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Abstract: Monolayer and multilayer molybdenum disulfide (MoS2) materials are semiconductors
with direct/indirect bandgaps of 1.2–1.8 eV and are attractive due to their changes in response to
electrical, physicochemical, biological, and mechanical factors. Since the desired electrical properties
of MoS2 are known, research on its electrical properties has increased, with focus on the deposition
and growth of large-area MoS2 and its functionalization. While research on the large-scale production
of MoS2 is actively underway, there is a lack of studies on functionalization approaches, which
are essential since functional groups can help to dissolve particles or provide adequate reactivity.
Strategies for producing films of functionalized MoS2 are rare, and what methods do exist are either
complex or inefficient. This work introduces an efficient way to functionalize MoS2. Functional
groups are formed on the surface by exposing MoS2 with surface sulfur vacancies generated by
plasma treatment to 3-mercaptopropionic acid. This technique can create 1.8 times as many carboxyl
groups on the MoS2 surface compared with previously reported strategies. The MoS2-based gas
sensor fabricated using the proposed method shows a 2.6 times higher sensitivity and much lower
detection limit than the untreated device.
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1. Introduction

As a 2D material, graphene has been demonstrated to exhibit differing electrical and optical
properties depending on factors such as electrical and magnetic fields [1], strain [2], stacking
geometry [3], and edge chirality [4,5] However, many have realized the applicability limitations of
graphene since it does not have a bandgap, which has raised interest in transition-metal dichalcogenide
(TMD) materials. TMD materials consist of hexagonal metal atoms (M) sandwiched between two
chalcogen atomic layers (X), which form 3D crystals through the lamination of adjacent sheets
through van der Waals interactions. TMD materials are potentially useful in electronics owing to their
superconductivity [6] and charge density wave effects [7].

Monolayer and multilayer molybdenum disulfide (MoS2), one of the most studied TMDs,
are semiconductors with direct/indirect bandgaps of 1.2–1.8 eV [8,9] and are highly attractive due
to the considerable environment-dependent changes in their electrical [10–13], physicochemical [14],
biological [15], optical [16], and mechanical properties [17]. Particularly, a field-effect transistor with
monolayer MoS2 exhibited highly favorable electrical properties such as a mobility of 200 cm2/(V s),
on/off ratio of 108, and sub-threshold swing of 70 mV/dec [11]. Since these electrical properties of MoS2
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were revealed, related studies have increased, and research toward extending its applicability has
focused on large-area deposition and growth [18–21] and functionalization [22–25]. While significant
progress has been made toward large-scale MoS2, studies on functionalization techniques have yet
to be actively conducted. Functional surface ligands consist of an anchor group that can attach to
gas molecules, nanocrystals, biomaterials, etc. Particularly, functional groups can help dissolve the
particles and provide adequate reactivity. Therefore, functionalization strategies for these materials are
necessary. Detailed strategies must be established since some functionalization techniques for carbon
nanotubes are not suitable for TMD materials.

Attempts have been intermittently made to introduce new MoS2 functionalization strategies.
Recently, a report described an approach to directly and simply functionalize MoS2 using nitrilotriacetic
acid [22]. However, the method requires a transition-metal cation with a high sulfur affinity and
octahedral coordination since the direct anchoring of organic ligands to the sulfur surface is impossible.
Although their new method was simple, the application of transition-metal cations complicates
the process. Chen et al. and Chu et al. introduced methods for functionalizing MoS2 using
4-nitrobenzenediazonium tetrafluoroborate [23] and cysteine [24], respectively, after generating sulfur
vacancies, but neither described how to generate the sulfur vacancies or gave detailed experimental
methods. The direct synthesis of various organic functional groups on MoS2 thin films has also been
reported [25], but the method is less efficient than the proposed method and lacks optimization.

2. Materials and Methods

Tri-layer MoS2 films grown through CVD were obtained from 6carbon (Shenzhen, China).
Gold paste (C2041206P2) as a gas sensor pad was purchased from Gwent (Pontypool, UK).
3-Mercaptopropionic acid (MPA) was purchased from Sigma-Aldrich (St. Louis, MO, USA), and a
40 mM MPA solution was prepared using a mixture of 99% ethanol and deionized (DI) water.

