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Abstract: Ultra-thin and continuous metallic silver films are attracting growing interest due to the
applications in flexible transparent conducting electrodes. The surface morphology and structure
of silver film are very important for its electrical resistivity and optical loss. Therefore, roughness
control is essential for the production of ultra-thin metallic electrode film. We have investigated the
effect of aluminum doping on the improvement of surface morphology of ultra-thin silver films using
molecular dynamics simulations. Al-doped silver films showed smaller surface roughness than pure
silver films at various substrate temperatures. When the temperature of the substrate was 600 K,
the roughness of Al-doped silver film first decreased, and then increased with the increase of the
incident velocity of silver atoms. Silver atoms were more likely to agglomerate on the surface of the
substrate after adding aluminum atoms, as aluminum dopants promoted the immobilization of silver
atoms on SiO2 substrate due to the anchoring effect. The smoother surface could be attributable to
the reduced mean free path of silver due to the cage effect by the aluminum dopant.

Keywords: molecular dynamics; surface morphology; ultra-thin silver film

1. Introduction

Ultra-thin metal films are wildly applicated in metamaterials, plasmonic devices,
nanophotonic, and light-emitting diodes [1,2]. Recently, continuous metallic films became
a good candidate for the replacement of indium tin oxide (ITO) for flexible optoelectronic
devices [3–5]. Silver is considered to be the best material for transparent conducting
electrodes among metals, due to its low electrical resistance and low refractive index,
as well as its high permeability from visible to near-infrared optical wavelengths [6,7].
The performance of deposition film is closely related to its surface morphology, for instance,
it has been proven that surface roughness at the atomic scale greatly affects the electrical
conductivity of copper films, due to the destruction of the isotropic Fermi surface [8].
Therefore, as an essential material of transparent electrodes, an ultra-thin and smooth
surface is urgently needed. Although large area metal films can be easily prepared by
electron beam and magnetron sputtering, rough surface morphology is often obtained
during the deposition process, as a result of thin silver films grown in the Vomer–Webber
mode on polycrystalline substrates [9,10]. To address this issue, much experimental and
theoretical research on the fabrication of smooth ultra-thin silver films has been carried
out. Nabiyouni et al. grew silver atoms on gold substrates by electrodeposition, and the
results show that the grain size and roughness increase as the substrate rotation speed
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increases [11]. Ko et al. prepared an ultra-smooth and ultra-thin silver film on Corning
glass by using an AlN seeding layer. The results indicate that the AlN seeding reduces the
percolation threshold of silver films and formed a smooth surface [12]. Jamnig et al. studied
the effect of nitrogen gas surfactant on the growth evolution of nanoscale silver films on
silicon dioxide substrates, and the results show that early nitrogen deployment leads to 2D
morphology without affecting the resistivity of silver film [13]. Kawamura et al. studied
the suppression effect of titanium atoms on the agglomeration of thin silver film, and they
found that adding titanium atoms can improve the adhesion of silver film to substrate [14].
Pliatsikas et al. studied the surface morphological evolution of magnetron-sputtered thin
silver films deposited on silicon dioxide substrates, and found that silver layers grow
flatter in the oxygen-containing gas atmosphere due to incomplete island coalescence.
However, they also found that oxygen causes the increase of electrical resistivity of the
silver layers [15]. Wang et al. provided an effective method for the fabrication of transparent
silver electrodes and found that minimal oxygen-doping significantly improves the optical
and electrical performances of silver films [16]. Moreover, Gu et al. investigated the
microstructure characterizations and found that Al-doped silver film was smoother than
pure silver film [17]. Zhang et al. developed Al-doped silver films on fused silica substrate
and investigated the electrical and optical properties, and the results show that organic
photovoltaic devices using Al-doped silver films as transparent cathodes produce better
efficiency than those made with ITO electrodes [18]. The team also showed that such
ultra-thin transparent conductors can benefit the light output in organic light-emitting
diode (OLED) devices [19]. Ji et al. demonstrated a flexible transparent electrode consisting
of ultra-thin and ultra-smooth copper-doped silver film [20]. High-efficiency transparent
organic photovoltaics have recently been realized by using the doped silver film [21]. These
results reveal that doping in the deposition process can greatly improve the performance
of ultra-thin silver film electrodes. A recent review of the vast amount of experimental
investigations on ultra-thin silver films has been presented by Zhang et al. [22]. However,
despite many experimental results and characterizations, microscopic studies on how
aluminum doping affects the initial deposition processes of silver films have been lacking.

