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Abstract: Colloidal nanoparticles (NPs) have been recently spotlighted as building blocks for various
nanostructured devices. Their collective properties have been exhibited by arranging them on a
substrate to form assembled NPs. In particular, electrophoretic deposition (EPD) is an emerging
fabrication method for such nanostructured films. To maximize the benefits of this method, further
studies are required to fully elucidate the key parameters that influence the NP deposition. Herein,
two key parameters are examined, namely: (i) the aging of colloidal NPs and (ii) the charge formation
by surface ligands. The aging of Cu2-xS NPs changes the charge states, thus leading to different NP
deposition behaviors. The SEM images of NP films, dynamic light scattering, and zeta potential
results demonstrated that the charge control and restoration of interparticle interactions for aged
NPs were achieved via simple ligand engineering. The charge control of colloidal NPs was found to
be more dominant than the influence of aging, which can alter the surface charges of the NPs. The
present results thus reveal that the charge formation on the colloidal NPs, which depends on the
surface ligands, is an important controllable parameter in EPD.

Keywords: electrophoretic deposition; colloidal nanoparticle; nanostructured film; copper sulfide

1. Introduction

Colloidal nanoparticles (NPs) have been highlighted as functionalized nanomaterials
in various research fields [1,2]. Numerous synthesis approaches have been reported for
colloidal NPs, with various compositions and morphologies, including nanodots, nanorods,
nanotubes, and nanosheets [3,4]. These colloidal syntheses have great advantages in achiev-
ing narrow size distributions with various specific sizes, which can control the shape- and
size-dependent properties of NPs [5–7]. After synthesis, the colloidal NPs must be arranged
on a substrate as building blocks to access unique properties and realize nanostructured
devices [8–10]. Several solution-based NP film fabrication methods are available, including
drop-casting, dip-casting, spin-coating, spray-coating, and injection printing. In addition,
the process of electrophoretic deposition (EPD) is an emerging technique for the fabrication
of NP films from colloidal NPs [9,11–14]. This process has various advantages, such as
strong adhesion of NPs to the substrate and a wide range of applicable materials for both
NPs and substrates. Depending primarily upon their surface charges, colloidal NPs dis-
persed in non-polar solvents (e.g., hexane and chloroform) or polar solvents (e.g., acetone
and ethanol) can be selectively deposited onto either the positively- or negatively-charged
substrate by the electric field formed during the EPD process. The deposition of NPs onto
conductive substrates has been controlled via the tuning of process parameters, such as
solvent, concentration, deposition time, and deposition voltage [15]. In particular, the stabi-
lization of colloidal NPs by organic ligands (e.g., oleylamine and oleic acid) in non-polar
solvent facilitates the control of the EPD process via limited current flow and suppressed
electrochemical reactions at the electrodes compared to EPD of NPs in a polar solvent [16].

Colloidal copper sulfide (Cu2-xS) NPs are considered ideal for investigating the EPD
mechanism in a non-polar solvent because they can adopt a variety of sizes/shapes
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and can be well dispersed in hexane or chloroform. Depending upon the stoichiometry,
Cu2-xS (0 ≤ x ≤ 1) has various phases ranging from Cu-rich chalcocite (Cu2S) to covellite
(CuS) [17]. The Cu2-xS phases with copper vacancies in the atomic structure are promising
p-type semiconductors with unique optoelectrical properties due to their stoichiometry-
dependent band gap [18]. In addition, localized surface plasmon resonance (LSPR) effects
are exhibited in Cu2-xS NP due to the high free carrier density, depending on stoichiometry
and size [19,20]. Hence, Cu2-xS NPs are suitable for nanostructured applications such
as battery electrodes [21], photocatalysts [22], sensors [23], biomedical devices [24], and
photovoltaic cells [25], as they provide unique properties that cannot be achieved using
the traditional bulk materials. For example, Otelaja et al. (2014) [26] demonstrated that the
EPD films obtained from Cu2-xS NPs dispersed in hexane exhibit a higher conductivity
than those prepared by spin-casting. Further, Ha et al. (2015) [27] used a non-polar solvent-
based additive-free EPD process to fabricate Cu2-xS NP Li-ion battery electrodes with
high capacity and cyclability, and a strong adherence to the substrate. However, further
studies are required to fully understand the key EPD parameters that control the deposition
mechanism and, thus, maximize the benefits of the EPD process for colloidal NPs.

