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Abstract: In work, (002) oriented flower-like Bi2O2CO3(BOC) composites are synthesized by a
facile chemical route and carbon quantum dots (CQDs) are modified on their surfaces through a
hydrothermal method. The synthesized samples (CQD/BOC) are characterized by X-ray diffraction
(XRD), SEM, X-ray photoelectron spectroscopy (XPS), UV-Vis diffuser reflectances (DRS), BET and
TEM/HRTEM. The morphologies of CQD/BOC composites are the flower-like shapes, the irregular
flaky structures and the fine spherical particles of CQDs attached. Photocatalytic performances were
investigated in terms of removing gaseous toluene at a concentration of 94.3ppm in air, with the
assistance of CQD/BOC under artificial irradiation. Our results show that CQDs modified (002)
oriented Bi2O2CO3 exhibits good photocatalytic activity for toluene decomposition, which can be
attributed to the enhanced efficient charge separation. A certain ratio composite photocatalyst
(BOC-CQD-15) shows a toluene removal rate of 96.62% in three hours, as well as great stability. CO2

was verified to be the primary product. The oriented flower-like Bi2O2CO3 with carbon quantum
dots on the surface shows great potential in the field of solar driven air purification.
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1. Introduction

Volatile organic compounds (VOCs) are one of the major gas pollutants in indoor air, including
various alcohols, aromatics (benzene, ethylbenzene, toluene, xylene, etc.), aldehydes (acetaldehyde,
formaldehyde, etc.) and halocarbons, which put humans health at great risks [1–3]. Many technologies
are used to remove gas pollutants, such as adsorption by carbon-based filter media, ionization,
ultraviolet degradation, plasma technology, catalytic degradation and the photocatalysis method [4–6].
Among all these technologies, photocatalysis may be a promising technique for indoor air purification,
because harmless CO2 and H2O are the main products of pollutant degradation [7].

Bi-based photocatalysts have drawn increasing attention recently, because of their good chemical
stability under visible light irradiation and unique electronic band structure. The hybridization of O
2p and Bi 6s orbitals in Bi-based photocatalysts composites results in a well-dispersed valence band
(VB). In the meantime, the lone-pair distortion of Bi 6s orbitals can cause the pronounced overlap of
O 2p and Bi 6s orbitals, which would increase the mobility of charge carriers and decrease the band
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gap [8–10]. Considering the stability of Bi3+, most studies of Bi-based photocatalysts have focused on
Bi3+-containing compounds, such as Bi2O3, BiVO4, Bi2WO6, BiOX (X = Cl, Br, I), Bi2O2CO3 (BOC) and
so on [11–15].

As a member of Bi-based photocatalysts, Bi2O2CO3 has been used for health care and in medical
fields due to its no toxicity merit for a long time [16]. For first time, Bi2O2CO3 was found that could
display good photocatalytic activity under UV light irradiation for the degradation of methyl orange
aqueous solution in 2010 [17]. Bi2O2CO3 crystallizes in a body-centered orthorhombic Imm2 space
group with lattice parameters of a = 3.865 Å, b = 3.862 Å and c = 13.675 Å [18]. Bi2O2CO3 has a featured
layer structure, in which the CO3

2− layers are alternately intercalated between [Bi2O2]2+ polycation
layers. The separate [Bi2O2]2+ and CO3

2− layers favor an internal electric field (IEF), which can greatly
improve the charge separation rate [19]. Due to its particular layer structure, suitable band gap, excellent
photocatalytic activity and long-term stability, Bi2O2CO3 has drawn considerable attention for its
promising application in the photocatalysis field [20]. However, Bi2O2CO3 has a wide band gap (2.8–3.5)
eV [21] and it can only response ultraviolet light of the solar light, which greatly restricts its practical
application under full solar light. To solve this problem, several strategies have been investigated,
mainly focusing on doping elements [22–24], Crystal facet engineering [18,25,26] and Constructing
heterostructures [27–29]. As an up-conversion material, Carbon quantum dots (CQDs) can absorb NIR
light at specific wavelengths and emit UV or visible light, which provide an indirect route for the use of
NIR light in the photocatalytic process. Therefore, full-light-response photocatalytic heterostructures
composed of CQDs and semiconductors, including CQDs/TiO2, CQDs/Cu2O, CQDs/Fe2O3 and
CQDs/Ag3PO4, have recently been developed [30–33]. Thus, we were inspired that CQDs would
extend the photo response range of Bi2O2CO3 through establishing a heterostructure.

