signals
at the thermal contact point and minimize the influence of tip-sample contact resistance
in the temperature measurements. Similarly, in the dual-sensing technique the authors
demonstrated a way to separate variations of tip-sample thermal contact resistance from
sample temperature variations, eliminating in parallel topography related artifacts. Figure
7d show an illustration of this technique applied to a metal interconnect, where a sinusoidal
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voltage ~Vcos(wt) was used to modulate the sample temperature. Then, the sample
temperature field was extracted by simultaneously probing a time-dependent and a time-
averaged heat flux signal between the hot tip (red colored) and the sample.

For thermal conductance measurements, the resistive element of the probe is used
additionally as a heater to induce local heating at the tip-sample junction. The measured
heat flux signal depends on both the tip-sample temperature difference and tip-sample
thermal resistance (Rys) and is equal to Q = (T; — Ts)/Rys, where T is the temperature of the
tip, usually controlled by applying a current or voltage to the tip, and T is the temperature
of the sample. Then, the R;s can be extracted from the thermal resistance change upon tip-

-1
sample contact, as R;s = (Rt_ht) — Rt_h%out)> . The measured Ry; depends on the sample

thermal conductivity and tip-sample interfacial thermal resistance and is usually described
by a series of resistors, as Ris = Ry + R¢ + Rgyr, where R; is the thermal resistance of the
tip, R. is the thermal contact resistance between tip and sample and Rgy is the thermal
spreading resistance in the sample. The contributions of such resistive components on the
measured thermal resistance are usually determined taking into account the calibration of
the tip and analytical or numerical models of the heat spreading according to the geometry
of the tip-sample system. More details regarding the quantification of these components
can be found elsewhere [151,152].

The main difficulty in thermal conductance measurements using the SThM tech-
nique is to minimize variations of the effective tip-sample contact area in order to avoid
topography-related resistance modulations. Thus, a careful comparison between topog-
raphy and thermal resistance data is required. This difficulty also complicates the direct
comparison of thermal transport data between different SThM setups and thermal probes.
In addition, when thermal measurements performed in ambient conditions, parasitic heat
effects resulting from the heat transfer through the liquid meniscus and air must be taken
into account [134]. Measurements in high vacuum conditions, accurate estimations of the
tip-sample contact area, and modelling of the tip-sample system have helped to overcome
the above difficulties [151].

Therefore, in contrast to the previously described techniques, SThM does not provide
direct access to the thermal conductivity of the investigated sample. The determination
of the thermal conductivity requires additional modelling, strong assumptions, and sev-
eral calibration steps on reference samples [153,154]. Despite these difficulties, recent
studies have successfully used the SThM technique to quantitatively determine the ther-
mal conductivity of 2D materials, such as graphene [143,155,156]. However, SThM is
considered to be ideal to investigate heat transport at nanoscale contacts and interfaces
with sub-nW and sub-10 nm heat flux and thermal spatial resolution, respectively. The
SThM technique has been employed recently to investigate heat transfer in semiconductor
nanostructures, e.g., nanowires [115,157-159], supported thin films [145,160,161] and 2D
materials [142-144,146,148,154-156,162,163]. For instance, recently El Sachat et al. [144]
performed high-vacuum SThM measurements to experimentally probe the transition from
ballistic to diffusive thermal transport in suspended single-layer graphene. The authors
also revealed that graphene’s surface quality, e.g., defect concentration and surface contam-
ination, as well as morphology, have crucial influence on in-plane thermal conductance
measurements, and need to be included to extract the intrinsic transport properties of
graphene. SThM also has been successfully employed to reveal hot spots in graphene
electronic devices and self-heating 2D heterojunctions by directly mapping the spatial
distribution of the generated steady-state temperature rise [142,143,163]. Furthermore,
novel SThM configurations have been developed the last years to simultaneously study
thermal and thermoelectric transport on a nanometer scale [164-166], revealing important
effects such as local Joule heating, Seebeck and Peltier effects in graphene and nanowire
heterostructures. Such measurements gave further insight into phonon transport at the
nanoscale and showed the great advantage of using thermal characterization tools with
thermal and topographic mapping capabilities.
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Figure 7. Electrical thermal characterization techniques. Schematic representations and thermal resistance circuits of
(a) the electro-thermal bridge and (b) the electron beam self-heating technique. (a) Reproduced with permission from [107].
Copyright The American Society of Mechanical Engineers, 2003. (b) Reproduced with permission from [124]. Copyright
Elsevier B.V., 2018. (c) Schematic of a three-omega heater deposited on a sample of interest with thickness d and small
reference of thickness & (left image) and a reference sample with thickness 6 (right image). (d) Schematic illustration of
the dual-sensing technique applied in a self-heated gold interconnect. Reproduced with permission from [159]. Copyright

Nature Springer, 2016.