In non-polar solvents, the surface charge on colloidal NPs is mainly influenced by the
ligand, which serves to generate repulsive interactions or electrostatic attractions between
the colloidal NPs [16]. Thus, to control the NP deposition mechanism during the EPD
process, an understanding of the parameters associated with charge formation on NPs is
required [28]. The altered charge of colloidal NPs dispersed in a non-polar solvent can
be simply adjusted by modulating the ligand coverage on the NP surface via additional
precipitation steps or the addition of excess ligand [29,30]. A change in ligand coverage via
the partial removal or additional adsorption of the ligands has significant influence upon
the direction of particle movement between both electrodes and upon the morphology of
the NP assembly formed on a substrate via EPD [28,31]. Although such ligand engineering
approaches have been applied to simple systems for selective deposition, the mechanism
and controllability are not yet well established.

In this work, the aging process and surface ligand concentration of colloidal NPs are
demonstrated as key EPD parameters influencing the NP deposition mechanism. The
synthesized Cu2-xS NPs dispersed in hexane are shown to exhibit partial oxidation through
an aging process under the air atmosphere, thus leading to altered charge states of NPs
and a reduction in the NP film uniformity compared to that generated using non-aged NPs.
For implementing controllable deposition behavior during the EPD process, the ligands
were shown to play a major role in controlling the surface charge on the colloidal NPs and
stabilizing the interparticle interactions in a non-polar solvent such as hexane. A simple
ligand engineering process was used to modulate the influence of aging on the NP charge,
and the recovered NPs were found to display an altered deposition behavior by moving
in the opposite direction compared to that of the non-aged NPs during the EPD process.
This effect suggests that the concentration of surface ligands on the colloidal Cu2-xS NPs
plays a crucial role in charge formation, having an even more significant impact than the
surface oxidation process. In addition, a uniform Cu2-xS NP film with morphology similar
to that of the non-aged NP film is successfully fabricated using the recovered NPs. The
present work provides insights for understanding the mechanism of the EPD process with
colloidal NPs and for realizing the fabrication of devices based on Cu2-xS NPs.

2. Materials and Methods
2.1. Chemicals and Materials

Oleylamine (OLAM, 70%, technical grade), di(tertbutyl) disulfide (TBDS, 97%), and
copper (II) chloride dihydrate (CuCl2·2H2O, ≥99%, ACS reagent) were purchased from
Sigma-Aldrich. Acetone (C3H6O, 99.5%, extra pure) and n-hexane (CH3(CH2)4CH3, 95%,
extra pure) were purchased from Daejung Chemicals & Metals. All chemicals were used
without further purification.
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2.2. Synthesis of Colloidal Cu2-xS Nanoparticles

The Cu2-xS NPs were synthesized via a slightly modified form of the standard pro-
cedure [32]. Standard Schlenk line techniques were used under a nitrogen atmosphere or
vacuum. OLAM (30 mL) and CuCl2·2H2O (1.704 g) were loaded into a 50 mL three-necked
flask, equipped with an evaporator trap, thermometer, thermometer adapter, rubber sep-
tum, and magnetic stir bar. The solution was stirred under vacuum for 20 min at room
temperature followed by an additional 1 h at 120 ◦C to remove impurities such as water
and volatile chemicals. The solution was then maintained under a N2 atmosphere and
heated to 200 ◦C for 1 h until the solution turned to a transparent yellow-green color. The
solution was then cooled to 180 ◦C prior to injection of the sulfur source. The TBDS solution
(4 mL) was then quickly injected by syringe into the flask, and the reaction progressed
for 1 h. After the reaction, the heating mantel was removed, and the reaction vessel was
quenched in a water bath. NPs were then collected by centrifugation and washed 3 times
with hexane/acetone (≈1:3 v/v) at 5000 rpm for 5 min. Finally, the Cu2-xS NPs were
dispersed in hexene and stored in a clear vial under an atmosphere of air.