Herein, we report a facile chemical method to fabricate Bi2O2CO3 composites with (002) facet
exposed and a hydrothermal route to modified carbon quantum dots on the surface of Bi2O2CO3.
The morphologies of synthesized composites (CQD/BOC) were flower-like shapes, irregular flaky
structures and fine spherical particles. Their photocatalytic properties for removal toluene in air under
the artificial irradiation are investigated comparatively. Based on the close correlation between the
structure characteristics and physicochemical properties of the material, BOC-CQD-15 has proved to
be most active, with a removal rate of up to 96.62%. Permineralization of toluene in photocatalysis is
proposed based on the characterization; CO2 was verified to be the primary product. This work may
probably extend to the application of oriented flower-like Bi2O2CO3 with carbon quantum dots on the
surface in air purification.

2. Materials and Methods

2.1. Fabrication of CQD/BOC Membranes

All the chemical reagents in this work were analytical-grade and used without any
further purification.

2.1.1. Preparation of Bi2O2CO3 Composites

An amount of Bi2O3 (99.99%, Aladdin Industrial Corporation, Shanghai, China) was dissolved in
1mol/L HNO3 (GR, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) solution through the
ultrasonic sound. The solution was put in a 20 ◦C water bath until the equalization of temperature.
Then, 0.6mol/L Na2CO3 (RA, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) solution was
added to the above solution at a speed of 30mL/min, so as to obtain a pH = 7 uniform solution, while
stirring manually. Finally, the product was centrifuged, washed with deionized water and ethyl alcohol
and dried at 70 ◦C in an oven to obtain Bi2O2CO3 composites labeled as BOC.
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2.1.2. Preparation of CQDs

The CQDs were obtained through a hydrothermal route [34]. Glucose (1 g, AR, Sinopharm
Chemical Reagent Co., Ltd., Beijing, China) was dissolved into deionized water (80 mL) to obtain a
homogeneous solution. Then, the solution was treated under a hydrothermal condition (180 ◦C, 4 h).
After that, the solution was given a filter treatment (0.1 µm, nylon), and then a reddish-brown CQDs
suspension was obtained.

2.1.3. Preparation of CQDs/BOC Composites

A total of 0.25 g BOC was added to 70 mL deionized water with ultrasonic dispersant for 15
min. Subsequently, a certain volume of CQDs suspension was dropped into above mixture. Then, the
mixtures were sealed in a Teflon-lined stainless-steel autoclave and heated at the temperature 180 ◦C
under autogenous pressure for 4h. After natural cooling to room temperature, the product was filter
centrifuged, washed with deionized water and ethyl alcohol and dried at 70 ◦C in an oven to obtain
CQD/BOC composites. To study the impact of the CQDs content on the photocatalytic performance
of the composites, a series of the CQD/BOC composites were obtained by adjusting the volumes of
CQDs suspension (5, 10, 15 and 20 mL). The specimens were correspondingly labeled as BOC-CQD-5,
BOC-CQD-10, BOC-CQD-15, BOC-CQD-20.

2.1.4. Fabrication of CQD/BOC Membranes

A total of 0.025 g BOC or CQD/BOC was added to 150 mL deionized water with ultrasonic
dispersant for 15 min. The mixtures were filtered at 0.1 µm nylon membrane by vacuum pump. The
BOC or CQD/BOC photocatalysic thin-film on the nylon membrane was obtained. The CQD/BOC
membranes were fabricated, as illustrated in Figure 1.
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Figure 1. Chemical route for the preparation of carbon quantum dots (CQD)/Bi2O2CO3

(BOC) membrane.

