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Abstract: Co3+ doping in BiFeO3 is expected to be an effective method for improving its magnetic
properties. In this work, pristine BiFeO3 (BFO) and doped BiFe1-xCoxO3 (BFCxO, x = 0.01, 0.03,
0.05, 0.07 and 0.10) composite thin films were successfully synthesized by a sol–gel technique.
XRD and Raman spectra indicate that the Co3+ ions are substituted for the Fe3+ ion sites in the BFO
rhombohedral lattice. Raman vibration of oxygen octahedron is obviously weakened due to the
lattice distortion induced by the size mismatch between two B-site cations (Fe3+ and Co3+ ions),
which has an impact on the magnetic properties of BFCxO. SEM images reveal a denser agglomeration
in Co-doped samples. TEM results indicate that the average size of grains is reduced due to the
Co3+ substitution. XPS measurements illustrate that the replacement of Fe3+ with Co3+ effectively
suppresses the generation of oxygen defects and increases the concentration of Fe3+ ions at the
B-site of perovskite lattice. Vibrating sample magnetometer (VSM) measurements show that the
remanent magnetization (Mr) of BFC0.07O (3.6 emu/cm3) and the saturation magnetization (Ms) of
BFC0.10O (48.84 emu/cm3) thin film both increase by approximately two times at room temperature,
compared with that of the pure BFO counterpart.
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1. Introduction

Recently, magnetoelectric and multiferroic materials have attracted considerable attention due to
their abundant physical properties and potential applications in sensors, spintronic devices, memory
devices, magnetoelectric devices, capacitors, nonvolatile logic, etc. [1,2]. BiFeO3 (BFO), a kind of single
crystal multiferroic material, is one of the most well-known compounds of ABO3 perovskite, and its
G-type structure shows both (anti-) ferromagnetism and ferroelectricity at room temperature [2,3].
BFO always crystallizes with the rhombohedral structure (space group, R3c) where Bi3+ ions occupy the
A-site and Fe3+ ions occupy the B-site in the distorted perovskite lattice [4,5]. It has been reported that
the super-exchange interaction between Fe3p and O2p ions plays an important role in the ferromagnetic
properties of BFO. The ferroelectric properties stem from the off-center displacement of 6s2 lone
pair electrons of Bi3+ ions [6,7]. Meanwhile, the potential magnetoelectric coupling effect in BFO
has also attracted much attention [8,9]. However, BFO always shows a long-range spin cycloid
structure (Figure 1) because the impurity phases (such as Bi2Fe4O9, Bi24FeO40, etc.) are mixed in its
rhombohedral phase, thus limiting its potential applications [10,11]. Therefore, great efforts have been
made to improve the structures and properties of BFO by means of ions doping, such as A-site doping
rare-earth (Er3+, La3+, Sm3+ and Ho3+, etc.) or divalent alkaline-earth metal ions (Ba2+, Ca2+, Sr2+,
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etc.), B-site doping transition metal ions (Cr3+, Mn4+, Ti4+, etc.) and A–B-site co-doping (Ho–Mn,
Ce–Zr, Sm–Zr, etc.) [9–17].
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Figure 1. Simulated crystal structure of perovskite BiFeO3 (BFO) (a) and Co substitution BFO (b),
and the corresponding super-exchange interaction of Fe–O–Fe (c) and Fe–O–Co (d).

Trivalent cobalt (Co3+) is a typical transition metal ion with favorable magnetic activity.
The effective doping of Co3+ ions in ferroelectric materials is of great significance for their applications
in multiferroic memory devices [17,18]. In this work, BiFe1-xCoxO3 (x = 0.00–0.10) (BFCxO) thin films
were synthesized on the Si substrates by the sol–gel technique. The structures, surface morphologies,
and magnetic properties of BiFe1-xCoxO3 (x = 0.00–0.10) thin films were established by the XRD, XPS,
Raman, SEM, TEM and vibrating sample magnetometer (VSM). In particular, the magnetic properties
of doped BFCxO thin films were significantly improved compared with those of the pristine BFO
counterpart. The underlying reasons for the enhanced magnetic properties were also investigated
and discussed.