2.3. Preparation of Nanoparticle Film via the EPD Process

Silicon (Si) wafers (P type, the thickness of 525 µm, the dimensions of 1.5 × 1.5 cm2)
were attached to a pair of stainless-steel plates, and the distance between the electrodes
was adjusted to 5 mm. The substrate was cleaned in acetone with ultrasonication. The
previously stored NPs were removed from the vial and dissolved in hexane in a tall beaker
to a concentration of 0.59 g/L. The pair of electrodes were inserted into the resulting
solution and a DC voltage (≈500 V) was applied and maintained for a deposition time of
2 min, as shown schematically in Figure 1b. During this stage, the charged colloidal NPs
were attracted to the oppositely charged electrode, and the dark brown color of the solution
gradually became light brown as the concentration of NPs in the solution decreased with
deposition. The dried NP-coated substrate was then detached from the electrode, and
analysis was performed to determine the surface morphology and chemical characteristics
of the NP film.
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Figure 1. Characterization and electrophoretic deposition (EPD) of the fabricated Cu2-xS nanopar-
ticles (NPs): (a) SEM image; (b) schematic EPD set-up; and (c) XRD pattern, with the black bars
underneath corresponding to the reference data for the roxbyite phase (JCPDS #23-0958).

2.4. Preparation and Recovery of Aged Nanoparticles

To investigate the influence of Cu2-xS NP aging upon the deposition mechanism, films
were prepared on both positively and negatively charged substrates using non-aged NPs
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and NPs with different aging periods (i.e., 72, 192, 312, 528, and 720 h). For the recovery
process, OLAM (9 mmol) was added to a dispersion of the aged Cu2-xS NPs (≈5.9 mg) in
hexane (5 mL), and sonication was performed for 15 min. The solution was then washed
by the addition of hexane/acetone (≈1:3 v/v) and centrifuged for 5 min at 5000 rpm. The
resulting precipitate was completely dried and then re-dispersed in hexane by sonication.
The recovered NP solution was immediately used in the EPD process to avoid any effects
due to further aging.

2.5. Materials Characterization

The NP films prepared on Si wafers via the EPD process were characterized as fol-
lows. The X-ray diffraction (XRD) patterns were collected using an AXS New D8 advance
diffractometer (Bruker, Billerica, MA, USA) with a Cu K-α radiation source and a Lynx-
Eye line detector. The samples for XRD were prepared by drop-casting the Cu2-xS NPs
onto zero-background quartz. Field-emission scanning electron microscopy (FE-SEM)
and energy-dispersive spectrometry (EDS) were performed using a Carl Zeiss SIGMA
microscope. In addition, X-ray photoelectron spectroscopy (XPS) was performed on a
K-alpha system (Thermo Fisher Scientific, Waltham, MA, USA) with an Al K-α source.
FTIR spectroscopy was performed in a Nicolet 6700 spectrometer (Thermo Fisher Scientific)
at room temperature. The FTIR samples were prepared as a powder. Zeta potential and
dynamic light scattering (DLS) measurements were performed using a Malvern Zetasizer
Pro (Malvern Instruments, Malvern, WR, UK) instrument with a universal dip cell kit for
samples in non-aqueous (palladium electrodes with 2 mm spacing).

3. Results and Discussion

The SEM image of the synthesized Cu2-xS NPs in Figure 1a reveals a quasi-tetradecahedron
shape, with a uniform particle size of ≈40 nm, and the XRD pattern in Figure 1c is well matched
with the roxbyite reference (JCPDS #23-0958) [27]. As detailed in Section 2.3, these roxbyite
NPs were dispersed in hexane and used in the NP film fabrication via the EPD process
(Figure 1b). To maximize the morphological properties of the fabricated films (which
should be crack-free, with high uniformity and density), the inherent properties of the
colloidal NPs, such as dispersibility and size distribution, should first be optimized [33,34].
However, aggregation or oxidation of the NPs may occur during aging in solution [35–39].
This aging phenomenon influences both the inherent properties of the materials and the
arrangement of the assembled NPs by altering the NP–NP or NP–substrate interactions. In
the present study, the colloidal Cu2-xS NPs displayed a significant decrease in dispersibility
in hexane due to the process of aging in the atmosphere of air, possibly due to considerable
agglomeration of the particles via the altered interparticle interaction.

