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Abstract: The synthesis of controllable hollow graphitic architectures can engender revolutionary
changes in nanotechnology. Here, we present the synthesis, processing, and possible applications
of low aspect ratio hollow graphitic nanoscale architectures that can be precisely engineered into
morphologies of (1) continuous carbon nanocups, (2) branched carbon nanocups, and (3) carbon
nanotubes–carbon nanocups hybrid films. These complex graphitic nanocup-architectures could be
fabricated by using a highly designed short anodized alumina oxide nanochannels, followed
by a thermal chemical vapor deposition of carbon. The highly porous film of nanocups is
mechanically flexible, highly conductive, and optically transparent, making the film attractive
for various applications such as multifunctional and high-performance electrodes for energy storage
devices, nanoscale containers for nanogram quantities of materials, and nanometrology.

Keywords: graphitic nanoscale architecture; precisely controllable nanostructure; flexible and
transparent supercapacitor; carbon nanocup container

1. Introduction

For decades, diverse graphitic nanostructures (e.g., nanographite, carbon nanotubes, carbyne,
and graphene) have been actively researched for applications in energy storage devices, bio/chemical
sensors, drug delivery, etc. [1–14]. While significant progress has been made on both developing
large-scale synthesis and unveiling their exceptional properties, there remain challenges in controlling
morphology and proportion of individual nanoscale units, which limits their use in down-to-earth
applications [15–22]. Particularly one-dimensional (1-D) graphitic structures (e.g., carbon nanotubes)
are attractive in that other nanomaterials or functional molecules can be trapped or embedded inside
them for advanced multicomponent systems [23–25]. However, it is difficult to effectively intercalate
abundant nanomaterials such as nanoparticles, drugs, or polymers within the hollow tubular structure
where length/diameter (L/D) aspect ratios often range between 103 and 105 [25,26]. Fortunately,
the recent flurry of activity successfully introduced a unique cup-shaped carbon nanostructure that
allows unprecedented control over structural morphology and dimension and easy insertion of
nanomaterials inside them [27]. This review covers the synthesis and processing of hollow carbon
nanostructures and demonstrations of their potential applications. This hollow carbon nanostructured
film was fabricated by precisely tailoring the nanopores of the anodized aluminum oxide (AAO)
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template, which has been widely used to form a dense array of nanochannels [28–35]. The AAO
template allows precise control of nanoscale pores such as the length, width, and diameter [21,27,36–42],
enabling the design of cup-shaped nanostructures with low aspect ratio. By depositing carbon materials
on this AAO template, low aspect ratio graphitic nanoscale cup structures can be fabricated, resulting
in a film of uniformly arranged carbon nanocups (see Figure 1). The deposition of the graphitic carbon
film is performed by a high-temperature chemical vapor deposition (CVD) process, and the thickness
of the nanocups film could be controlled by changing the CVD reaction time. The unique carbon
nanostructured cups are continuously and uniformly connected like a thin film of honeycombs. The film
of connected nanocups exhibits high specific surface area and enables fast electron transfer [43,44].
Furthermore, it is mechanically flexible and optically transparent. Shape control is not only limited to the
dimensions but also in terms of fabricating branches on the bottom of the nanocups or growing vertically
aligned CNTs inside the cups by employing a thermal CVD process. This connected nanocups film is
an ideal template to build a multicomponent system, as other nanomaterials, molecules, or polymers
can be easily inserted and evenly distributed over the cups [27,36–38,45,46].

Figure 1 shows a schematic of various carbon nanocups (CNC) architectures and their potential
applications. CNC diameter and length can be controlled to optimize the function of the CNC
film. We review three CNC-based nanostructures: (1) thin CNC film, (2) branched CNC film,
and (3) CNTs–CNC hybrid structure. These structures are useful for applications that require optical
transparency, mechanical flexibility, and structural continuity. In this paper, we cover (1) flexible and
transparent supercapacitors, (2) high-performance supercapacitors, and (3) CNC container system that
can accommodate nanoparticles, polymers, or liquid droplets.
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Figure 1. Schematic of various architectures using the anodized aluminum oxide (AAO) template and
their applications: flexible and transparent supercapacitors [37], high-performance supercapacitors [36],
and carbon nanocups (CNC) container system [27]. Insert images were reproduced with permission
from [27,36,37]. Copyright (2009) American Chemical Society, (2012) American Chemical Society,
and (2012) Springer Nature.