In this paper, molecular dynamics (MD) simulations have been employed to inves-
tigate the aluminum doping effect on the deposition and growth process of silver films
on amorphous SiO2 substrate. Different deposition parameters, including the substrate
temperature and incident velocities, were considered. Comparative analysis and a dis-
cussion of surface morphology and the initial formation between the pure silver film and
the Al-doped silver film were carried out. This paper is expected to provide a theoretical
reference for the preparation of high-quality ultra-thin silver film. For example, the kinetic
energy of the incident atom is usually achieved by increasing the sputtering current power,
whereas the power adjustment affects the concentration of the incident atom. Therefore,
a separate discussion of the effects of concentration and incident kinetic energy in atomistic
insights would be helpful for further investigation.

2. Model and Methods

Molecular dynamics simulation is a well-established approach that is widely used for
computational sub-micron scale investigations [23,24]. The simulations of the silver film
deposition process were carried out using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) code [25,26]. The simulation box was 114.04 Å (x-axis) ×
85.53 Å (y-axis) × 120.00 Å (z-axis) as a super unit cell, which comprised the substrate
region and the deposited film region, as shown in Figure 1. Periodic boundary conditions
were applied along the X and Y directions of the simulation box. The bottom and top
boundaries in the Z direction were non-periodic. The coordinates of the box boundaries
were fixed.
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Figure 1. Schematic of simulation model of the deposition process. 

The amorphous SiO2 substrate was modeled as a tetrahedra-like structure and con-
sisted of 3420 silicon atoms and 6912 oxygen atoms, which was defined as three blocks: 
the fixed block, the thermostat block, and the free block. The fixed block was defined from 
the bottom to 5 Å to prevent the substrate from slipping during the deposition along the 
Z direction, in which the atoms were fixed and could not move out through the bottom 
boundary. The thickness of the fixed block was proven to be sufficient in deposition sim-
ulations by a previous report [27]. The thermostat block was defined from 5 Å to 11 Å to 
absorb the kinetic energy of the incident atoms during the deposition process. The free 
block was defined from 11 Å to 18 Å to simulate the interactions and motions. Atoms 
aggregated in this block after the impacts of the deposited atoms. The atoms present in 
the thermal control block were free to move, and the initial velocities of them were gov-
erned by the Maxwell–Boltzmann distribution [28]. The temperature of the free block was 
transferred to the thermal control block through heat conduction. A vacuum layer of 
about 90 Å was arranged above the substrate, in which the deposition atoms of silver and 
aluminum were injected from the top of the vacuum space. The equations of the motions 
of the atoms were computed by the Verlet time integration algorithm, and the simulation 
time step was set to 2 fs. Different incident velocities and temperatures that affected the 
deposition of aluminum atoms and silver atoms on the SiO2 were considered. 

The parameters of potential functions and corresponding interactions between atoms 
are very important for the accurate prediction of the dynamics and material properties. 
The parameter set for the Tersoff potential [29,30] had been used to study the structural 
properties of the Si-O system, which is an empirical function composed of two-body terms 
depending on the direct situations. Interactions between the silver and the silver atoms 
were modeled using the embedded-atom method (EAM) potential, which is applicable to 
metallic atom systems due to combining pair interactions with the atomic embedding en-
ergy term depending on the local electron density [31]. The spherically symmetric Len-
nard–Jones (LJ) potential was used to represent the dynamic interactions between the at-
oms. The Lennard–Jones potential ELJ is defined below: 𝐸௅௃൫𝛾௜௝൯ = 4ɛ ൥ቆ σ𝛾௜௝ቇଵଶ − ቆ σ𝛾௜௝ቇ଺൩ (1)
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Lennard–Jones potential energy. When Lennard–Jones potential energy is used for mixed 

Figure 1. Schematic of simulation model of the deposition process.