To investigate the influence of Cu2-xS NP aging upon the deposition mechanism, NP
films were prepared using non-aged and variously-aged NPs, and the surface morphologies
were analyzed as described in Section 2.4. The surface morphologies of the NP films
obtained on the positively and negatively charged substrates are indicated by the SEM
images in Figure 2 (more images in Figures S1 and S2 of the Supplementary Material). The
NP film fabricated using non-aged NPs were formed mainly on the positively charged
substrate (Figure 2a, upper panel), with few NPs being deposited on the negatively charged
substrate (Figure 2a, lower panel). Moreover, the NP film on the positively charged
substrate exhibited a uniform and dense surface (inset, Figure 2a). These results indicate
that the net charge on the non-aged NPs is negative and that the interactions between the
NPs are balanced. By comparison, the films prepared using the 72 h-aged NPs maintained a
high density on the positively charged substrate, but the surface uniformity was decreased
(Figure 2b, upper panel) compared to that of the non-aged NPs. In addition, several 72 h-
aged NP domains were clearly visible on the negatively charged substrate (Figure 2b, lower
panel). Meanwhile, the film formed on the positively charged substrate using the 312 h-
aged NPs exhibited poor surface uniformity, with locally pitted or raised areas indicated
by the arrows in Figure 2c (upper panel). Moreover, several 312 h-aged NP domains were
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observed on the negatively charged substrate (Figure 2c, lower panel), and these display a
larger size distribution than those obtained from the 72 h-aged sample.

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

μm decrease in film thickness over the 720 h-aging process indicates a lower deposition 
efficiency for the aged NPs compared to that of the non-aged NPs. This is primarily due 
to the altered charge state and NP–NP interactions of the Cu2-xS NPs, as demonstrated 
above by the morphological analysis of the film surfaces shown in Figure 2. 

 
Figure 2. SEM images (a–d) of the films fabricated from Cu2-xS NPs after various aging times (top panel: positive electrode; 
bottom panel: negative electrode). For the negative electrode, a plot of NP surface coverage against aging time is presented 
in (e). 

 
Figure 3. Cross-sectional SEM images (a–d) and dependence of film-thickness against pre-aging time (e) for films depos-
ited on the positively charged substrate using variously-aged NPs. 

To investigate the main driving force behind the change in the deposition behavior 
of the NPs with aging time, an XPS analysis was performed, and the results are presented 
in Figure 4 and Table S1. It was anticipated that differences in the chemical states of the 
non-aged and aged Cu2-xS NPs might provide clues to the aging effects. However, while 
the XPS spectra in the Cu 2p regions of the non-aged and 720 h-aged NPs in Figure 4a 
each exhibit two main peaks at approximately 932.3 eV (Cu 2p1/2) and 952.2 eV (Cu 2p3/2), 

Figure 2. SEM images (a–d) of the films fabricated from Cu2-xS NPs after various aging times (top panel: positive electrode;
bottom panel: negative electrode). For the negative electrode, a plot of NP surface coverage against aging time is presented
in (e).

The creation of assembled NP domains might be due to strong attractive interactions
between NPs at the electrophoretic double layer near the electrode surface during the
deposition process [40]. This can occur because the two-dimensional physical mobility on
the electrode surface predominates over the irreversible adsorption of NPs drawn from
the solution to the electrode surface by the electric field [41]. The SEM image of the film
prepared from the 720 h-aged NPs (Figure 2d) revealed a high surface roughness, along
with a similar morphology to that of the films obtained using 192 h-, 321 h-, and 528 h-aged
NPs. This increase in surface roughness and decrease in surface uniformity of the films
with increased pre-aging of the NPs was primarily attributed to the agglomeration of NPs
during the aging process. In addition, the aging process alters the charge states of NPs,
leading to changes in both the amount of deposited NPs and the size and number of NP
domains on each type of electrode during the EPD process. The number of NP domains
on the negatively charged substrate dramatically increased with the use of 720 h-aged
NPs (Figure 2d) compared to all other samples. The increase in the number of particles
deposited on the negatively charged substrate with increased aging time is indicated in
terms of the percent-coverage of NP domains on the Si wafer in Figure 2e. Here, the change
in NP deposition behavior with increased aging occurs in two distinct stages, with an initial
sharp increase from 0.22% coverage by the non-aged (0 h) NPs to 14.94% coverage by the
72 h-aged NPs, followed by a gradual increase to ≈30% coverage by the 720 h-aged NPs.
The results indicate that the initial aging process plays an important role in altering the
surface charge of the Cu2-xS NPs, while the NP deposition behavior change after long-term
(–720 h-) aging indicates that the net charge on the NPs becomes significantly more positive
at this stage.