2. Fabrication and Modification of Graphitic Nanoscale Architectures

2.1. Carbon Nanocups (CNC) Thin Film

Carbon nanocups (CNC) thin film is an array of carbon nanocups with a short aspect ratio of
1–2 (Figure 2a,b). This two-dimensional film contains a well-organized array of nanocups where the
uniform density results in high porosity. The structure of the nanocups can be precisely controlled in
terms of their length, diameter, and wall thickness. Figure 2c shows the scanning electron microscopy
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(SEM) image of a CNC film with an L/D aspect ratio of 2, which has a 100 nm diameter and 200 nm
length. Figure 2d shows the shorter CNCs with an aspect ratio of 1 with 80 nm diameter and 80 nm
length. The thickness of nanocups shown in Figure 2 is 10 nm, and can be easily controlled by the time
of carbon deposition or the concentration of carbon source. The CNC film demonstrates attractive
features such as ease of structure control, high porosity, excellent flexibility, and high mechanical
strength [27,37].
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Figure 2. SEM and TEM micrographs of a two-dimensional carbon nanocup film structure after
removing the AAO template. SEM images show (a) the upside of highly dense carbon nanocup arrays
connected with a thin graphite layer, (b) a two-dimensional and flexible film of carbon nanocups,
and (c) the side view of carbon nanocups (100 nm diameter and 200 nm length) connected with a
graphitic layer of 10 nm thicknesses. Scale bars are 200 nm. (d) A TEM image shows connected arrays
of carbon nanocup film with 80 nm diameter and 80 nm length. Scale bar is 50 nm. (e) Raman spectra
taken from MWNTs (10 µm in length), long nanocups (180 µm in length), and short nanocups (60 nm
in length). Reproduced with permission from [27]. Copyright (2009) American Chemical Society.

The CNC film is fabricated using the AAO template that was fabricated by a two-step anodization
process. A high-purity Al foil (Alfa Aesar, 99.99%) was first anodized at 40–45 V for 4 h in 3–5%
oxalic acid (C2H4O2) solution at room temperature. Then, the anodized film was dipped into an
acid mixture solution (5% of phosphoric and 5% of chromic acid) for 24 h. After the removal of the
first anodized aluminum layer, the second anodization, which plays a crucial role in controlling the
dimension of CNC, was performed. To fabricate the shorter aspect ratio CNC, the second anodization
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was performed for extremely short time of 20–40 s, and this resulted in 80–200 nm of length. After that,
the sample was soaked into the phosphoric acid again for 1 h to widen the diameter of the nanochannel.
After the preparation of a well-controlled AAO template, the carbon was deposited on the template by
a chemical vapor deposition (CVD) using acetylene as a carbon source. After the deposition of the
graphitic carbon layer on the AAO template, the sample was soaked in 33% of the hydrofluoric acid
solution to remove the AAO template. Finally, a self-standing and flexible thin CNC film was achieved.

Raman spectroscopy was performed using a 532 nm laser probe to investigate the lattice structure
and graphitization of the nanocup structure. The disorder-induced D band is an indicator of presence
of defects while the G band (~1600 cm−1) is associated with the tangential modes of the graphene
structure. The D and G bands have been observed in the spectral range of 1200–1700 cm−1 [47,48].
Figure 2e shows the Raman spectra obtained from multiwalled carbon nanotubes (MWNTs) with
10 µm length and nanocups of similar diameter that have different lengths of 180 µm (nanocup 1) and
60 nm (nanocup 2). We have observed that the peak intensity ratios (ID/IG) are about 0.41 and 0.45 for
long and short CNCs, respectively, comparable to that of long MWNTs (10 µm in length, ID/IG = ~0.32).
This result indicates that the degree of disorder of the carbon nanocup structures is comparable to that
of MWNTs.