2.2. Characterization

The powder X-ray diffraction (XRD) patterns were obtained from a diffractometer (D8-Advance,
Bruker, Karlsruhe, Germany) using monochromatized Cu Kα (λ = 1.54056 nm) radiation with scanning
speed of 0.15◦/s. The morphology of the samples was carried out on a scanning electron microscope
(JSM-7001F, JEOL, Tokyo, Japan) operating at a 5 kV and a high-resolution transmission emission
electron microscope (JEM-2100F, JEOL, Tokyo, Japan). The XPS spectra measurements were conducted
on an X-ray photoelectron spectroscopy (ESCALAB 250Xi, Thermo Fisher, California, USA). The specific
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surface area was measured on an automated gas sorption analyzer (AutosorbiQ2, Quantachrome,
Florida, USA). UV-Vis diffuser reflectances (DRS) were carried out on a UV-Vis spectrometer (Lambda
950, PerkinElmer, Massachusetts, USA).

2.3. Photocatalytictest

The photocatalytic properties of the specimen were evaluated by toluene removal in air using a
gas phase photocatalysis system (FPCS-1, Beijing Ferren Science & Technology Co., Ltd., Beijing, China).
Before the photocatalytic test, the inter space of the reactor was first substituted with nitrogen to expel
the oxygen and moisture. Toluene standard gas with concentration of 94.3 ppm in air was used as
reactant. The BOC or CQD/BOC membrane was placed at the bottom of the reactor. Toluene standard
gas was pumped into the chamber (about 450 mL). Then, the reactor was kept in dark for 30 min to
reach the adsorption equilibrium. An incident light source (a 300W xenon lamp) was placed above the
reactor which has a quartzose cover as an upper surface. At regular time intervals, the mixture gas
in reactor was analyzed by gas chromatograph equipped with two flame-ionization detectors (FID).
Toluene analysis was carried out with FID loaded with an Rt-Q-Bond Plot column (30 m × 0.25 mm,
film thickness 10 µm), while CO2 analysis was carried out with the other FID loaded with a packed
column (TDX-01, 3 m × 3 mm), followed by a methanizer CO2 concentration. The gas samples were fed
to GC online through an automatic gas sampling valve. The temperature of the reactor was controlled
using circulating cooling water to avoid thermal effect during the degradation process.

3. Results and Discussion

3.1. Morphology Analysis

The morphologies of the as-prepared BOC and CQD/BOC samples were observed by SEM and
TEM. It is clear that the morphologies of the pure BOC were flower-like shape with a diameter of ca.
6um (Figure 2a), and the irregular flaky structures of BOC nanosheets gathered together with a diameter
of ca. 500 nm (Figure S1a). The morphologies of CQD/BOC were flower-like shapes (Figure 2c–f),
irregular flaky structures (Figure 2b and Figure S1b) and fine spherical particles (Figure 2d and Figure
S1c). Thus, more reactive sites could be provided, due to the higher surface-to-volume ratio of BOC
and CQD/BOC.
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The BET surface area test results of as-prepared samples are shown in Table 1. It was found that
the specific surface area and pore volume of the sample by chemical route were much larger than the
BOC by a hydrothermal method [35]. The specific surface area and pore volume of CQD/BOC were
about 50% larger than BOC. They are similar to flower-like Bi2O2CO3 [34].Therefore, the larger BET
surface area of CQD/BOC may result in better photocatalytic performance by providing more actives
sites than BOC sample.

Table 1. Specific surface area of BOC and CQD/BOC.