The fabricated MoS2-based gas sensor was characterized by scanning electron microscopy (SEM)
(Hitachi, Tokyo, Japan), and the change in resistance in response to the constituent gas concentration
was measured using an LCR meter (Hioki, Nahano, Japan). The chemical composition for each
experimental step was investigated using X-ray photoelectron spectroscopy (XPS) (Thermo, MA,
U.S.A). The sulfur vacancies and MoS2 thickness after plasma treatment were measured by Raman
spectroscopy (LabRAM, Horiba KOREA, Bucheon, Korea) and atomic force microscopy (AFM)
(Shimadzu, Kyoto, Japan), respectively.

The MoS2 film grown by CVD on a 3 mm × 3 mm SiO2/Si substrate was plasma-treated at 10 W for
2 s in an Ar+ atmosphere to create sulfur vacancies. The plasma-treated MoS2 film was then exposed
to the MPA solution overnight to form coordinate bonds between the HS groups in MPA and sulfur
vacancies. To fabricate the gas sensor pad, the gold paste was screen-printed onto both ends of the
functionalized MoS2 film. Figure 1 shows a schematic diagram and SEM image of the functionalized
MoS2-based gas sensor.
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Figure 1. (a) Schematic representation and (b) SEM image of the gas sensor prepared with an MoS2

film functionalized by plasma treatment for 2 s at 10 W and exposure to an 3-Mercaptopropionic acid
(MPA) solution overnight.

3. Results and Discussion

The presence of functional groups on a sensing material is a crucial factor in determining its
performance since they can increase the sensitivity. Figure 2 shows the functionalization process of
the MoS2 films. The first step involves the generation of sulfur vacancies by plasma treatment. Since
MoS2 is a 2D material, it is highly susceptible to physical damage, and thus a weak and chemically
inactive plasma treatment should be performed. Since the minimum power of our home-built plasma
equipment is 10 W, the plasma power was fixed at 10 W, and Ar ions were used as plasmons for their
chemical inactivity. As shown in Figure 3a, AFM analysis was conducted to examine the physical
changes in the MoS2 film over the treatment period. The thickness of a three-layer MoS2 film is
theoretically 2.3 nm [8,9,26], which was the same as the thickness measured by AFM analysis. As the
treatment time increased, the MoS2 film was physically etched at a rate of 0.6 Å/s. The etch rate of
the Ar plasma was notably slower than those reported for previous studies using oxygen plasma [11],
indicating that Ar plasma is more suitable for the generation of sulfur vacancies in MoS2 films.
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2g mode has been explained by the less-efficient inter-layer coupling of the in-plane
phonons [27]. As the MoS2 becomes the generation of sulfur vacancies was confirmed to be 2 s, since
the physical thickness of sulfur is 0.176 nm thinner, the E1

2g frequency increases and the A1g frequency
decreases, thereby reducing the frequency difference. This frequency difference for the MoS2 film
treated for 8 s was reduced from 23.21 for the untreated film to 21.89 cm−1. A previous paper reported
this frequency difference for a bilayer MoS2 film as 21.61 cm−1 [28]. Therefore, the Raman analysis
indicates that the treatment time required to etch one layer was 8 s in the proposed method. Thus,
to form sulfur vacancies in a 3-layer MoS2 film without removing a layer, a treatment time of less than
8 s is required. As demonstrated by the AFM analysis (Figure 3a), the treatment time for the generation
of sulfur vacancies was confirmed to be 2 s, since the physical thickness of sulfur is 0.176 nm.

The XPS S 2p and Mo 3d deconvolutions further supported the generation of sulfur vacancies by
the plasma treatment (Figure 4). The Mo 3d 5

2
and S 2p 3

2
peaks of the MoS2 film appeared at 229.3 and

162.2 eV, respectively, which have previously indicated an MoS2 film with three layers [25]. The S/Mo
ratio can be calculated as the area ratio of the S 2p orbital representing the number of S atoms and
the Mo 3d orbital representing the number of Mo atoms. Using the integral, the area of each orbital
according to the XPS result was calculated, and the S/Mo ratio was calculated to compare before and
after plasma treatment. The untreated MoS2 film showed the ideal S/Mo ratio of 1.91, while that of the
plasma-treated MoS2 film was 1.51, demonstrating the formation of sulfur vacancies [29].
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Figure 4. Chemical compositions of MoS2 films (a) before and (b) after plasma treatment. After the
plasma treatment, the S/Mo ratio decreased from 1.91 to 1.51, indicating the creation of sulfur vacancies.