2.2. Branched Carbon Nanocups (B-CNC) Thin Film

Figure 3 shows SEM images of CNCs (3a−c) and branched CNCs (3d−f). To fabricate branched
CNCs, CNCs were first fabricated with channels of 80 ± 10 nm in diameter and 140 ± 10 nm in length.
Afterwards, branches were developed at the bottom of the nanocups with 25 nm in diameter and
330 ± 10 nm in length. Such branched CNCs maximize the surface area of the thin film, and this highly
dense and ordered array of nanocups with continuous graphitic thin film can be an ideal electrode
material for energy storage devices. This branched CNC thin film shows attractive features such as
excellent flexibility and strong mechanical strength, precisely controllable structure, and even improved
porosity with a large surface area.
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Figure 3. SEM images of CNC. SEM images of (a) concave and (b,c) convex, and (d–f) branched
nanocup films. (b) SEM image of convex nanocup film with 80 ± 10 nm in diameter and 140 ± 10 nm in
length, and (c) shows a high magnification of (b). (e,f) Cross-sectional views of (d) branched nanocup
film, and (f) is a high magnification image of (e), where short carbon nanotubes (25 nm in diameter
and 330 ± 10 nm in length) are branched from the bottom of a nanocup. The inset figures, respectively,
show schematics of concave, convex, and branched convex nanocup film. Reproduced with permission
from [37]. Copyright (2012) Springer Nature.
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The fabrication of branches on the bottom of CNC follows the same procedure as CNC film
fabrication (Section 2.1). After an hour of widening process, a third anodization is carried out for 5 min
at 25 V in a 3% oxalic acid solution. The graphitic carbon deposition by CVD using acetylene was then
followed, resulting in the production of a continuous film of branched nanocups. The surface area of
the branched CNC film was calculated as 63 m2/g, while CNC film (convex type) showed surface area
of 49 m2/g. When this branched CNC film was used as an electrode, the surface area exposed to the
electrolyte was 2.3 times higher than the typical convex CNC film. Further, this film showed excellent
electrical conductivity of 117 S/m, which is higher than the regular activated carbon electrode [49].

2.3. Carbon Nanotubes (CNTs)–CNC Hybrid Structure

The hybrid structure of CNTs and CNCs was developed to increase the surface area to be even
greater than the branched CNC film. The vertically aligned CNTs were grown on the CNC by two steps
of the CVD process. Figure 4a shows SEM images of the well-organized and interconnected CNCs
with low aspect ratio, and Figure 4b shows CNTs–CNC hybrid structure. CNC film was prepared by
AAO nanochannels and catalyst-free CVD process, as explained in Section 2.1. To fabricate CNTs–CNC
hybrid structure, 1.5 nm of iron was deposited on the surface of the prepared CNC layer as a catalyst for
CNTs growth. Then, vertically aligned CNTs were grown by a water-assisted CVD technique [50,51].
The water-assisted CVD process did not exceed 650 ◦C to avoid melting of AAO template. This second
CVD process resulted in highly dense vertically aligned CNTs with 5–10 µm of length on the porous
CNC structure (Figure 4b).
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Figure 4. Schematic drawing of SEM images from CNCs and CNTs−CNC hybrid structure. (a) Schematic
illustration of CNC. (a1) SEM image on the top surface of CNC, (a2) a low-magnification SEM of
the cross-sectional view, and (a3) high-magnification cross-sectional images. The scale bars are 200,
200, and 120 nm, respectively. The images clearly show hollow structures with low aspect ratio.
(b) Schematic of vertically aligned CNTs grown on the surface of CNC. (b1) A top-view SEM image of
vertically aligned CNTs, (b2) a side view of low-magnification SEM image, and (b3) high-magnification
SEM image of a vertically aligned CNTs−CNC structure. The scale bars are 200, 4, and 400 nm,
respectively. Reproduced with permission from [36]. Copyright (2012) American Chemical Society.
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The specific surface area of CNC arrays was measured by surface adsorption analysis using the
Brunauer–Emmett–Teller (BET) theory, and it was 810 m2/g. The high porous CNC film showed larger
specific surface area than the experimentally synthesized CNTs (700–790 m2/g) [52,53]. The CNC film
itself had high specific surface area, but the CNTs–CNC hybrid structure showed even higher specific
surface area of 1340 m2/g. The increased surface area of the CNTs–CNC hybrid structure indicated that
vertically oriented CNT walls provide surface exuberance towards the nanocups. The CNTs–CNC
hybrid structure provides higher surface area than CNTs itself [36,52] and has a continuous CNC film
on the bottom that increases electrical conductivity.