The amorphous SiO2 substrate was modeled as a tetrahedra-like structure and con-
sisted of 3420 silicon atoms and 6912 oxygen atoms, which was defined as three blocks:
the fixed block, the thermostat block, and the free block. The fixed block was defined from
the bottom to 5 Å to prevent the substrate from slipping during the deposition along the
Z direction, in which the atoms were fixed and could not move out through the bottom
boundary. The thickness of the fixed block was proven to be sufficient in deposition simula-
tions by a previous report [27]. The thermostat block was defined from 5 Å to 11 Å to absorb
the kinetic energy of the incident atoms during the deposition process. The free block was
defined from 11 Å to 18 Å to simulate the interactions and motions. Atoms aggregated
in this block after the impacts of the deposited atoms. The atoms present in the thermal
control block were free to move, and the initial velocities of them were governed by the
Maxwell–Boltzmann distribution [28]. The temperature of the free block was transferred
to the thermal control block through heat conduction. A vacuum layer of about 90 Å was
arranged above the substrate, in which the deposition atoms of silver and aluminum were
injected from the top of the vacuum space. The equations of the motions of the atoms
were computed by the Verlet time integration algorithm, and the simulation time step was
set to 2 fs. Different incident velocities and temperatures that affected the deposition of
aluminum atoms and silver atoms on the SiO2 were considered.

The parameters of potential functions and corresponding interactions between atoms
are very important for the accurate prediction of the dynamics and material properties.
The parameter set for the Tersoff potential [29,30] had been used to study the structural
properties of the Si-O system, which is an empirical function composed of two-body terms
depending on the direct situations. Interactions between the silver and the silver atoms
were modeled using the embedded-atom method (EAM) potential, which is applicable
to metallic atom systems due to combining pair interactions with the atomic embedding
energy term depending on the local electron density [31]. The spherically symmetric
Lennard–Jones (LJ) potential was used to represent the dynamic interactions between the
atoms. The Lennard–Jones potential ELJ is defined below:

ELJ(γij
)
= 4ε

( σ

γij

)12

−
(
σ

γij

)6
 (1)

In the formula above, γij is the distance between atom i and atom j; ε is the height of
Lennard–Jones potential energy. When Lennard–Jones potential energy is used for mixed
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materials, the two elements (εij, σij) should be using the Lorentz–Berthelot combination
rules [32]. The LJ parameters are listed in Table 1.

Table 1. LJ parameters and material constants [33–35].

Atom E (eV) σ (Å)

Ag-Ag 0.345 2.644
Al-Al 0.392 2.620
Si-Si 0.0175 3.826
O-O 0.0026 3.166
Al-O 0.032 2.893
Ag-O 0.030 2.905
Al-Si 0.083 3.223
Ag-Si 0.078 3.235

The open visualization tool (OVITO) was used for the visualization of the calculation
results, displaying the deposition process and the reactions to surface morphology [36].
The surface roughness of the deposited films was presented by the root-mean-square (RMS)
Rs, which was computed as follows [37]:

Rs =

√
∑n

i=1(Zi − Zmean)
2

n
(2)

where Zi is the Z coordinate of the topmost atoms in each region, Zmean is the mean height
of the Z coordinate of the topmost atoms in each region, and n is the total number of
regions divided. In this quantitative evaluation, the deposition surface was divided into
55 × 42 regions along the X-Y plane.

3. Results and Discussion
3.1. Effects of Aluminum Composition

The deposition process of pure silver film and Al-doped silver film on SiO2 substrate
are shown in Figure 2. In this process, a total of 22,000 atoms were deposited. The pure silver
film contained 22,000 silver atoms, while the Al-doped silver film contained 20,000 silver
atoms and 2000 aluminum atoms. The temperature of the substrate was maintained at
600 K. The initial incident velocity of the silver and aluminum atoms was 2 Å/ps, and the
incident angle of each deposited atom is perpendicular to the substrate surface.

Four snapshots of different times are presented to describe the deposition process.
Figure 2a–d shows the growth process of pure silver film, while Figure 2e–h shows the
growth of Al-doped silver film. At the initial deposition stage, there were many clusters,
as shown in Figure 2a,e. As the deposition continues, the clusters are connected with
each other. Pure silver deposition forms island-like structures, as shown in Figure 2c.
Compared to pure silver deposition, Al-doped silver deposition forms relatively smooth
surfaces, as shown in Figure 2f. At the final deposition stage, there were still some island-
like structures in the pure silver deposition, as shown in Figure 2d, which presents a
rough and discontinuous surface morphology. The Al-doped silver deposition formed a
smooth and continuous surface morphology, shown in Figure 2h. These results suggest that
adding a small amount of aluminum atoms is helpful for forming a smooth and continuous
silver film.