3.2. Optical Techniques
3.2.1. Opto-Thermal Raman Spectroscopy and Thermometry

Raman spectroscopy is an optical technique dedicated to the study of molecular vi-
brational modes and phonons in solids. The technique analyzes the inelastically scattered
light of a monochromatic laser beam that interacts with a material. The oscillating electro-
magnetic field of the incident light induces an oscillating electric dipole moment, which
acts as a radiation source causing the Raman scattering. Each material or solid crystal has
its own set of characteristic molecular vibrations and phonons that depend on the nature
of the chemical bonds and the crystal structure. This technique is commonly used as a
tool for elementary and structural characterization of the materials. In addition, small
changes in the crystal structure induced by: embedded strain, thermal expansion, sample
compositional and structural disorder, impurities and contamination of the sample, as well
as the presence of pseudo-phases and deformation of the material can be also detected
using this technique [167-170].

Another particular application of Raman spectroscopy is the determination of the
local temperature of the material under analysis and, consequently, its thermal properties.
In a crystal structure, an increase in temperature displaces atoms from their equilibrium
positions which, in turn, results in an overall volumetric expansion of the lattice. The ex-
pansion of the lattice induces a change in the interatomic forces and, as a result, the Raman
modes shift to lower wave numbers as the temperature increases. Similarly, the linewidth
of the Raman spectrum is broadened as the temperature increases as consequence of the
temperature-dependence of the phonon lifetime. Moreover, the Stokes to anti-Stoke ratio is
also modified due to the temperature dependence of the phonon population. Thus, once
the temperature dependence of the Raman spectra is known, any of these parameters can
be used as a local thermometer [171]. For example, if the redshift of the Raman mode
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Raman Intensity [a.u.]

is used as a thermometer, the local temperature of a focused spot can be easily obtained
by fitting the spectral position of the mode, given the previous calibration of its spectral
position with temperature, which, in general, exhibits a linear dependence.

When a given material absorbs wavelength of laser light, the incident power will
induce local heating and, consequently, a red-shift of the observed Raman signal (see
Figure 8a,c). The temperature rise in the illuminated region will depend on the thermal
properties of the material. Alternatively, if a material is heated by an external source,
e.g., by passing an electrical current or illuminating with a second laser, the tempera-
ture gradients produced by this source can be also measured using the redshift of its
Raman signal.

o
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Figure 8. Optical thermal characterization techniques. (a) Schematic representation of Raman thermometry (left) and

thermoreflectance (right) technique. Typical recorded signal using: (b) Time domain thermoreflectance (TDTR), (¢) Raman

thermometry, and (d) frequency domain thermoreflectance (FDTR).

Once the thermal map or the local temperature rise is measured, the thermal properties
of the sample can be extracted with a suitable heat diffusion model. For bulk materials the
three-dimensional heat equation has to be solved considering a Gaussian power source [172,
173]. For thin films on a substrate the problem is analytically more complicated [174-176].
While for systems with large optical absorption an analytical expression of the thermal
conductivity is given by [177]:

()R E)

where dw/dT is the slope of the peak position (w) vs. temperature, o the spot size, and dwdP,
is the slope of the peak position vs. the absorbed power.

The main limitation of this technique is the requirement that the material have Raman
active modes, which is not the case for metals or centrosymmetric materials. For materials
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with weak active Raman modes this method can be very time consuming, especially for
measurements at low power. Other important limitations of this technique is the weak
temperature dependence of the Raman modes. In general, a linear temperature-dependence
of the peak position is observed as w(T) ~ wqy + xTAT, with a slope xt of the order of
~—10"2 ecm~! K~!. Considering that a state-of-the-art Raman spectrometer has a frequency
resolution ~0.5 cm ™! and the peak fitting can enhance it to ~0.25 cm ! [129], a detectable
temperature rise has to be AT > 20 K. This high temperature rise has a direct impact in
materials with large temperature dependence of its thermal conductivity, k(T). For example,
the temperature-dependence of the thermal conductivity of bulk silicon varies as [178]:

e T 16
K(T) = 15o[w1< m }<300[1<]) (13)
On the other hand, the slope of the LO mode frequency against temperature in Si
varies as x7 ~ 2 x 1072 em™! K=1 [20]. Then, a AT = 20 K above room temperature, i.e.,
T = 320 K, will shift the peak position by only 0.4 cm~!, i.e., just above the detection
limit, but it will reduce k by 10% due to its temperature-dependence. Another important
limitation of this technique is the need of measurement of the absolute absorbed power.
The laser absorptivity for supported films or any nanostructure is very difficult to be
determined and it could induce a large error on the thermal conductivity determination.
The first studies of the thermal properties of single-layer graphene were conducted
by Balandin et al. [179,180] using Raman thermometry. Since then, Raman thermometry
has been used in a wide range of 2D materials [22,73,98,181-185], carbon nanotubes [186],
nanowires [187-189], nanomembranes [190-193], and phononic crystals [24,33], among
others. In general, the 2D material is transferred over a substrate, which was previously
patterned with micro-holes and covered with metal layer to ensure a good thermal contact.
The 2D material is suspended and the Raman laser is positioned at the center of the hole.
Then, a Raman spectrum as a function of incident power is measured. The temperature
rise is obtained from the previously calibrated Raman frequency shift and the thermal
conductivity is obtained from numerical analysis. A deep and extended description
of Raman-based technique for measuring thermal properties in graphene and related
materials can be found in a recent review article by Malekpour and Balandin [194].

3.2.2. Thermoreflectance-Based Techniques

The thermoreflectance methods are based on measuring changes in reflectivity (AR)
induced by a change in the local temperature of a tested sample (AT) [195]. The basic
concept consists of modulating the surface temperature of a sample by a pulsed laser
(pump) and recording the changes of the temperature by monitoring the resulting changes
in reflectivity with a second laser (probe). In general, the samples are covered by a metal
layer (see Figure 8a) which acts as transducer with a well-known temperature dependence
of its reflectivity for a given wavelength. In metals the temperature dependence of the
reflectivity for a given wavelength can be explained in terms of: (i) free-electron-like
behavior for infrared excitation (>1 pm), (ii) interband transitions for visible light (<1 pm),
and (iii) collective oscillations, possibly in both regions [196].

Depending on the configuration, the change of reflectivity can be measured with
respect to time (time-domain thermoreflectance, TDTR) or with respect to the modulated
frequency (frequency-domain thermoereflectance, FDTR). TDTR measures the response
of reflectance as a function of time delay between the periodic heat flux and the surface
temperature (see Figure 8b) [197,198]. FDTR measures the phase lag between a periodic heat
flux and the surface temperature over a range of heating frequencies (see Figure 8d) [199].

The first report on the use of the thermoreflectance technique to measure thermal
diffusivity dates back to 1986. Paddock and Eesley [197] described thermal diffusivity
measurements of metals using picosecond transient thermoreflectance. In this method,
two pulsed lasers are focused on a metal surface as shown in Figure 9a. A high-power
(pump) laser induces an ultrafast heating of the surface, thus modulating its reflectivity.
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A low-power (probe) laser is focused on the heated spot and the reflected light is recorded
by a photodetector. The measured signal is sent to a lock-in amplifier referenced to the
frequency of the pump. The voltage output from the lock-in will be proportional to AR.
By changing the delay line, it is possible to obtain AR as a function of optical probe-pulse
time delay for a fixed frequency modulation (see Figure 8b).

Time-domain thermoreflectance Frequency-domain thermoreflectance
(TDTR) (FDTR)
Probe Delay |
+— Pump Reference
> - detector
:;:::;'\
=
Sample / Sample “== CW Probe
| | s ——m E [ % -
| ' l}a ‘._,_./Jk {02 Y
) Detector ) Sample
Pump detector

(a)

Figure 9. Schematic representation of thermoreflectance-based methods. (a) Time-domain and
(b) frequency-domain thermoreflectance techniques.

Similarly, FDTR measures the reflectance response of the transducer layer as function
of excitation frequency. The pump heats the surface sample periodically at a frequency
f, and the probe beam is used to measure the change in reflectivity. A lock-in amplifier
records the amplitude and the phase delay response of the reflected beam using the pump
light as reference. The phase delay between the pump heating and the change in reflectivity,
as measured by the probe beam, is typically used to determine the thermal diffusivity (see
Figure 8d) since the amplitude at each frequency is affected by the frequency response of
the detector and the cables [199]. Figure 9b shows a schematic representation of the FDTR
using a CW laser as probe signal. Other configurations, including the use of a two pulsed
lasers has been also reported [199].