2. Experimental Details

Pure BiFeO3 (BFO) and BiFe1-xCoxO3 (BFCxO, x = 0.01, 0.03, 0.05, 0.07 and 0.10) composite thin films
were fabricated on Si substrates via the sol–gel technique. High-purity bismuth nitrate [Bi(NO3)3·5H2O]
(Shanghai, China), ferric nitrate [Fe(NO3)3·9H2O] (Shanghai, China) and Cobalt(II) nitrate hexahydrate
[Co(NO3)2·6H2O] (Shanghai, China) were used as the starting materials. These agents were mixed
with ethylene glycol in a specific ratio and stirred thoroughly until clarified. After aging for 24 h,
a homogeneous precursor solution of 0.2 mol/L was obtained. The uniform precursor solution grew on
an impurity-free silicon substrate via the spin-casting method. The spin-coating process was divided
into two steps of 500 rpm for 3 s and 4000 rpm for 20 s, and subsequently, the wet homogeneous films
were pre-annealed at 350 ◦C for 6 min. The above-mentioned process was repeated by spin-coating
each layer to obtain a semi-finished film of moderate thickness. Finally, all semi-finished samples were
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crystallized in air at 500 ◦C for 1 h and then cooled to room temperature to obtain perfect thin films.
The diagram of the experimental procedure is shown in Figure 2.
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Figure 2. Diagram of the preparation process for pure BiFeO3 (BFO) and BiFe1-xCoxO3 (BFCxO, x = 0.01,
0.03, 0.05, 0.07 and 0.10) composite thin films.

The structural characteristics and phase purity of all thin films were analyzed by X-ray diffraction
patterns (XRD) (XRD, Rigaku Corporation, Tokyo, Japan) at room temperature using Cu Kαradiation
(40 kV, 200 mA). The surface morphologies of these samples and the thickness of cross-sections were
characterized by the field emission scanning electron microscopy (FESEM) (Hitachi S-4800, JEOL Ltd.,
Tokyo, Japan) Model Hitachi, S-570. The interplanar spacing of the samples was investigated by
transmission electron microscope (TEM, 200 keV, JEM-2100HR, JEOL Ltd., Tokyo, Japan). A Lake Shore
7407 vibrating sample magnetometer (VSM) (VSM, Lake Shore, Columbus, OH, USA) was used to
investigate the magnetic hysteresis (M–H) loops of the samples at room temperature. Raman spectra
were measured by a Renishaw MicroRaman spectrometer (Renishaw, London, UK) equipped with an
Ar ion laser excitation at 514 nm. X-ray photoelectron spectra (XPS) were conducted via A1 Ka line by
using a Thermo Scientific ESCALAB 250Xi A1440 system (XPS, Thermo Fisher Scientific, Waltham,
MA, USA).

3. Results and Discussion

In order to facilitate the understanding about the doping principle and super-exchange interaction
of BFO, the crystal structures of pure BFO and doped BFCxO are simulated as seen in Figure 1a–d.
As is commonly known, the BFO composite thin film possesses a distorted rhombohedral perovskite
structure (space group R3c). FeO6 octahedron is composed of iron ions at the center and six oxygen
ions in the surrounding areas. Additionally, bismuth ions (the apex position) form a cube in which
FeO6 octahedron is embedded. Fe3+ ions occupy the center of the body and oxygen ions occupy
the center of the surface. In Co3+-doped BFO thin films, two adjacent FeO6/CoO6 octahedrons are
linked by sharing one oxygen anion [19]. Doping Co3+ ions will lead to the random replacement of
some Fe3+ ions at B-site, thus inhibiting the generation of the spin cycloid spiral modulation structure
due to the size effect and chemical strain effect caused by the size mismatch of the two B-site cations
(Fe3+ and Co3+ ions) [20]. Figure 1c,d clearly illustrates that Co ions successfully replace Fe ions and
form high-energy Co–O bonds, leading to an increase in the inclination angle of the super-exchange
interaction [21]. The super-exchange interaction of Fe–O–Fe (or Co) is improved, which is beneficial to
enhancing the magnetic properties of BFCxO (see details below).