To further quantify the effects of aluminum composition on Al-doped silver film,
different doping ratios of aluminum in silver films were considered. Figure 3 shows the
RMS of Al-doped silver films on SiO2 substrates, with the aluminum proportion ranging
from 0% to 30% in the deposited atoms. It is obvious that adding aluminum atoms greatly
reduced the roughness of the film surface compared to pure silver film (the aluminum
proportion was 0%). Moreover, the surface morphology of Al-doped silver films gradually
became rough when the proportion of aluminum atoms was above 10%. That is, the best
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doping concentration ratio for Al-doped silver film was 10% at a temperature of 600 K,
while the value of RMS was around 4.65 Å.
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3.2. Effect of Substrate Temperature

The temperature of the substrate is also a key parameter for the deposition. In this
section, the effects of the deposition temperature of the substrate on the surface morphology
of ultra-thin silver film were simulated and discussed. For pure silver deposition cases,
22,000 silver atoms were deposited in each calculation, while 20,000 silver atoms and
2000 aluminum atoms were simultaneously deposited in each calculation of Al-doped
deposition. The temperatures of the substrate were increased from 450 K to 900 K.

The snapshots of the deposited process of pure silver film and Al-doped silver film
on SiO2 substrate are shown in Figure 4, where the atoms are colored by the height of the
z-axis. As shown in Figure 4a–e, the surfaces of the pure silver film were rougher than those
of the Al-doped ones at all temperatures. As the temperature increased, the island-like
structures in silver films became more significant. This is likely due to the increased atomic
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mobility on the surface, which increases the probability of silver atom aggregation and
clustering. Experimental studies have also shown that the effects of growth temperatures
on morphology are affected by the substrate surface [38]. The surfaces of the Al-doped
silver films were smoother and more continuous than the pure silver films at different
temperatures, as shown in Figure 4f–h. Recently, kinetic Monte Carlo (kMC) simulations
of silver depositions on weakly-interacting substrates showed that higher temperatures
promote top-layer nucleation, resulting in an increase in island height-to-radius aspect
ratios [39].
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In order to further quantify the effects of substrate temperatures on the surface mor-
phology, the RMS of silver films were calculated by a statistical atom coordinate. The calcu-
lation results are presented in Figure 5, where the red curve denotes the pure silver film,
and the black curve denotes the Al-doped silver film. The RMS increased as the substrate
temperature increased from 450 K to 900 K. The slope of the red curve is larger than that
of the black curve, which means the Al-doped silver film was more thermally stable than
the pure silver film as the temperature increased. The RMS of the pure silver film reached
11.92 Å when the substrate temperature reached 900 K, while the RMS of the Al-doped
silver film tended to be stable at around 4.85 Å at that temperature. Additive aluminum
atoms benefited the thermal stability of the formed film in the deposition of the silver
atoms. The evolutions of the top-layer critical radius (Rc) and the growth temperature were
affected by a proportionality constant α. In the case of a high α, the Rc increased as the
growth temperature increased, while a small α case showed a decreasing Rc as the growth
temperature increased [39]. Therefore, it is possible that the doping of aluminum affects
the value of this proportionality constant.