BOC BOC-CQD-5 BOC-CQD-10 BOC-CQD-15 BOC-CQD-20

Surface area (m2/g) 12.293 17.189 18.842 17.699 17.266
Total pore volume for pores

with Diameter less than 194.68
nm at P/Po = 0.990027 (cm3/g)

0.0952 0.1441 0.1254 0.1248 0.0934

The morphology of BOC-CQD-15 was also observed by TEM and HRTEM (Figure 3 and Figure S2).
As shown in Figure S2, the main morphology of sample was flower-like shape. Simultaneously, there
are some fine spherical particles and irregular flaky structures, which is in accordance with SEM results.
To further elucidate the element distribution of BOC-CQD-15, energy-dispersive X-ray elemental
mappings were employed (Figure 3b–d), where Bi, O and C elements were uniformly distributed
in the obtained sample. These mapping images correspond to the TEM image shown in Figure 3a.
To determine the C element content, the EDS spectrums of the spectrum 4 and 5 in Figure 3g were
measured. The C element content of spectrum 4 was 78.68%, which was much larger than 55.38% of
spectrum 5. It revealed that the deep color dots were carbon quantum dots with the diameter of ca.
5–30 nm. Additionally, in Figure 3e,f, the (013) crystalline of BOC could be found in BOC-CQD-15
according to the lattice spacing of 0.291 nm (JCPDS 41-1488). Furthermore, a lattice spacing of 0.320 nm
could also prove that the introduction of CQDs (004) according to JCPDS 26-1080. The result further
indicates that CQDs were successfully modified on the surface of Bi2O2CO3.
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3.2. Structure and Composition Analysis

The phase structure of the obtained BOC and CQD/BOC samples were detected by X-ray powder
diffraction (XRD), and the results are shown in Figure 4. It reveals that all diffraction peaks of different
samples could be well indexed to the pure phase of Bi2O2CO3 (JCPDS 41-1488), without impurity peaks.
The diffracted intensity ratio of (002)/(013) in the BOC, BOC-CQD-5, BOC-CQD-10, BOC-CQD-15 and
BOC-CQD-20 were 59.50%, 65.17%, 52.74%, 76.95% and 83.55%, respectively, which were much larger
than 25% of the primitive BOC standard card (JCPDS 41-1488). (002) facet was exposed dominantly,
which might contribute to the separation of photo-excited hole-electron pairs [36].
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X-ray photoelectron spectroscopy (XPS) was conducted to investigate the chemical composition
and surface electron state of the CQD/BOC samples (Figure 5 and Figure S3). Figure 5a demonstrated
the typical survey spectrum of the as-obtained samples, showing that all of the samples consisted solely
of Bi, O and C. The high-resolution XPS spectra of C1s, O1s and Bi4f for the obtained photocatalysts
are shown in Figure 5b−f. In Figure 5b, the C1s peak at a binding energy of 284.8 eV can be attributed
to the C-C bond with sp2 orbital; the peak observed at 289.0 eV should be ascribed to the C–O bond in
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Bi2O2CO3 [37]. The spectra of O1s can be fitted into three Gaussian-Lorenzian peaks (see Figure 5c and
Figure S1). The peak located at 529.8 eV is ascribed to the lattice oxygen in Bi−O binding energy, and
the peaks at 530.7 eV and 531.6 eV can be assigned to carbonate and the surface hydroxyl groups on
the surface of Bi2O2CO3 [14,38]. In Figure 5d–f, the two apparent characteristic peaks for Bi-4f located
at 159.1eV and 164.4 eV are attributed to Bi-4f7/2 and Bi4-f5/2 in Bi2O2CO3, indicating the existence of
Bi3+ in the samples. The Bi-4f7/2 and Bi-4f5/2 of CQD/BOC have a negative shift to low binding energy
compared with BOC, indicating the higher electron density around Bi elements in CQD/BOC samples,
and proving CQDs modified on the surface of Bi2O2CO3 [39,40].
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3.3. Photocatalytic Properties

The photocatalytic properties of the as-prepared samples were investigated through removing
gaseous toluene (94.3 ppm) in air under the irradiation of an incident light source. As shown in
Figure 6a, the pure BOC achieved a good photocatalytic performance with a removal rate of 70%,
which can be attributed to (002) crystal face exposed. However, CQD/BOCs were superior to the pure
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BOC, with a removal rate of up to 95%, which can be attributed to CQDs and (002) crystal face. The
photocatalytic property of BOC-CQD-15 reached 96.62% after three hours irradiation.