The cross-sectional SEM images of some of the NP films deposited on the positively
charged substrates are presented in Figure 3, while cross-sectional SEM images of all the
positive-substrate samples are provided in Figure S3. In addition, a plot of film thick-
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ness against NP pre-aging time is provided (Figure 3e). The film thickness continuously
decreases with increased NP pre-aging, although there is a high standard deviation for
all films, except that produced using the non-aged NPs. The sample obtained from the
non-aged NPs displays a smooth surface with uniform thickness of 4.6 µm (Figure 3a,e), while
the 72 h-aged NPs result in a slightly decreased thickness of 4.3 ± 0.28 µm (Figure 3b,e). This
corresponds to the first stage of altered deposition behavior noted above, in which the
number of NPs attached to the negatively charged substrate increases significantly for the
72 h-aged NPs, compared to the non-aged NPs. By comparison, the NP film produced from
the 192 h-aged NPs exhibits a slight further decrease in thickness to 4.2 ± 0.26 µm (Figure
3c,e), while the 720 h-aged NPs provide a significant additional decrease to 3.6 ± 0.23 µm
(Figure 3d,e), along with a much lower surface uniformity. This approximately 1 µm de-
crease in film thickness over the 720 h-aging process indicates a lower deposition efficiency
for the aged NPs compared to that of the non-aged NPs. This is primarily due to the altered
charge state and NP–NP interactions of the Cu2-xS NPs, as demonstrated above by the
morphological analysis of the film surfaces shown in Figure 2.
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To investigate the main driving force behind the change in the deposition behavior of
the NPs with aging time, an XPS analysis was performed, and the results are presented
in Figure 4 and Table S1. It was anticipated that differences in the chemical states of the
non-aged and aged Cu2-xS NPs might provide clues to the aging effects. However, while
the XPS spectra in the Cu 2p regions of the non-aged and 720 h-aged NPs in Figure 4a each
exhibit two main peaks at approximately 932.3 eV (Cu 2p1/2) and 952.2 eV (Cu 2p3/2), no
satellite peaks indicative of different valence states of Cu were observed [42]. The spectra
of both the non-aged and aged NPs indicate the absence of Cu(II) and the presence of
monovalent Cu as expected for Cu2S [26,43]. It was reported in the previous studies that
copper-rich phases of Cu2-xS, such as roxbyite (Cu1.81S), djurleite (Cu1.95S), and chalcocite
(Cu2S), yield XPS results similar to those of Cu2O in the Cu 2p region, which is dominated
by the Cu(I) state [18,42,44–46]. Similarly, the XPS spectra in the S 2p region of both samples
(Figure 4b) exhibit two major peaks at 161.5 eV and 162.5 eV due to S 2p1/2 and S 2p3/2,
respectively, thus revealing the formation of Cu–S bonds [18,47]. These results indicate that
the aging process does not lead to any significant changes in either the Cu valence state or
chemical state of the Cu2-xS NPs.