3. Branched CNC for Electrodes of Flexible and Transparent Supercapacitors

A branched CNC film can be used as a nanofabricated carbon electrode that has a porous template
with complex shape and a porous interconnected array mold to create a mechanically flexible and
optically transparent thin-film solid supercapacitor. The elegantly textured graphite film acts as an
electrode, and a current collector acts as an integrated thin-film supercapacitor with the solid polymer
electrolyte. The unique morphology of a nanostructured electrode and conformal electrolyte packages
are powerful in providing sufficient energy and power density for energy storage devices, in addition
to their excellent mechanical flexibility and optical transparency.

The branched CNC film has a two-dimensional structure with an extremely large surface area,
which is an attractive feature for electrodes. The length of branches was optimized to maximize the
interfacial area between electrodes and polymer electrolytes and also controlled to obtain optical
transparency. The branched CNC film has 2.3 times greater interfacial area exposed to the electrolyte
than that of normal CNC films. The branched CNC film is also unique in that it has well-organized
nanocups in the innermost layer similar to normal CNC films. In contrast, the outmost layer, i.e., surface
of branches, shows a defective and a forest-like surface (Figure 3). These defects of the branches
can be reactive sites and serve as interfaces between electrode and electrolyte resulting in effective
charge transfer.

The transparent and flexible supercapacitors were fabricated by impregnating branched CNC film
electrodes in transparent polymer electrolyte films (Figure 5a). The branched CNC film was transferred
to polydimethylsiloxane (PDMS) and released from AAO template by dissolving aluminum oxide layer
in a mixed solution of copper chloride and hydrochloric acid. The branched CNC–PDMS film shows
transparent and flexible features with a transmittance of 71% at a wavelength of 550 nm. The organized
nanocup layer in the branched CNC film functions as a current collector, while the defective branches
on top function act as an electrode. Polyvinyl alcohol-phosphoric acid (PVA-H3PO4) was used as an
ionic polymer electrolyte as well as a separator. In order to obtain an effective electrolyte thickness
(12 µm), PVA-H3PO4 solution was spin-coated on the branched CNC film at 500 rpm.

The rectangular cyclic voltammetry (CV) curve (Figure 5b) was obtained at a very high scan
rate (500 mV/s), exhibiting the high performance of branched CNC supercapacitors. Capacitance
of 409 µF cm−2 was calculated by geometric area from Galvanostatic charge/discharge (CD) curves.
When the electrochemically active surface is maximized by modifying CNC film to branched CNC
film, the measured specific capacitance is six times higher than the value reported for the single-layer
graphene device [54]. The branched CNC supercapacitor device offers higher transparency than
the reported value for laser-scribed graphene electrochemical capacitors [55], when using the same
electrolyte. By increasing temperature to 80 ◦C from room temperature, capacitance increased three
times (1220 µF cm−2) than capacitance at room temperature (Figure 5c,d). The peak volumetric
power and energy density of the branched CNC supercapacitor were 19 mW/cm3 and 47 µWh/cm3,
respectively (Figure 5e). The supercapacitor devices exhibited long life cycle stability, even under
mechanical stress (45◦ bending): greater than 84% of the initial capacitance after 10,000 cycles. For the
demonstration, a prototype of a large area supercapacitor film (3 cm × 1.5 cm) was manufactured,
and the light-emitting diode (LED, working potential 1.5 V) was successfully turned on for 20 min
after charging at 2.5 V for 15 min (Figure 5f,g).
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Figure 5. (a) Schematics of the fabrication process of a branched CNC-based supercapacitor.
(b–e) Electrochemical properties of branched CNC supercapacitor devices: (b) cyclic voltammetry (CV)
measured with 10–500 mVs−1 scan rates. (c) Galvanostatic charge/discharge (CD) results measured
at constant current density of 5 µAcm−2. (d) The capacitance changes as a function of temperature
(20 to 80 ◦C). (e) Ragone plot (SG: single-layer graphene [54], RMGO: reduced multilayer graphene
oxide [54], HGO: hydrated graphitic oxide [56], LSG-EC: laser-scribed graphene electrochemical
capacitor [55]). (f,g) Optical pictures demonstrating optical transparency and mechanical flexibility
of a large-scale CNC supercapacitor films. Reproduced with permission from [37]. Copyright (2012)
Springer Nature.
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The branched CNC film’s unique morphological and structural features allow for excellent
conformal packing of polymer electrolytes, maximizing active electrochemical surface area and
achieving high energy densities. The device design enables mechanically flexible energy storage
devices. It can be integrated into roll-up displays, wearable devices, organic solar platforms, and other
unique applications requiring high form factor and light transmission.