In both TDTR and FDTR, the estimation of the thermal properties usually relies on a
multilayer model developed by Cahill [154]. He solved a three-dimensional heat equation
taking into account that the response of a new pulse should account for the previous
pulse with a non-negligible value (“pulse accumulation” effect). Later, Schmidt et al. [199]
extended the model including the impact of the thermal anisotropy and adapted it to
FDTR. Using the latter model the thermal properties are determined from the best fit of the
theoretical model to the experimental data by using the thermal unknown (e.g., thermal
conductivity) as a free parameter. An extended description and discussion of the model
can be found in ref. (Cahill 2004 [154], Schmidt 2009 [199] and Jiang 2018 [198]) Numerical
code can be found in the webpage of Cahill’s group (https://cahill. matse.illinois.edu/
software-and-data/).

The main limitation of the thermoreflectance technique is the need for very smooth
surfaces. Otherwise the diffuse scattering of the reflected light precludes the measurement
of the thermoreflectance signal. Additionally, an interfacial thermal resistance between
sample-transducer, and in the case of layered structures between different layers, can
impact the measured thermal properties of the investigated material. Schmidt et al. [122]
and Cahill et al. [154] have developed an analytical heat transfer model where such interfa-
cial thermal resistances can be estimated and included in the data analysis. In particular,
the interface thermal conductance is treated by taking the limit as the heat capacity of a
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layer approaches zero and is defined as G = k| /d, where k, is the cross-plane thermal
conductivity and d is the layer thickness.

For graphene, it is well known that the k of a free-standing single-layer shows very
high values in the range of 600-5000 W m~! K1 [76,179,200-202], but the supported
and encased graphene exhibits a large reduction of k in the range of 50-1200 W m~!
K~1[201] and <160 W m~! K~ [88], respectively. For supported and encased 2D-materials,
the heat transfer is inhibited by phonon interactions at the interfaces. Another important
limitation is its applicability to the analysis of in-plane properties of 2D materials, as the
method cannot be effectively applied to measure in-plane thermal conduction of films with
thicknesses below 20 nm [198].

3.2.3. Thermal Transient Grating (TTG) Method

The thermal-transient gradient method is also an optical technique primarily for
measuring the thermal diffusivity [203,204] and acoustic properties [205,206] of materials.
In this method an optical interference pattern is created by crossing two laser pulses of
wavelength A at an angle §. The subsequent optical absorption will cause a spatially
sinusoidal thermal grating with a period L = A/ (2 sin(6/2)). As a consequence, an optical
phase and amplitude grating will be induced through the temperature dependence of
optical properties of the material. A second laser (probe) is used to monitor the magnitude
of this grating. If the probe diameter extends over many grating periods, the beam is
diffracted by this pattern and the thermal diffusivity can be determined from the rate
of the signal decay. A schematic representation of the setup is shown in Figure 10a.
As the heat diffuses from the peak to the valley of the grating, the diffraction efficiency of
the optical grating decreases and the signal intensity decays exponentially with time as
T(t)~exp(—q*«t), where q = 27t/L is the grating wave vector and « is the thermal diffusivity
(see Figure 10b).

4\\Sample i Probe 0.9
N - | W Exponential fit
T T N Detector1 S]] )
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3 5_’)’ 0.3
Detector 2 \
0.0
0.0 ' ' '
Oscilloscope (a) Time (ns) (b)

Figure 10. The thermal transient grating technique (TTG). (a) Schematic representation of TTG and
(b) artistic representation of a typical signal.

One of the main advantage of the TTG method is the absence of metal layer acting as
transducer. This not only simplifies sample preparation, but also reduces complexity in
the analysis of thermal properties due to the absence of thermal contact resistances from
the transducer layer. In addition, the thermal length scale can also easily be varied by
changing the grating period, which is useful to ensure diffusive transport and/or observe
non-diffusive phonon transport [207]. Finally, as the thermal grating is defined in the
plane of the sample, in-plane thermal transport is always assured. The main drawback
of the technique is the complexity of the setup itself that requires a well-trained operator.
In addition, the signal of the probe beam is very weak due low efficiency of the diffraction.
This limitation can be overcome by the heterodyne detection [205]. Moreover, the use of
samples with flat surfaces becomes mandatory to avoid large diffuse scattering of the light.
The typical experimental uncertainty calculated from the standard deviation from several
measurements is 10-15% [208].
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4. Summary and Perspectives