For the functionalization of the MoS2 surface, the MoS2 film with sulfur vacancies was exposed
to an MPA solution. MoS2 has been used as a hydrodesulphurization catalyst because surface sulfur
vacancies tend to form covalent bonds with sulfur-containing groups. As a result, molecules with
thiol functional groups chemically bond to the sulfur vacancies formed on the MoS2 surface [30,31].
The chemical components of the MoS2 films with sulfur vacancies treated in solutions of MPA at
different concentrations were measured by XPS to determine the optimized MPA concentration
(Figure 5a). The measured absorbance spectra presented four peaks; the first at 285 eV was assigned
to sp2-hybridized carbon atoms, and the other three at 286.06, 288.51, and 288.97 eV were assigned
to oxygen-containing hydroxyl (C−O), carbonyl (C=O), and carboxyl groups (−COO), respectively.
The presence of these oxygen-containing group features implies that the functional groups were stably
bonded to the MoS2 film [32]. From the XPS results for different MPA concentrations, the atomic
ratio corresponding to carboxyl groups increased for concentrations up to 55 mM and then decreased,
potentially because high concentrations of MPA may form inter-MPA disulfide bridges (Figure 5b).
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optimized concentration had 1.8 times more carboxyl groups than the film prepared by the previously
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Figure 5 also compares the effectiveness of the proposed and previous method for the formation
of functional groups. The exfoliation process by n-butyllithium deforms the crystal structure of MoS2

and introduces defects mainly at the edges of the exfoliated 2D material [25]. Conversely, the defects
introduced by the plasma treatment were evenly generated on the MoS2 surface, and thus more
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defects were created compared with the exfoliation process. As previously mentioned, since thiol
functional groups covalently bond to the defect sites, the number of defect sites is a crucial factor in the
functionalization of the nanosheets. As illustrated by the C 1s deconvolution in Figure 5, approximately
1.8 times more carboxyl groups were produced using the proposed strategy compared with the amount
generated by the previously published methods.

As shown in Figure 6, the analytical performance characteristics of the functionalized MoS2 films
were confirmed using an NH3 gas sensor. The electrical properties of MoS2 are highly sensitive to
charge transfer between adsorbed molecules and the 2D films. According to theoretical studies, NH3

interacts weakly with perfect films and induces little charge transfer [33,34]. From the theoretical
studies discussed above, it can be expected that the functionalized MoS2-based gas sensor has a higher
sensitivity than the pristine MoS2-based sensor. Therefore, the adsorption of NH3 onto defect-free
films is difficult, whereas MoS2 films with functional groups can easily adsorb the gas. Additionally,
the adsorption barrier of functionalized MoS2 films is further lowered by pre-dissociated oxygen atoms,
which results in an increase in the charge transfer rate [35]. Both the untreated and functionalized
devices exhibited an increase in resistance upon exposure to NH3 gas [36]. Figure 6c presents
the calibrated response curves for different gas concentrations of the untreated and functionalized
MoS2-based sensors. The device with untreated MoS2 had a sensitivity of 0.0075 at a gas concentration
range of 0–22 ppm. On the other hand, the functionalized MoS2-based sensor showed a sensitivity of
0.02 for the same range, which is 2.6 times higher. This enhanced sensitivity is attributable to a reduced
electron-withdrawing ability from the formation of hydrogen bonds between the functional groups
and polar NH3 molecules [37]. Moreover, the device with the functionalized MoS2 film showed a
detection limit two times lower than that of the untreated device.
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4. Conclusions

In this study, a technique for the stable functionalization of MoS2 was investigated. Although
it is difficult to produce functional groups on 2D materials, it is possible to stably form functional
groups on MoS2 films through treatment with weak plasma and successive exposure to MPA. Sulfur
vacancies were formed on the MoS2 film surface by a minimal plasma treatment (10 W and 2 s),
and then carboxyl groups were formed through coordinate bonds at the sulfur vacancies using an MPA
solution. The stable functionalization of MoS2 using this strategy was confirmed by the performance of
an NH3 sensor. The functionalized MoS2-based device at low gas concentrations exhibited a 2.6 times
greater sensitivity than the device with the untreated MoS2 film since the adsorption of NH3 onto
perfect films is not only difficult but also causes weak charge transfer. Furthermore, the MoS2 films
with functional groups provided lower detection limits since they allow for easier gas adsorption.
The proposed strategy is suitable for the fabrication of sensors based on other 2D materials in addition
to MoS2-based devices.
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