Nevertheless, the bar chart of the atomic ratios of the two samples (Figure 4c) reveals a
relatively high content of atomic oxygen in the aged NPs (7.87%) compared to the non-aged
NPs (4.27%). This 3.6% increase in the oxygen content, along with an only 1.05% decrease
in the S content, indicates an overall increase in oxidation going from the non-aged to
aged sample. The XPS spectra in the O 1s region of non-aged and aged NP samples are
shown in Figure S4. When comparing the main peaks of the two samples, different peak
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widths and intensities were observed, possibly due to the different bonding states of each
sample (Figure S4a). The broad peak in O ls region collected from the aged NPs can be
deconvoluted into two peaks at 532.0 eV and 531.2 eV (Figure S4c). The peak at 532.0 eV
was assigned to the Cu–O–Cu bond (Cu2O), indicating that the surface of aged Cu2-xS was
slightly oxidized as it was exposed to the atmosphere of air [48,49]. This peak was absent
in the O 1s XPS spectra obtained from non-aged NPs (Figure S4b). The second peak of
531.2 eV, which appears in both samples, is caused by the C–O and C=O groups present
on the surface of the NPs, produced as a by-product during the colloidal synthesis [50].
These XPS results indicate that the aging process led to formation of oxidized species, such
as Cu2O on the Cu2-XS surface. In addition, the XRD patterns of the non-aged and aged
NPs provided in Figure S5 were identical, thus confirming that slight oxidation during
aging does not significantly alter the crystalline structure, even though the roxbyite phase
of Cu2-xS contains Cu vacancy sites and is metastable at room temperature compared to
djurleite or chalcocite [45,51]. Moreover, while oxidation is evident in the XPS results,
the C- and N-containing OLAM ligands appear to be well maintained on the surface
of the aged NPs, with only a minor (0.31%) increase in the content of atomic carbon
and a 0.02% decrease in the content of atomic nitrogen in the aged sample, compared
to a non-aged sample (Figure 4c). FTIR analysis was performed to demonstrate that the
NP samples (aged and non-aged NPs) maintained the OLAM ligand, regardless of the
aging process of colloidal NPs (Figure S6). The FTIR spectra of both samples clearly
showed the bands within the range of 2840–3000 cm−1 attributed to the symmetrical and
asymmetrical stretching modes of the CH2 and CH3, which are typical peaks from the
OLAM component [52]. In addition, several peaks within the range of 1000–1500 cm−1 can
be ascribed to the C–N and N–H stretching mode [53], which also indicates the presence
of the OLAM. These FTIR features indicate that the surface of aged and non-aged Cu2-xS
NPs are well-capped with the OLAM ligands. The XPS and FTIR results demonstrate
that the change in the surface charge of the aged NPs, as reflected by the change in NP
deposition behavior, is primarily due to surface oxidation rather than desorption of the
ligands. In addition, the stronger interactions between the NPs in the solution might be
strongly influenced by this aging effect, thus leading to the significant aggregation and the
generation of a rough EPD film morphology.
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Since the surface ligands of colloidal NPs play a major role in controlling the surface
charge states, ligand engineering (i.e., the control of absorption or desorption states of the
surface ligands) is generally applied to adjust the charge formation on colloidal NPs [54,55].
Moreover, the interactions between colloidal NPs are also stabilized by surface ligands
in order to prevent aggregation. The ligand coverage on the surface of the NPs can be
controlled via partial removal or addition of surface ligands during the precipitation
steps [31]. Motivated by these ligand roles, a ligand engineering process was performed
on the 720 h-aged NPs, in order to modulate the altered charge state due to the aging
process and restore the particle-to-particle interactions. During this process, the excess
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ligands were absorbed onto the non-passivated NP surface to increase the surface ligand
concentration and enable recovery of the aged NPs from severe aggregation.

The SEM images in Figure 5 compare the surface morphologies of NP films obtained
from the unmodified 720 h-aged NPs and from the recovered NPs. Here, a change in the
charge states of the NPs via the recovery process was clearly revealed, as was a change in the
surface morphologies of the corresponding NP films. The use of the unmodified 720 h-aged
NPs generated a rough NP film on the positively charged substrate (Figure 5a), while rough
NP domains were observed on the negatively charged substrate (Figure 5c). By contrast,
the recovered NPs produced a highly uniform film on the negatively charged substrate
(Figure 5d), while only micrometer-sized NP domains were observed on the positively
charged substrate (Figure 5b), along with stains which might be due to the presence of
surplus ligands. The contrasting results of EPD film deposition using the aged NPs with
and without ligand engineering clearly demonstrate that the net-charge on the recovered
NPs is opposite to that on the aged (oxidized) NPs. Moreover, the modulation of the
surface charge state of the colloidal NPs via ligand engineering plays a more dominant role
than does the effect of NP aging. This charge control process is, therefore, an efficient tool
for implementing selective electrode deposition during the EPD process. The significantly
improved particle–particle interaction and assembly of the aged NPs to generate a highly
uniform and dense film on the negatively charged substrate after ligand engineering is
further demonstrated by comparison of the EDS mapping image in Figure 5f with that of
the unmodified aged NPs on the positively charged substrate in Figure 5e.
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Figure 5. SEM images of the NP films fabricated on the positively charged substrate (top panel) and the negatively charged
substrate (bottom panel) using the 720 h-aged NPs (a,c) and the recovered NPs (b,d). EDS mapping images of the aged
sample on the positively charged substrate (e) and the recovered sample on the negatively charged substrate (f) are
also shown.