4. CNTs–CNC Hybrid Structure Electrodes for High Power Supercapacitors

In order to apply CNC films to energy storage devices as an electrode, they need to have high
porosity or high surface area to deliver high supercapacitor performance. When electrodes have
large surface area like porous carbon electrodes [57,58], the amount of interaction between electrolyte
ions and electrodes can be increased. Therefore, carbon nanostructured materials such as activated
carbon, carbon nanotubes (multi-walled and single-walled CNTs), carbon nanowire, spherical carbon
nanoparticles, and single-layer to few-layered graphene structures are used as main material of
electrodes [58–64]. CNTs–CNC hybrid structure is a combination of a continuous 2D film of carbon
nanocups array and a three-dimensional CNT forest on top of CNC. The increased surface area of
the CNTs–CNC hybrid structure improves the electrochemical properties of the supercapacitor by
providing a large interfacial area. The larger interfacial area provides interactive sites where electrolyte
ions can interact with the electrode surface, and CNTs provide high electrical conductivity.

To fabricate the supercapacitors using CNTs–CNC hybrid structure as an electrode, a thin layer
of poly(methyl methacrylate), PMMA, was spin-coated on top of the CNTs–CNC–AAO structure,
then AAO template was dissolved by chemical etching. The Au layer was coated on the bottom
of the CNC layer after removal of the AAO template, where the layer works as a current collector.
The supercapacitor was fabricated by stacking two symmetric electrodes with the filter paper in
between (Figure 6a). Both the thin PMMA film and the filter paper work as a polymer electrolyte
and separator, respectively. Specifically, 1 M of LiPF6 electrolyte in ethylene carbonate and dimethyl
carbonate (1:1, v/v) was used to soak both separators, PMMA and filter paper. By soaking in the
electrolyte solvent, the polymer separator formed a polymer-gel electrolyte. Since the CNTs inside of
the nanocups have a cylindrical shape and can be interpreted as an exohedral type, the CNTs–CNC
supercapacitor needs to be considered as a combination of the electric two-cylinder capacitor (EDCC)
and electric double-layer capacitors (EDLC).

The electrochemical behavior of CNTs–CNC supercapacitor was tested and compared with the
CNC electrode to demonstrate performance enhancement. Figure 6b–e shows the electrochemical
properties of CNTs–CNC supercapacitor. The specific capacitances of the CNTs–CNC supercapacitor
was calculated as 45 F/g, while that of the CNC supercapacitor was 30 F/g. The capacitance of a CNC
supercapacitor is 0.6 mF/cm2 when the capacitance is normalized with respect to the geometric area,
which is comparable with the report of onion-like carbon electrodes [65]. The areal capacitance was
improved to 1.0 mF/cm2 by growing of vertically aligned CNTs on CNC. Furthermore, the cyclic
stability tests of CNT-CNC supercapacitors show stable capacitance up to 10,000 charge/discharge cycles
(Figure 6e). Experimental results show that the three-dimensional CNT-CNC hybrid design nearly
doubled the areal specific capacitance of supercapacitors through improved charge accommodation.
Figure 6d shows that the nanoscale contact between the CNT-CNC electrode and deposited Au
current collector has a low equivalent series resistance of 23 Ω per unit area (m2). The CNTs-CNC
supercapacitors showed improved specific and areal capacitance when compared to the CNC
supercapacitors. By increasing the specific surface area via the growth of CNTs on the CNC layer,
the capacitance and the supercapacitors’ cell performance significantly improved.