In order to get a deeper understanding of the degradation reaction of toluene in air, the degradation
products were detected using gas chromatograph (GC) with flame-ionization detectors (FID). The
results are shown in Figure 6b and Figure S4. The CO2 productivity of BOC-CQD-15 was 38.5 µmol,
which is 2.4 times of the pure BOC and was the highest in all the CQD/BOCs.

On the basis of the toluene removal rate and the CO2 productivity, the photocatalytic property of
BOC-CQD-15 was the best in all the CQD/BOCs.

In order to observe the photo response range of CQD/BOC, the phototcatalytic properties of
BOC-CQD-15 were investigated through its ability of toluene decomposition under the irradiation of
infrared light, visible light and ultraviolet light (showed in Figure 6c). BOC-CQD-15 has not response
to IR light and Vis light, but it has response to UV light.

Nanomaterials 2020, 10, 1795 8 of 12 

 

3.3. Photocatalytic Properties 

The photocatalytic properties of the as-prepared samples were investigated through removing 
gaseous toluene (94.3 ppm) in air under the irradiation of an incident light source. As shown in 
Figure 6a, the pure BOC achieved a good photocatalytic performance with a removal rate of 70%, 
which can be attributed to (002) crystal face exposed. However, CQD/BOCs were superior to the 
pure BOC, with a removal rate of up to 95%, which can be attributed to CQDs and (002) crystal face. 
The photocatalytic property of BOC-CQD-15 reached 96.62% after three hours irradiation. 

In order to get a deeper understanding of the degradation reaction of toluene in air, the 
degradation products were detected using gas chromatograph (GC) with flame-ionization detectors 
(FID). The results are shown in Figure 6b and Figure S4. The CO2 productivity of BOC-CQD-15 was 
38.5 μmol, which is 2.4 times of the pure BOC and was the highest in all the CQD/BOCs. 

On the basis of the toluene removal rate and the CO2 productivity, the photocatalytic property 
of BOC-CQD-15 was the best in all the CQD/BOCs. 

In order to observe the photo response range of CQD/BOC, the phototcatalytic properties of 
BOC-CQD-15 were investigated through its ability of toluene decomposition under the irradiation 
of infrared light, visible light and ultraviolet light (showed in Figure 6c). BOC-CQD-15 has not 
response to IR light and Vis light, but it has response to UV light. 

 

  

Figure 6. The photocatalytic properties of the as-prepared samples for toluene removal in air (a), the 
CO2 productivity of the samples (b), the ability of BOC-CQD-15 under IR, Vis, UV irradiation (c) 
and the stability of BOC-CQD-15under full light during five cycles (d). 

The stability of photocatalytic degradation of toluene in air was observed by repeating the 
experiment for five runs under full spectrum after ultraviolet irradiation, and the result is shown in 
Figure 6d and Figure S5. It was clear that the photocatalytic property of BOC-CQD-15 under full 
spectrum was superior to its property under ultraviolet due to the outstanding up-converted 
photoluminescence peculiarity of carbon quantum dots modified on the surface of Bi2O2CO3, which 
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CO2 productivity of the samples (b), the ability of BOC-CQD-15 under IR, Vis, UV irradiation (c) and
the stability of BOC-CQD-15under full light during five cycles (d).

