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Abstract: Semi-transparent organic solar cells (ST-OSCs) have attracted significant research attention,
as they have strong potential to be applied in automobiles and buildings. For ST-OSCs, the transparent
top electrode is an indispensable component, where the dielectric/metal/dielectric (D/M/D) structured
electrode displayed a promising future due to its simplicity in the fabrication. In this work, by using
the MoO3-/Ag-/MoO3-based D/M/D transparent electrode, we fabricated ST-OSCs based on the
PM6:N3 active layer for the first time. In the device fabrication, the D/M/D transparent electrode was
optimised by varying the thickness of the outer MoO3 layer. As a result, we found that increasing the
thickness of the outer MoO3 layer can increase the average visible transmittance (AVT) but decrease
the power conversion efficiency (PCE) of the device. The outer MoO3 layer with a 10 nm thickness
was found as the optimum case, where its corresponding device showed the PCE of 9.18% with
a high AVT of 28.94%. Moreover, the colour perception of fabricated ST-OSCs was investigated.
All semi-transparent devices exhibited a neutral colour perception with a high colour rendering index
(CRI) over 90, showing great potential for the window application.

Keywords: semi-transparent; organic solar cells; colour perception; transparent electrodes;
non-fullerene

1. Introduction

Organic solar cells (OSCs) have the benefits of inexpensive fabrication, flexibility, lightweight,
and nature of semitransparency [1–3]. Recently, OSCs have attracted significant research attention,
and many researchers have been devoted to improving the power conversion efficiency (PCE) and
stability of the device [4–7]. A short time ago, the PCE of the single-junction and tandem OSCs
had recorded 18.22% and 17.36%, respectively [8,9]. Due to the semi-transparent (ST) characteristic,
OSCs show potential in the application for automobiles or buildings to generate power as windows
or curtains [10–14]. Especially in the building industry, the building-integrated photovoltaic (BIPV)
technology is growingly becoming one of the efficient techniques in powering renewable energy
to the buildings. The ST-OSCs has the potential to be integrated into building facades, windows,
and greenhouses extensively [15]. The characteristic of semi-transparent allows ST-OSCs not only
works as a generator but also reduces electricity consumption by letting natural light pass through [15].
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In terms of the application in greenhouses, the introduction of ST-OSCs can have little impact on the
growth of plants. Since the chlorophylls only function in a small range of the light spectrum, ST-OSCs
can be tuned to highly transparent over the spectrum essential for the plant growth while producing
power using the rest during the device fabrication [13,16]. For these applications of ST-OSCs, decent
transparency under the visible spectrum plays a vital role, and 25% of average visible transmittance
(AVT) is a generally acceptable transmittance for window applications [10]. Herein, it is critical to
maintain a suitable transmittance along with high power conversion efficiency for ST-OSCs.

For ST-OSCs, the transparent top electrode is an indispensable component, where the
D/M/D-structured electrode displayed a promising future [13,17–20]. The D/M/D electrode has been
gradually used to replace ITO in solar cell manufacturing in recent years, and it was designed to increase
the conductivity and flexibility of ITO as it introduces ultra-thin metallic films [21]. Compared with
the thick reflective metal electrodes, D/M/D structures are relatively simpler to be constructed and
do not contain complicated nano-level patterns [11]. As the transparent electrodes inherently have
low reflectivity, the photon absorption of the device should be carefully tuned to let sufficient light
transmit through the device [18]. Besides, the neutral colour perception is another crucial element
for ST-OSCs, which indicates that the light colour should remain similar after passing through the
device [22]. The colour characterisation of an inverted semi-transparent solar cell structure is first
mentioned in the study in 2010 [14]. By following the CIE instruction, the colour rendering index (CRI)
can be calculated with the device transmittance within the visible region [23,24]. CRI is the value
to quantify the ability of the light source to display the actual colour of an object compared with a
standard source, ranging from 0 to 100. Hence, it can be used as a method to identify the distinction of
the transmitted light colour and one of the original lights [25]. In the window application, the CRI
value should be as high as possible while the colour coordinates should be close to the Planckian
locus [26].