3.3. Effects of Initial Incident Velocity of Deposition Atoms

The source power of sputtering or e-beam is also a key parameter for the fabrication
of ultra-thin silver film electrodes, which determines the initial kinetic energy of deposition
atoms. Therefore, the parameter of the incident velocity of silver and aluminum atoms
was introduced into the study of Al-doped silver film deposition. In order to analyze the
influence of aluminum atomic velocity independently, the incident velocity of aluminum
atoms changed from 1 Å/ps to 60 Å/ps, and the incident angle from the z-axis was set to
0 degrees, while the incident velocity of the silver atoms was maintained at 2 Å/ps. In each
calculation, 20,000 silver atoms and 2000 aluminum atoms were deposited. The temperature
of the substrate was set to 600 K in each simulation case. The surface morphologies of the
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Al-doped silver films grown on SiO2 substrate at different incident velocities of aluminum
atoms are shown in Figure 6, where the atoms are colored by the height of the z-axis. The
surface morphology of the Al-doped silver film became smoother as the incident velocity
of the aluminum atoms increased.
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To further quantify the effects of the initial incident velocity of aluminum atoms on
the surface roughness of Al-doped silver film with different incident velocities of silver
atoms, two more cases were calculated, in which the incident velocities of silver atoms
were set at 5 Å/ps and 10 Å/ps, respectively. The RMS results of the Al-doped silver film
versus the initial incident velocity of the aluminum atoms are presented in Figure 7.

The surface roughness of Al-doped silver films significantly decreased as the velocity
of the aluminum atoms increased from 1 Å/ps to 10 Å/ps. In the case of the velocities of
the silver atoms being 5 Å/ps and 10 Å/ps, as the value of velocity continued to increase,
the surface roughness of the Al-doped silver films decreased slightly. On the contrary, in the
case of the velocity of the silver atoms being 2 Å/ps, the surface roughness of the Al-doped
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silver films increased slightly as the value of velocity continued to increase. These results
indicate that a higher initial kinetic energy of aluminum atoms is beneficial to the formation
of better surface morphology. Similar experimental research on sputtered silver films
revealed that silver film prepared at plasma power 25 W contained more discontinuous
pores than the film prepared at plasma power 50 W, and the surfaces are smoother when
the plasma power increased to 75 W and 100 W [40]. Another similar result has been
reported by Gu et al. [17]. However, it was found that the RMS of Al-doped silver films
increase again as the incident velocity of aluminum atoms exceeds 50 Å/ps, in the case of
the velocity of silver atoms being 5 Å/ps, which means that the incident energy of silver
atoms should be controlled in a reasonable range within 1 to 50 Å/ps.
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The incident velocity of silver atoms should be discussed further to explore the effect
of the incident velocity of deposition atoms on the surface morphology of Al-doped silver
films. Figure 8 shows the surface morphology of Al-doped silver films deposited on SiO2
substrates at different incident velocities of silver atoms. The incident velocity of aluminum
atoms was 2 Å/ps. The atoms are colored by the height of their coordinate along the
z-axis. It is obvious that the surface morphology of Al-doped silver films was rough at
600 K, while it became smooth as the incident velocity of the silver atoms increased. This
is because the high kinetic energy of aluminum atoms can overcome the random thermal
motion of the substrate atoms and form a chemical bond with oxygen.

The following quantity calculations present the deposition process of Al-doped silver
films that the incident velocity of silver atoms varies from 1 Å/ps to 60 Å/ps are shown
in Figure 9. Three doping conditions were considered, in which the incident velocities of
aluminum atoms were set at 2 Å/ps, 5 Å/ps, and 10 Å/ps, respectively. The temperature
of the substrate was also maintained at 600 K in each calculation case. The RMS of the
Al-doped silver films were reduced rapidly when the initial incident velocity of the silver
atom was less than 30 Å/ps. However, the reduction of the RMS of Al-doped silver film
became stable when the range of incident velocities of silver atoms was between 30 Å/ps
and 50 Å/ps. When the incident velocity of deposited silver atoms exceeded 50 Å/ps, the
kinetic energy of silver atoms was more than 14 eV, and the surface morphology of the
Al-doped silver film turned rough. This may partially be due to the fact that the incident
silver atoms passed through the surface of the silver film that was formed before, and
directly injected into the lattice of silver film. The RMS of the Al-doped silver film reached
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a minimum of 2.03 Å, in the case of the velocity of the aluminum atoms being 10 Å/ps,
and the velocity of the silver atoms increased to 30 Å/ps. Thus, the surface morphology
was not solely decreasing with the increasing incident velocity of the deposition atoms, but
decreased rapidly at first and then increased slightly.
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3.4. Atomic Migration Mechanism