Figure 3a,b shows the X-ray diffraction (XRD) patterns of the BiFe1-xCoxO3 (BFCxO, x = 0.00,
0.01, 0.03, 0.05, 0.07 and 0.10) thin films. The diffraction peaks of all the samples are completely
consistent with the standard XRD pattern of the rhombohedral phase (space group R3c) (JCPDS #
71-2494). Meanwhile, a weak XRD peak of impurity is found at 28.8◦ corresponding to Bi2Fe4O9 [17,21].
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Bi2Fe4O9 will have no significant impact on the intrinsic structures and properties of BFCxO because it
is paramagnetic and its content is relatively small in the samples [17,21]. Figure 3b shows magnified
XRD patterns of Co substituted thin films at different concentrations in the vicinity of 2θ = 32◦.
Obviously, the diffraction peaks of (104) and (110) move at higher angles with the increase of Co3+

concentration, indicating that the Co ions have been successfully positioned in the host lattice of BFO.
The radius of Co3+ ions is smaller than that of Fe3+ ions, which will lead to lattice contraction and
structural distortion.
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To further investigate the structural changes of all thin films with doping concentrations, we carried
out Raman spectra measurements on BFO and BFCxO thin films, as shown in Figure 4. According to
group theory, BFO displays 13 optical-phonon active modes (4A1 + 9E) with space group R3c [22,23].
The 4 modes at 149.6, 170.0, 217.6 and 436.1 cm−1 can be designated as A1–symmetry longitudinal
optical modes [A1-1, A1-2, A1-3, A1-4 (LO)], and 8 modes at 77.0, 265.6, 318.7, 345.4, 369.2, 482.3,
515.6 and 617.8 cm−1 are associated with transverse optical E(TO) (E-1, E-2, E-3, E-5, E-6, E-7, E-8,
E-9 (TO)) phonons [24,25]. In this work, the E-8 mode of BFO thin film overlaps with the Raman
vibration mode of silicon substrate. The results of first-principles calculation have revealed that the
Bi-O vibrations only participate in the low-frequency region of the A1 modes and the Fe–O vibrations
mainly participate in the high-frequency region of the E modes [24–27]. Compared with that of pure
BFO, the peak positions of Raman spectra of BFCxO are slightly red-shifted, and the intensity decreases
as Co doping concentration increases. Among them, the weakening of A1-2 and A1-3 modes is due to
the relatively weak Bi 6s2 lone pair electrons in the doped BFCxO thin films in stereochemistry, which
also indicates that the Co ions are successfully located into the BFO lattice. The high-frequency modes
are mainly attributed to the vibration of FeO6 octahedron. When the Fe sites are occupied by Co3+ ions,
Co3+ ions cannot completely fill the space of Fe3+ ions due to the size mismatch. Therefore, the oxygen
octahedrons are greatly distorted by the Jahn–Teller effect [28,29]. This is caused by the change in Fe–O
bonds and accounts for the enhanced magnetic properties to be described as follows.

The SEM images of surface and cross-section of BFCxO thin films are shown in Figure 5a–f. It can
be seen that the Co-substituted thin films not only show a homogeneous surface morphology and
conspicuous agglomeration, but also attach well to the silicon substrates without obvious separation.
Additionally, the cross-sectional thickness of BFCxO thin films is 308, 293, 288, 261, 223 and 221
nm, respectively. With the increase of Co doping concentration, the thickness obviously decreases,
indicating that Co doping makes the surface uniformly dense and grain size decreases [26,27]. The grain
size histogram and Gaussian fitting also prove that the grain size decreases with the increase of the
Co concentration, as shown in Figure 6. It is also caused by the smaller radius of the Co ions,
and correspondingly, the lattice collapses and oxygen vacancies are formed [26–29]. The suppression
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of oxygen vacancy concentration will slow down the movement of oxygen ions and the growth rate of
crystal grains, thus reducing the size of crystal grains [26].
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Figure 7 shows the typical TEM and HRTEM images of BFO and BFC0.05O thin films. The grain
size is reduced slightly with the doping of Co3+ ions, which is consistent with the results of SEM
images. The HRTEM images are shown in the inset of Figure 7, which are derived from the region
within the circle. The lattice spacing of the typical crystalline region is about 0.407 and 0.401 nm,
respectively, which is in good agreement with the (012) lattice plane of pure BFO (#71-2494).
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The Bi4f, Fe2p, O1s and Co2p peaks of BFC0.01O and BFC0.07O thin films were measured and
analyzed by XPS, as shown in Figure 8a–h. The difference in energy between Bi4f7/2 and Bi4f5/2