In recent years, many studies have been conducted on non-fullerene based OSCs [27].
Different from common fullerene-based OSCs, non-fullerene-based OSCs show great potential in
tunning energy level, absorbing incident light, and tunning molecular structures [28,29]. Recently, Zou’s
team synthesised the novel non-fullerene acceptor N3, which was adjusted from the state-of-the-art
non-fullerene material Y6 and showed advanced photovoltaic performance [30,31]. Our previous
work investigated the stability of PM6:N3-based organic solar cells, where the device was fabricated
opaque and tested under burn-in degradation. As a result, the PM6:N3-based active layer was
found to be relatively stable and showed a huge potential for achieving future application [32].
However, there is no current study which focuses on the semi-transparent OSCs based on the N3
non-fullerene with D/M/D electrode structure, leaving this gap in the research to be filled. In this work,
by using the MoO3-/Ag-/MoO3-based D/M/D transparent electrodes, we fabricated ST-OSCs based on
the Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b′]dithiophene))-alt-(5,5-
(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c′]dithiophene-4,8-dione)] (PM6):N3 active
layer for the first time. N3 is a small molecule acceptor with third-position branched alkyl chains [30].
In the device fabrication, the D/M/D transparent electrode was optimised by varying the thickness of
the outer MoO3 layer. As a result, we found that increasing the thickness of the outer MoO3 layer can
increase the average visible transmittance (AVT) but decrease the power conversion efficiency (PCE)
of the device. By varying the outer MoO3 layer thickness from 0 to 30 nm, the average PCE of the
device decreased from 13.79% to 7.89%, with an increase in the AVT from 24.45% to 31.26%. The outer
MoO3 layer with 10 nm thickness was found to deliver the optimum case, where its corresponding
device showed the PCE of 9.18% with a high AVT of 28.94%. Moreover, by following the CIE protocol,
the CRI values were calculated for all ST-OSCs. As a result, all the devices displayed a neutral colour
perception with a high CRI value over 90.
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2. Experimental Details

2.1. Materials Preparation

The pre-patterned ITO glasses with the area of 12 × 12 mm2 were purchased from Lumtec (Taipei,
Taiwan). The chemical materials PM6 was purchased from 1-Materials (Dorval, Canada). The chemical
materials N3 was synthesized by Zou’s group. The chemical material, zinc oxide nanoparticles,
reagent alcohol (anhydrous, <0.003% water), chlorobenzene (99.8%), 1,8-diiodooctane, and MoO3 were
purchased from Sigma-Aldrich (Sydney, Australia).

2.2. Device Fabrication

In this study, PM6:N3 layer was applied as the active layer in the bulk heterojunction
(BHJ) OSCs with the inverted device architecture of ITO glass (0.7 mm)/ZnO(40 nm)/active layer
(100 nm)/MoO3(10 nm)/Ag(10 nm)/MoO3. Firstly, the ITO glass substrate was ultrasonicated in the
sequence of soapy deionised (DI) water, pure DI water, acetone and isopropanol to remove the
residue on it. Secondly, zinc acetate dihydrate (Zn(CH3CO2)2·2H2O, Sigma-Aldrich, Sydney, Australia,
>99.0%, 0.109 g) and ethanolamine (NH2CH2CH2OH, Sigma-Aldrich, >99.5%, 32 µL) was dissolved in
2-methoxy ethanol (CH3OCH2CH2OH, Sigma-Aldrich, 99.8%, anhydrous, 1 mL) in the preparation of
ZnO sol-gel solution (0.48 M). Then the ZnO sol-gel layer was fabricated on the top of the clean ITO
glass substrates through spin casting at 4000 rpm for 1 min and annealed for 30 min at the temperature
of 170 ◦C. Thirdly, 10 mg PM6 and 12 mg N3 with a 1:1.2 wt ratio was mixed in a 17.6 mg/mL
chlorobenzene solution added with 0.5% vol 1-Chloronaphthalene (CN) for the preparation of the
active layer solutions. Fourthly, the active layer solution was mixed thoroughly by stirring overnight
inside an N2-filled glovebox with the temperature maintained at 80 ◦C and then deposited onto the
substrates at a rate of 2000 rpm for 60 s. Afterwards, the coated samples were put in a vacuum chamber
under the pressure of 10−5 Pa. Lastly, the 10-nm-thick film of MoO3 and 100-nm-thick film of silver
was deposited onto the sample surface through a shadow mask by thermal evaporation for the opaque
device. The 10-nm-thick film of MoO3 and 10-nm-thick film of silver and another 0–30-nm-thick film
of MoO3 was deposited to the sample surface through a shadow mask by thermal evaporation for the
semi-transparent device. The fabricated device area was 0.045 cm2.

2.3. Device Characterisation

The samples are kept in an N2-filled glovebox to reduce the impact of degradation ahead of
characterisation. The current density-voltage (J-V) was measured by a solar cell I-V testing system
(Keithley 2400 source meter, Armley, UK) and illuminated at 100 mW·cm−2 by an AM 1.5 G solar
simulator. The device temperature was metered and kept at about 25 ◦C by a GN1350 50:1 LCD
infrared thermometer digital gun. The devices’ optical properties were measured by a UV-VIS-NIR
spectrometer (Perkin Elmer-Lambda 950, Sydney, Australia). The colour perception was measured by
using UV-VIS-NIR spectrometer with a big mask to stable the samples.