Taking the above results into consideration, the morphological evolutions of ultra-thin
Al-doped silver film revealed that a few aluminum atoms may strongly influence the
migration and subsequent growth of silver films. Further research is presented to discuss
the effects of aluminum atom doping on the initial deposition stage. The migration char-
acteristics of silver atoms and aluminum atoms on SiO2 substrate are shown in Figure 10,
in which the growth temperature was set to 600 K and the proportion of injected atoms was
set as Ag:Al = 10:1. As can be seen in Figure 10a,b, silver atoms were successfully deposited
on the surface and then bonded with the appropriate atoms. Subsequently, as the number
of deposited silver atoms increased, it was found that the silver atoms dispersed. This may
be due to the weak interaction between the silver atoms and the SiO2 substrate.
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In the deposition of the aluminum doping case, several silver atoms with a single
aluminum atom were deposited on the substrate, and the snapshot results are shown in
Figure 10e,f. The deposition results show that the silver clusters with an aluminum atom
still attached together as the number of silver atoms increased. Therefore, these processes
indicate that silver atoms are more likely to agglomerate on the surface of the substrate
after adding aluminum atoms, and aluminum atoms mitigate the migration behavior of
silver atoms, which confirms that the smoothness of Al-doped silver film is better than
pure silver film.

Furthermore, reports show that the bond strength of Ag-O bonds is much weaker
than that of Al-O bonds [41]. This is because of the high enthalpy of formation of Al-O
bonds. In the initial deposition stage, the average diffusion distance of silver atoms on
SiO2 substrate is larger than that of aluminum atoms, and aluminum atoms are more easily
attached to SiO2 substrate than silver atoms due to their stronger bond with the oxidized
surface. Then, the immobilization of the aluminum atoms promotes the immobilization of
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the silver atoms on the SiO2 substrate. It can be explained by the anchoring effect [42,43],
in which the aluminum atoms anchored to the substrate act as a nucleation center to a
silver cluster. A further explanation is that when silver atoms try to move some distance
from the aluminum atoms, the cluster will become smaller and their surface areas and
surface energies increase, therefore, energetically, it is not favorable.

The reduced roughness due to the additive aluminum atoms in the subsequent growth
process could be further explained by the sluggish migration, according to the cage ef-
fect [44], in which aluminum doping atoms act as obstacles for the movement of silver
clusters in bulk diffusion. Similar analysis has been found in the experiment of germanium-
wetted silver films, in which the Raman spectra results demonstrated that the germanium
atoms at the silver grain boundaries form clusters of a few atoms [45]. Because of the
mismatch of the atom size, additive aluminum atoms create atomic distortions and strains.
Such a strain field is centered on these impurities and is long-range. As a result, these
additive heterogeneous aluminum atoms form cages that impair the migration of silver
atoms by reducing the mean free path. According to the cage model [46], the mean free
path λ is a function of the concentration c of impurity, as λ = A/ 3

√c + B, where A and B
are constants. Increases in the concentration of aluminum results in the reduction of the
mean free path of silver, and thus, the agglomerations. As a consequence, the roughness
decreases.

4. Conclusions

We have systematically studied the effects of aluminum doping on the initial growth
of ultra-thin silver films using molecular dynamics simulations. The critical conditions
of Al-doped silver films under different aluminum compositions, substrate temperatures,
and initial incident velocities were calculated, and the surface morphology and RMS
surface roughness of deposited film were discussed. The results show that aluminum
dopant promoted the immobilization of silver atoms on SiO2 substrate and formed a
smoother silver film. Further studies indicated that Al-doped silver films show better
surface roughness than pure silver films at various substrate temperatures. Moreover,
when the temperature of the substrate is set to 600 K, the RMS of the Al-doped silver
film first decreased, and then increased with the increasing of the incident velocity of
deposited silver atoms. The optimum injection velocity was 30 Å/ps for the silver atoms
and 10 Å/ps for the aluminum atoms. The atomic migration mechanism is that silver
atoms are more likely to agglomerate on the surface of the substrate after adding aluminum
atoms, as aluminum dopants promote the immobilization of silver atoms on SiO2 substrate,
due to the anchoring effect. The smoother surface could be attributable to the reduced
mean free path of silver, due to the cage effect by the aluminum dopant. The simulation
results of this paper could be beneficial in guiding and regulating the deposition process
and analyzing the film characteristics of transparent metallic conducting electrode films.
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