Nanomaterials 2020, 10, 1862 9 of 15Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 16 

 

 
Figure 6. (a) Schematic of the supercapacitor consisted of two CNT−CNC hybrid structures on Au 
current collectors. (b) Cyclic voltammograms of supercapacitor cells having CNC and CNT−CNC 
electrodes, at a scan rate of 1 mV/s in 1 M LiPF6 electrolyte. (c) Galvanostatic charge−discharge 
behavior of supercapacitor cells with CNC and CNT−CNC electrodes, at an applied constant current 
of 10 μA in 1 M LiPF6 electrolyte. (d) Complex-plane impedance spectrum of supercapacitor cell 
having a CNT−CNC electrode, measured at AC amplitude of 10 mV, in 1 M LiPF6 electrolyte. The 
inset shows the impedance spectrum of the initial state. (e) Areal capacitance vs. cycle number plot of 
supercapacitors having CNT−CNC electrodes. Reproduced with permission from [36]. Copyright 
(2012) American Chemical Society. 

5. CNC Container System for Liquid Metal Nanodroplet Dynamics Study 

CNC can be engineered to be an effective nanocontainer system due to its open nanoscale cup 
morphology, strong C-C covalent bonds, and multilayered graphitic nature. The low aspect ratio 
open cup morphology and the graphitic nature makes CNC structure a powerful template for 
container systems at nanoscale. With strong C-C covalent bonds, CNC is robust to prevent change in 
volume and interfacial area upon heating. Various metals have been successfully inserted inside the 
nanocups using the evaporation method, followed by thermal annealing process [27]. 

The dynamic movements of molten Pb nanoparticles in CNC containers were directly observed 
using in-situ TEM. It shows random collective motions driven by collisions when the lead (Pb) metal 
is trapped inside the sealed CNC nanocontainers and is thermally activated. CNC containers were 

Figure 6. (a) Schematic of the supercapacitor consisted of two CNT−CNC hybrid structures on Au
current collectors. (b) Cyclic voltammograms of supercapacitor cells having CNC and CNT−CNC
electrodes, at a scan rate of 1 mV/s in 1 M LiPF6 electrolyte. (c) Galvanostatic charge−discharge
behavior of supercapacitor cells with CNC and CNT−CNC electrodes, at an applied constant current
of 10 µA in 1 M LiPF6 electrolyte. (d) Complex-plane impedance spectrum of supercapacitor cell
having a CNT−CNC electrode, measured at AC amplitude of 10 mV, in 1 M LiPF6 electrolyte. The inset
shows the impedance spectrum of the initial state. (e) Areal capacitance vs. cycle number plot of
supercapacitors having CNT−CNC electrodes. Reproduced with permission from [36]. Copyright
(2012) American Chemical Society.

5. CNC Container System for Liquid Metal Nanodroplet Dynamics Study

CNC can be engineered to be an effective nanocontainer system due to its open nanoscale cup
morphology, strong C-C covalent bonds, and multilayered graphitic nature. The low aspect ratio open
cup morphology and the graphitic nature makes CNC structure a powerful template for container
systems at nanoscale. With strong C-C covalent bonds, CNC is robust to prevent change in volume
and interfacial area upon heating. Various metals have been successfully inserted inside the nanocups
using the evaporation method, followed by thermal annealing process [27].

The dynamic movements of molten Pb nanoparticles in CNC containers were directly observed
using in-situ TEM. It shows random collective motions driven by collisions when the lead (Pb) metal
is trapped inside the sealed CNC nanocontainers and is thermally activated. CNC containers were
able to withhold increases in metal particles’ size and their drastic changes in mobility. The size of
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Pb nanoparticles inside the CNC containers can be precisely controlled by the deposition time of Pb.
Then, the free space inside of CNC containers can be calculated, and the motion of nanodroplet can be
determined when heat is applied.