in Figure 8a,b is 5.3 eV, which is a standard value of Bi–O bonding. Figure 8c,d shows the Fe2p
peaks of BFC0.01O and BFC0.07O thin films, respectively. The Fe2p3/2 peak position of BFC0.01O and
BFC0.07O thin films is 710.06 and 710.11 eV, respectively, both of which are within the reasonable
range (710.06–711.2 eV) [26,27]. The peak positions of Fe2p1/2 are 723.6 and 723.7 eV, respectively.
The difference in binding energy (Spin-orbit splitting energy) between Fe2p3/2 and Fe2p1/2 peaks is 13.0
and 13.6 eV, respectively, agreeing well with the standard value of 13.6 eV [30]. The Fe2p3/2 and Fe2p1/2

peaks are fitted by two portions of Fe3+ ions and Fe2+ ions, and the ratios of Fe3+/Fe2+ of the BFC0.01O
and BFC0.07O film samples are determined to be 0.57 and 1.59, respectively, indicating that there are
more Fe3+ ions in the samples [28–30]. A satellite peak is found at the binding energy of 718.6 eV in
Figure 8d, which is mainly related to the oxidation state of Fe and is determined by the difference in
binding energy between the satellite peak and the 2p3/2 principal peak (Fe2+ ~ 6 eV, Fe3+ ~ 8 eV) [30–33].
The difference in binding energy between them is greater than 8 eV, indicating that the valence state of
Fe is mainly +3 valences in the BFC0.07O sample [30–33]. Therefore, Co doping is expected to suppress
the formation of Fe2+ ions in BFCxO, thereby improving the magnetic properties [29–32]. Due to the
application of the sol–gel technique, Figure 8e,f shows the unavoidable O1s XPS spectra of oxygen
vacancies. The O1s XPS peak is divided into two distinct peaks, which correspond to O2− ions in the
X–O bonds and O defects in the structure, respectively [32,33]. The oxygen vacancy concentrations
(O defects/O2− ions ratio) of BFC0.01O and BFC0.07O thin films significantly decrease from 0.48 to 0.37,
suggesting that Co doping can restrain the formation of oxygen defects, which is consistent with
previously reported results [32,33]. As seen in Figure 8g,h, the binding energy values of the Co2p3/2

XPS spectra are observed at 781.94 and 781.6 eV, corresponding to the standard peak positions of Co3+

ions [34].
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In order to explore the impact of Co doping on the magnetic properties at room temperature,
we carried out the VSM measurements on BFO and BFCxO thin films in the magnetic field from
0 to 10 k Oe. The saturated magnetic hysteresis (M–H) loops of BFO and Co-doped thin films are
shown in Figure 9a–f. With the increase of the Co doping concentration, the values of both saturation
magnetization (Ms) and remanent magnetization (Mr) significantly increased. The values of Ms and Mr
for BFO, BFC0.01O, BFC0.03O, BFC0.05O, BFC0.07O and BFC0.10O are 21.38 and 2.06, 25.57 and 2.40, 34.17
and 2.60, 34.48 and 3.00, 42.38 and 3.60, and 48.84 and 3.43 emu/cm3, respectively. The changes of Ms
and Mr with the Co doping concentration are shown in Figure 10. Ms always increases linearly but Mr
increases first and then decreases with the increase of Co3+ concentration over x = 0.10. The maximum
value of Mr is 3.60 emu/cm3 when the concentration of doped Co is 0.07. Additionally, the maximum
value of Ms is 48.84 emu/cm3 as the doping concentration is up to 0.10. According to the Goldschmidt
tolerance factor t [26–29],

t =
RA + RO
√

RB + RO
(1)