We have presented an overview of recent strategies for engineering the heat transport
by phonons that have been applied to possible technologically-relevant materials, such as
semiconductor nanostructures, like nanowires, superlattices, phononic crystals, and 2D
materials with extraordinary electronic, optical, mechanical, and thermal properties. We re-
viewed and compared thermal characterization tools used to determine thermal properties
of low-dimensional structures, pointing out their main advantages and limitations (see
Table 1). Progress in material growth and fabrication has enabled the emergence of a
vibrant research area of heat transport at the nanoscale, which presents a myriad of exciting
phenomena such as access to thermal transport regimes beyond diffusive transport, i.e.,
ballistic and hydrodynamic [209,210], and to fundamental aspects of the heat transport
that open new technical prospects such as ballistic cooling [211].

Although significant progress has been accomplished in thermal transport engineer-
ing and thermal characterization great challenges still remain. Heat dissipation in the
nanoscale is still poorly understood owing to the described technical limitations of current
characterization techniques and the high sensitivity of phonon states to the technological
process involved in the fabrication of samples and devices, as well as during their integra-
tion in circuits. The majority of today’s electronic components, e.g., nanoscale transistors,
consist of materials with multiple interfaces, nanoscale contacts and boundaries, thus key
questions have to be addressed related to the interfacial thermal energy transfer and the
heat transport at nanometer-sized contacts. In addition to the emerging need to understand
heat dissipation in materials and devices, progress in nanoscale thermal characterization
is necessary to investigate non-equilibrium thermal processes highly-localized in space.
In these processes the temperature depends on the time scale of the measurement and the
sensitivity of the sensor (thermometer), i.e., the study of dynamic effects in systems out
of thermal equilibrium requires high temporal resolution (~ps). Although certain optical
experimental techniques, such as ultra-fast laser-based thermo-reflectance techniques, ful-
fil this requirement, the in-plane thermal spatial resolution is limited by the diffraction
limit (sub-pum) while the necessary use of metallic coating (transducer) brings up new
issues about the phonon transmission across interfaces. Raman thermometry addresses
the later since it can directly measure the temperature difference across an interface, how-
ever, the temperature resolution is material-dependent and limited by the spectrometer
resolution. On the other hand, SThM provides high temperature and spatial resolution,
which makes it ideal to study heat energy transfer between sub-micrometer layer interfaces.
However, its low temporal resolution complicates the investigation of non-equilibrium
effects. The capability to study thermal dynamic effects with submicrometer thermal spatial
resolution will pave the way for the better understanding of the basic principles governing
heat propagation, scattering processes on nanoscopic length scales and thermal transport
across atomic-layer interfaces.
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transient grating

Table 1. Summary of high-resolution thermal characterization methods.
Resolution
Method Material Geometry Measurement Temperature Spatial Temporal Imaging Limitations
Suspended Suspended 2D reD;frf;i}:)l;S?:f}lil:nce
penc materials, thin films, kH ~50 mK Mean value - No preparation,
thermal bridge of extrinsic thermal
NWs, etc. .
contact resistances
Electron beam Suspended 2D ~20 nm (heating Limited to thick
eif_}(: t.ea materials, thin films, kH , Rc, TBC ~0.4 mK volume - No samples, difficult
seli-heating NWs, etc. dependent) sample preparation
For electrical
3w-method Supported e?nd ky ko Mean value Mean value - No con.duc_t e f‘h.“s’ .
suspended films electrical insulation is
needed
Ssigp:;ffia;g No direct access to k,
SThM Spenc Ris, T <5 mK <10 nm 10-100 ps Yes hard modelling
materials, films, NWs, A ded
bulk etc. 1 neede
Supported and Assumptions to
Raman suspended 2D B B } determine k, complex
spectroscopy materials, films, NWs, ki, ki, TBC 2K A/2nm Yes sample preparation for
bulk, etc. 2D materials
Two-laser men?‘tiZ%?S ased Limited to suspended
Raman K ~2K ~A/2nm - Yes P
structures, 2D structures
Themometry -
materials
Frequency Deposition of a thin
domain ther- Supported 2].3 kH' k., TBC Sub-100 mK ~A/2nm Sub-ps Yes metal film (transducer)
materials and films . .
moreflectance is required
Time domain Supported 2D Deposition of a thin
thermore- pp " kH' k., TBC Sub-100 mK ~A/2nm <1lns Yes metal film (transducer)
materials and films . N
flectance is required
Limited to the efficiency
Thermal Supported and aH Sub-100 mK ~50 pm 10's ps No of the diffraction

suspended fims pattern
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