Supplementary Materials

Ultrasensitive detection of tetracycline using boron and nitrogen codoped graphene quantum dots from natural carbon source as the paper-based nanosensing probe in difference matrices

Hai Linh Tran¹, Win Darmanto², and Ruey-an Doong^{2,3*}

- 101, Sec. 2, Kuang Fu Road, Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
- 101, Sec. 2, Kuang Fu Road, Institute of Analytical and Environmental Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.

Corresponding author: Ruey-An Doong (radoong@mx.nthu.edu.tw)

Produce	Weight percentage of element (%)				
	С	0	Ν	Н	S
Passion fruit juice	38.3	54.1	0.75	6.57	0.28

Table S1. Elemental analysis of passion fruit juice

Table S2. Elemental weight percentage of elements in pure N-GQDs and B,N-GQDs estimatedfrom survey scan of XPS.

Materials	Weight percentage of element (%)			
	С	0	Ν	В
N-GQDs	60.1	33.4	6.5	a
B,N-GQDs	59.1	32.3	6.2	2.4

a: Not detected.

Materials ^a	Precursors	Reaction Conditions	Quantum yield (%)	Reference
CDs	Manilkara zapota fruits	100 °C, 60 min	5.2 - 7.9	[1]
CDs	Watermelon peel	220 °C, 2 h	7.1	[2]
CDs	Ocimum sanctum	180 °C, 4 h	9.3	[3]
CDs	Thymus vulgaris L	180 °C, 5 h	5.2	[4]
CDs	Pomelo peel	200 °C, 3 h	6.9	[5]
CDs	Aloe	180 °C, 11 h	10.4	[6]
P-CQDs	Pine wood	180 °C, 3 h	4.7	[7]
N, P- CQDs	Eleocharis dulcis	120 °C, 5 h	11.2	[8]
CDs	Sewage sludge	700 W, 30 min	21.7	[9]
CQDs	Bamboo tar	170 °C, 15 min	19.3	[10]
PEG-CDs	Gelatin	600 W, 10 min	34	[11]
CDs	Milk protein	30 min	18.7	[12]
B,N-GQDs ^b	Passion fruit juice	170 °C, 20 min	50	This study

Table S3. Comparison of the quantum yield of 0-dimensional carbon-based nanomaterials andGQDs) synthesized from various natural products.

a: CDs: carbon dots; CQDs: carbon quantum dots, GQDs: graphene quantum dots

b: B,N-GQDs

References

- Bhamore, J.R.; Jha, S.; Park, T.J.; Kailasa, S.K. Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells. *J. Photochem. Photobio. B* 2019, 191, 150-155.
- Zhou, J.; Sheng, Z.; Han, H.; Zou, M.; Li, C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. *Mater. Lett.* 2012, 66, 222-224.
- Kumar, A.; Chowdhuri, A.R.; Laha, D.; Mahto, T.K.; Karmakar, P.; Sahu, S.K. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb²⁺ ions and live cell imaging. *Sens. Actuators B Chem.* 2017, 242, 679-686.
- 4. Bayat, A.; Masoum, S.; Hosseini, E.S. Natural plant precursor for the facile and eco-friendly synthesis of carbon nanodots with multifunctional aspects. *J. Mol. Liq.* **201**9, 281, 134-140.
- Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. *Chem. Commun.* 2012, 48, 8835-8837.
- 6. Xu, H.; Yang, X.; Li, G.; Zhao, C.; Liao, X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. *J. Agric. Food Chem.* **2015**, 63, 6707-6714.
- Zhao, S.; Song, X.; Chai, X.; Zhao, P.; He, H.; Liu, Z. Green production of fluorescent carbon quantum dots based on pine wood and its application in the detection of Fe³⁺. *J. Clean Prod.* 2020, 121561.
- 8. Bao, R.; Chen, Z.; Zhao, Z.; Sun, X.; Zhang, J.; Hou, L.; Yuan, C. Green and facile synthesis of nitrogen and phosphorus co-doped carbon quantum dots towards fluorescent ink and sensing applications. *Nanomaterials* **2018**, *8*, 386.

- 9. Hu, Y.; Gao, Z. Sewage sludge in microwave oven: A sustainable synthetic approach toward carbon dots for fluorescent sensing of para-nitrophenol. *J. Hazard Mater.* **2019**, 121048.
- Liang, Q.; Wang, Y.; Lin, F.; Jiang, M.; Li, P.; Huang, B. A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application. *Anal Methods* 2017, 9, 3675-3681.
- Arsalani, N.; Nezhad-Mokhtari, P.; Jabbari, E. Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery. *Artif. Cells Nanomed Biotechno.* 2019, 47, 540-547.
- 12. Bajpai, S.; D'Souza, A.; Suhail, B.J.I.N.L. Blue light-emitting carbon dots (CDs) from a milk protein and their interaction with Spinacia oleracea leaf cells. *Int. Nano Lett.* **2019**, 1-10.

Zeta potential (mV)			
B,N-CDs	Tetracycline (TC)	B,N-CDs/TC	
-11	-3.34	-3.32	
-4.89	-3.74	-2.28	
-14.9	-6.26	-3.45	
-19.5	-14.1	-2.91	
-0.86	-24.1	-3.23	
-2.51	-2.13	-3.66	
-4.16	-9.99	-1.02	
-6.66	-4.95	-4.74	
	B,N-CDs -11 -4.89 -14.9 -19.5 -0.86 -2.51 -4.16 -6.66	Zeta potential (mV) B,N-CDs Tetracycline (TC) -11 -3.34 -4.89 -3.74 -14.9 -6.26 -19.5 -14.1 -0.86 -24.1 -2.51 -2.13 -4.16 -9.99 -6.66 -4.95	

Table S4. Zeta potential of B,N-CDs, tetracycline (TC), B,N-CDs/TC at various pHs.

Fig. S1. (a) The full and (b) partial Raman spectrum of B,N-GQDs, and (c) the XRD pattern of B,N-GQDs on the Si substrate.

Fig. S2. (a) High resolution scanning electron microscopy (HRSEM) image, (b) energy dispersive spectroscopy (EDS) spectrum and elemental mapping of (c) C, (d), O (e), N and (f) B elements of B,N-GQDs.

Fig. S3. The (a) XPS deconvoluted C 1s and (b) O 1s peaks of N-GQD.

Fig. S4. The UV-visible spectra of B,N-GQDs, tetracycline (TC), and B,N-GQDs/TC.

Fig. S5. (a) (b) The change in fluorescence of B,N-GQDs in the absence and the presence of TC (30 μ M) under visible light and (c) (d) under 365-nm UV light irradiation and in PBS solution.

Fig. S6. The linear relationship between fluorescence curve areas and absorbance for (a) pure N-GQDs, (b) B,N-GQDs, and (c) quinine sulfate standard.

Fig. S7. (a) The change in fluorescence emission spectra of B,N-GQDs at low TC concentration range of (0.06~14 nM) in urine and (b) human serum.

Fig. S8. The effect of pH on the fluorescence intensity of B,N-GQDs before and after the addition of 30 μ M tetracycline. The pH is controlled at 3 – 10 in the presence of 0.1M PBS.