The stability of photocatalytic degradation of toluene in air was observed by repeating the
experiment for five runs under full spectrum after ultraviolet irradiation, and the result is shown
in Figure 6d and Figure S5. It was clear that the photocatalytic property of BOC-CQD-15 under
full spectrum was superior to its property under ultraviolet due to the outstanding up-converted
photoluminescence peculiarity of carbon quantum dots modified on the surface of Bi2O2CO3, which
further extend the photoresponse range of BOC to the near infrared light. The BOC-CQD-15 could
remain a constant photocatalytic performance as high as 90% in terms of removing toluene under
incident light irradiation after five recycling runs. This phenomenon revealed a good recyclability of
BOC-CQD-15 for toluene removal.
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3.4. Photocatalytic Degradation Mechanism

The UV-Vis diffuse reflectance spectra of the samples were examined, and the results presented in
Figure 7. It can be seen that the bandgap of all the samples can be decided about (3.4~3.5) eV. The
results reveal that the CQD scarcely influence the light absorption of BOC or change the band gap of
samples obviously.
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According to the characterization of chromatogram, CO2 is the primary product, and there is a
little of CO during toluene degradation reaction. The CO productivity of BOC-CQD-15 was 6.33 µmol,
which was 2.5 times of the pure BOC (showed in Figure S4b). No other byproducts or intermediate
were detected. It indicated that the main products of toluene degradation were CO2 and H2O and
there was a modicum of CO.

The photocatalytic degradation mechanism of VOCs in air is slightly different from that in
aqueous solution. A possible photocatalytic mechanism of the CQD/BOC composites toward the
removal of toluene under simulated sunlight irradiation is schematically depicted in Figure 8. The
BOC can effectively respond to the light with the wavelength shorter than about 400 nm. When
the CQD/BOC photocatalyst reacts to the photons, the electrons are excited from the valence band
to the conduction band of BOC, thus producing electron-hole pairs. Simultaneously, it is generally
accepted that carbon quantum dots are an outstanding up-converted photoluminescence material. The
up-converted emissions are usually located at shorter wavelengths in the range of 300–650nm [38]. As
a result, a part of the up-converted emissions of CQDs can in turn excite BOC to generate additional
photo excited charges, further extending the photoresponse range of BOC to the NIR light. Meanwhile,
CQDs can also be excited by absorbing visible light, the π electrons or σ electrons are excited to the
lowest unoccupied molecular orbital (LUMO) [41,42]. The excited CQDs can act as excellent electron
donors and acceptors. Consequently, the CB electrons in BOC would transfer to CQDs (π or σ orbital),
which help with the separation and the migration of photo excited carriers.

The photogenerated electrons which migrate to the surface of BOC and CQDs reduce the
surface-adsorbed O2 to highly active species •O2

−. Thus, highly active •O2
− oxidizes toluene to

CO2, H2O and other intermediate products, such as benzene, benzoic acid, benzaldehyde and benzyl
alcohol [43]. Then h+ on the surface of BOC oxidizes the surface-adsorbed H2O to highly active species
•OH, and the active species (•O2

− and •OH) oxidizes the adsorbed intermediates to CO2 and H2O,
consequently forming the final products CO2 and H2O.
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4. Conclusions

In summary, (002) oriented flower-like Bi2O2CO3 composites were synthesized by a facile chemical
route and carbon quantum dots were modified on their surface through a hydrothermal method. The
synthesized composites (CQD/BOC) have three morphologies, which were flower-like shapes, irregular
flaky structures and fine spherical particles. Through HRTEM characterization, it was proved that
CQDs were modified successfully on the surface of Bi2O2CO3. Photocatalytic mineralization of toluene
in air over CQD/BOC was measured. The effect of BOC-CQD-15 was optimum, and as a result, the
toluene removal rate was up to 96.62% in three hours under full light irradiation, the rate was still up to
90% after five recycling runs in terms of stability. CO2 was verified to be the main product after reaction.
Better performance can be contributed to (0 0 2) facet orientation evolution and CQDs modified on the
surface of Bi2O2CO3, which enhance the efficient separation of photogenerated electron-holes.
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