The aggregation state of several NP samples (non-aged, aged, and recovered NPs) in
a non-polar solution was confirmed by analyzing the particle size through DLS. Intensity
distributions of particle sizes collected from non-aged, aged, and recovered NPs are shown
in Figure 6a. Since the diameter of the colloidal NPs measured through DLS indicates
the hydrodynamic size including surface ligands [56], it may be generally larger than
the particle size derived by TEM analysis. The average particle size of a non-aged NP
sample is 74.6 nm with a narrow size distribution, which indicates that the NPs were well
dispersed in hexane without NP aggregation. However, two peaks (average particle size
of about 150 nm and 900 nm) with a broad size distribution were detected from the aged
NP sample, revealing the existence of agglomerates with various diameters. As shown in
the SEM image of the NP film fabricated from these aged NPs (Figure 5a,c), the presence
of aggregates impairs the surface uniformity of the NP film. After the recovery process
targeting these aged NPs, the average particle size collected from the samples represents
93 nm with a narrow size distribution, similar to that measured from non-aged NP sample
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(insert image in Figure 6a). These results confirm that the recovery process works effectively
for the aged NP sample where aggregation has occurred, restoring the particle-to-particle
interactions and allowing for disaggregation of NPs. The high dispersibility secured
through the recovery process served as an important factor in producing NP film with
high uniformity from the recovered NPs through the EPD process, as shown in Figure 5d.
Compared to non-aged NPs, modulated surface charge states of aged and recovered NPs
can be represented by the changes of zeta potential, which acts as a key factor in defining
the moving direction and mobility of particles during the EPD process [15]. Based on the
EPD results shown in the SEM images, the charge state of Cu2-xS NPs may become slightly
more positive due to the aging effect. Zeta potential of the aged NP sample (−26.62 mV) is
slightly more positive compared to that of the non-aged NP sample (−28.62 mV), which
can support the phenomenon associated with the altered deposition behavior of aged NPs.
In addition, the EPD results revealed that the net-charge on the recovered NPs is opposite
to that on the aged NPs (Figure 5). Compared to the zeta potential of the aged NP, zeta
potential of the recovered NPs shifted to significantly more positive (−1.82 mV), indicating
that the NP’s charge state may be modulated from negative to positive through the ligand
engineering process (Figure 6b). These results are consistent with EPD results of aged and
recovered NP samples obtained by analyzing the NP films fabricated on the positive or
negatively charged substrates.
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Figure 6. (a) Size distribution curves from dynamic light scattering (DLS) analysis for the NP samples (inset: magnified size
distribution curves image for non-aged and recovered NPs) and (b) zeta potential distributions of NP samples dispersed
in hexane; non-aged NPs, aged NPs, and recovered NPs are represented by the green solid, orange dash, and red dotted
lines, respectively.

As summarized schematically in Scheme 1, the difference in deposition behavior of
the aged Cu2-xS NPs during the EPD process due to the inclusion or omission of a recovery
process demonstrates that the interparticle interactions and surface charge formations are
predominantly controlled by the ligands rather than the oxidation of NPs.
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Scheme 1. A schematic diagram showing the change in charge states and film morphologies of the colloidal Cu2-xS NPs
depending upon the aging and recovery process.

4. Conclusions

Two key electrophoretic deposition (EPD) parameters, namely the aging process of
Cu2-xS NPs and the control of charge formation via surface ligand engineering, were
revealed by analysis of the film morphologies obtained from variously aged NPs. The
aging process was shown to result in different NP deposition behaviors by altering the
charge states of oxidized NPs in the initial stage of aging. The aging state of the NPs was
shown to be a key parameter in determining the direction of particle movement and the
type of interparticle interactions during EPD. Moreover, a comparison of the NP films
fabricated from aged NPs with and without ligand engineering process and zeta potential
distributions collected from aged and recovered samples revealed that the surface ligands
play an even more significant role in the charge formation than does the oxidation of
the NPs due to aging. In conclusion, the ligand engineering of colloidal NPs is a key
component of the EPD process for controlling charge formation and generating a uniform
NP film from aged NPs via restoration.
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deposited on negatively charged substrates using Cu2-xS NPs that were subjected to various aging
times. Figure S3: Cross-sectional SEM images of the films deposited on positively charged substrates
using Cu2-xS NPs that were subjected to various aging times. Figure S4: (a) O 1s XPS spectra of
non-aged and aged NPs. The peak deconvolution of the O (1 s) XPS core level of (b) non-aged and
(c) aged NPs. Figure S5: The XRD pattern of the 720-h aged NPs. The orange bars below the XRD
pattern correspond to the reference of roxbyite phase (JCPDS #23-0958). Figure S6: FT-IR spectra of
non-aged (green curve) and aged NPs (orange curve). Table S1: Elemental composition (at. %) based
on the XPS analysis of the non-aged and aged Cu2-xS NPs.
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