The fabrication process of Pb nanoparticles in the CNC system is illustrated schematically in
Figure 7a. CNC nanocontainer was fabricated using precisely controlled low aspect ratio nanopores
inside the AAO templates, followed by a thermal chemical vapor deposition of acetylene (C2H2)
at 650 ◦C and Ar ion milling processes [27,37]. Different-sized Pb nanoparticles were inserted in
the nanocup container by controlling the thickness of Pb deposition and thermal annealing in the
Argon environment. During the annealing process, thermal re-evaporation occurred at the deposited
metal layer inside the nanocups, and Pb nanoparticles were formed inside the nanocontainer. Finally,
the nanocup containers with Pb nanoparticles were sealed with an amorphous carbon layer at the open
end, constructing a closed nanocup system.Nanomaterials 2019, 9, x FOR PEER REVIEW 12 of 16 
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Figure 7. (a) Schematic of the overall process in making a closed CNC container system filled with
different-sized Pb nanoparticles. (b) Large size Pb nanodroplet at 630 K inside nanocontainer. (c) Two
small Pb nanodroplets at 600 K inside nanocontainers. (d) The size of Pb nanodroplet gradually
decreases in the open CNC container due to evaporation. Originally, at 640 K, the liquid Pb nanodroplet
stopped motion and became spherical. After 0.03 s, this stationary Pb droplet moved towards the
edge of the nanocontainer. At 670 and 770 K, the nanodroplet formed a meniscus shape. Eventually,
the liquid Pb changed to a hollow, concave shape at 820, 825, 830, 835, and 840 K, respectively. All scale
bars are 20 nm. Reproduced with permission from [38]. Copyright (2013) Springer Nature.
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In situ TEM studies were performed to directly observe the motions of Pb nanodroplets in the
sealed CNC containers. The temperature of the CNC container to complete solid-to-liquid phase
transition increased to 630 and 600 K for large Pb nanoparticles (60 nm in diameter) and small Pb
nanoparticles (15–20 nm in diameter), respectively, as confirmed by molecular dynamics simulations.
As shown in Figure 7b, at the early period of heating, larger Pb nanoparticles melted and started to
fluctuate in both radial and axial directions inside the cylindrical CNC container. This motion became
more significant along the axial direction over time. Meanwhile, smaller Pb nanodroplets showed
constant movement inside the nanocontainer as shown in Figure 7c. Compared with the motion of the
larger droplets, individual movements of smaller nanodroplets appeared more random at much faster
rate. The linear increase in the mean square displacement (MSD) of their position in two-dimensional
space is indicative of the Brownian dynamics for the smaller droplets. The droplets remain active only
in closed environments, and they become immobile and likely to evaporate to the outside vacuum
environment when in open CNC containers (Figure 7d).

The difference in the mobilities and the diffusion properties of metal nanoparticles appear to be a
function of their size, wetting, and constraints. The particles remain active only in a closed environment,
and once exposed to vacuum, they become vulnerable to evaporate. The results indicate that in a
closed state, nanodroplets undergo Brownian motion, maintaining high mobility. The study of metal
nanodroplets constrained in both closed and open CNC containers are important for understanding
the effects of constraining the activity of nanostructures in environments such as porous structures.
The CNC system shows high potential to be used as a nanoscale container for both open and closed
structure in various applications such as drug delivery, sensors containing nanoparticles, and nanoscale
multicomponent systems.

6. Conclusions and Future Perspectives

Low aspect ratio graphitic nanoscale architecture based on CNC film exhibits high potential
in various applications due to excellent features such as high transparency, flexibility, and large
specific surface area. The morphology of the film can be easily modified by forming branches
at the bottom of the CNC or by growing CNT forests on the top of the CNC film. This review
demonstrated the successful use of highly engineered CNC film as electrodes for flexible, transparent,
and high-performance supercapacitors. Both the branched CNC and the CNTs–CNC hybrid structure
showed higher performance and capacitance over the standard CNC film. The standard CNC film can
be further tailored to achieve adaptability for various applications. This paper also showed the study
of the dynamics of liquid metal nanodroplets in the CNC container system. The CNC film may be
used as a container for multicomponent structures, e.g., as applications in surface-enhanced Raman
scattering (SERS), nanomedicine, and nanometrology.
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