With the increase of the Co doping concentration, the tolerance factor becomes smaller and less than
the unity. This will cause the shrinkage strain of the Fe–O bond, thus increasing the bond angle of
FeO6 octahedron and increasing the degree of distortion between two adjacent octahedrons [26–29,33].
In the first principle, the inclination of the Fe3+ ions spins can be derived from the formula of the
Dzyaloshinskii–Moriya (DM) [33,34] interaction energy of Fe3+ ions (HDM), which is defined as follows:

HDM =
∑n

n=0

→

Dn·

(
→

S0 ×
→

Sn

)
(2)

→

Dn = V0
[
→

rn−0 ×
→

rn−n
]

(3)

where
→

Dn is the interaction parameter, VO is the microscopic constant [33,34] and
→

rn−0,
→

rn−n are the
position vectors of the nearest neighbor magnetic ions from the nth O ions to the nearest magnetic Fe

ions.
→

S0 and
→

Sn are the vectors of the magnetic moments of two Fe ions [34,35]. In an ideal perovskite
structure, the bond angle (ϕ) of Fe–O–Fe is 180◦, so the value of

→
rn−0 ×

→
rn−n is zero, as is the value

of HDM. When ϕ begins to deflect from the ideality of 180◦, the anti-symmetric exchange energy
term HDM will increase. In summary, several possible factors may account for the enhancement of
magnetic properties for Co-doped BFCxO thin films: (i) an increased Fe–O–Fe spin angle results in the
net macroscopic magnetization [25,36–38]; (ii) the suppression of the spin cycloid spiral modulation
structures will release magnetism [25–29,39]; (iii) enhanced ferromagnetic properties are attributed
to the super-exchange interaction between both d6 and d5 electronic configurations of Co3+ and
Fe3+ [25–29,39]; (iv) Fe3+ ions are randomly replaced by Co3+ ions, resulting in the non-compensation
of the spins on the surface of grains and making grain size closer to or less than the cycloidal modulation
wavelength of ~62 nm [25–29,39–42]. Accordingly, it is an important way to improve the magnetic
behavior of BFO thin films, which is beneficial for the application in subminiature devices and
information storage.
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4. Conclusions

In this work, a series of Co-doped BFO thin films were successfully prepared via a facile sol–gel
technique. The relationships of structures, surficial morphologies, as well as magnetic properties of
the samples were systematically studied. XRD and Raman spectra confirm that all samples are the
rhombohedral perovskite structure and Co3+ ions are successfully positioned to the host lattice of
BFO. SEM and TEM images suggest that a Co doping agent is beneficial for the uniformity of particle
formation and the decrease of grain size. The surfaces of Co substitution thin films are attached to a few
conspicuous agglomerations with a smaller grain size, which are beneficial for the magnetism release.
XPS analysis illustrates that the replacement of Fe3+ ions with Co3+ ions can suppress the generation
of oxygen defects and increase the concentration of Fe3+ ions occupying the B-site of perovskite
lattice. VSM measurements indicate that the magnetic properties can be improved significantly and
the maximum values of Mr and Ms are 3.60 and 48.84 emu/cm3, respectively, belonging to BFC0.07O
and BFC0.10O thin films. The obvious enhancements of Ms and Mr mainly derive from the decrease of
oxygen defects concentration, the denser agglomerations, the enhanced super-exchange interaction
and the breakdown of spiral spin structure. These results demonstrate that Co3+ doping in BFO thin
films is an effective method to improve their magnetic characteristics. Co-doped BFO thin films should
have better application prospects in multiferroic memory devices, information storage and magnetic
switch devices at room temperature.
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