3. Results and Discussion

The inverted device structure of the PM6:N3-based ST-OSCs (ITO/ZnO/active layer/MoO3/Ag/

MoO3) is displayed in Figure 1. From bottom to top, the ITO works as a see-through electrode.
Above the ITO, a 40 nm thickness of the ZnO sol-gel layer works as an electron transport layer (ETL).
In the middle of the device, a photoactive layer, which is made of the donor material (PM6) and
the acceptor material (N3), forms the bulk heterojunction (BHJ). For the D/M/D-structured electrode,
a 10-nm-thick inner MoO3 layer operates as the hole transport layer. Sandwiched between the MoO3

layers, a 10-nm-thick silver layer runs as the top translucent electrode for the semi-transparent device.
The thickness of the outer MoO3 layer is optimised from 0 to 30 nm. For the opaque device, the top
electrode is commonly used thick silver layer with a thickness of 100 nm [33]. For the semi-transparent
devices, the top electrode we used is a MoO3-/Ag-/MoO3-based D/M/D electrode [17].
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Figure 1. (a) The schematic diagram of the inverted device structure of indium tin oxide (ITO)/ZnO/active
layer/MoO3/Ag/MoO3 for the fabricated semi-transparent devices; (b) the diagram of chemical structures
of PM6; (c) the diagram of chemical structures of N3.

Figure 2 shows the current density to voltage (J-V) curves for all fabricated devices.
The corresponding photovoltaic parameters of the device, including the open-circuit voltage (Voc),
short-circuit current density (Jsc), power conversion efficiency (PCE), series resistance (Rs), and shunt
resistance (Rsh) are displayed in Table 1. For all the devices, the Voc values are around 0.8 V, pointing
out that the variation of the Ag thickness and the outer MoO3 layer thickness has a negligible effect
on the device voltage. The opaque device with 100-nm-thick Ag layer achieved 25.29 mA·cm−2 of
Jsc, 66.9% of FF and 13.8% of PCE. By reducing the thickness of the Ag layer to 10 nm, Jsc dropped
from 24.3% to 19.15 mA cm−2, with a 27.8% decrease in PCE. The reduction in Jsc may result from
the decrease in the creation and collection of light-generated carriers capacity. The decrease in the
photovoltaic performance accompanies with the enhancement in the transparency of the devices [34].
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Figure 2. The current density to voltage (J-V) curves of the opaque device and all fabricated
semi-transparent devices.

When optimising the thickness of the outer MoO3 layer from 0 to 30 mn, a variation of PCE
from 9.96% to 7.84 was observed. Overall, when varying the silver layer thickness from 100 to 10 nm,
the PCE of the device decreased. The decrease in the absorption might cause a reduction in PCE. Hence,
the experiments were designed to compare the transmission and reflection of the devices.
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Table 1. Photovoltaic parameters summary including the Open-Circuit Voltage (Voc), Short-Circuit
Current (Jsc), Fill Factor (FF), Power Conversion Efficiency (PCE), Series Resistance (Rs) and Shunt
Resistance (Rsh). The parameters were measured at room temperature under one-sun test condition
(AM1.5 G illumination, 100 mW/cm2), and the average value and the standard deviation were
determined from the measurement of at least five devices.

Devices Voc (V) Jsc (mA/cm2) FF(%) PCE(%) Rs (Ω) Rsh (Ω)

Opaque Device
(100 nm Ag/0 nm MoO3) 0.82 ± 0.00 25.29 ± 0.71 66.91 ± 1.40 13.79 ± 0.34 131 ± 18 18,444 ± 822

Semi-transparent Device
(10 nm Ag/0 nm MoO3) 0.80 ± 0.00 19.15 ± 0.31 64.92 ± 1.10 9.96 ± 0.10 144 ± 9 18,511 ± 3111

Semi-transparent Device
(10 nm Ag/10 nm MoO3) 0.79 ± 0.00 17.68 ± 0.45 65.41 ± 0.45 9.18 ± 0.23 147 ± 4 19,200 ± 1244

Semi-transparent Device
(10 nm Ag/20 nm MoO3) 0.81 ± 0.00 16.79 ± 0.17 65.46 ± 1.79 8.86 ± 0.20 191 ± 24 25,089 ± 1822

Semi-transparent Device
(10 nm Ag/30 nm MoO3) 0.80 ± 0.01 15.15 ± 0.53 64.67 ± 2.70 7.84 ± 0.19 207 ± 24 23,333 ± 4933

The transmittance, reflectance, and absorbance spectrums of semi-transparent devices were
measured and displayed in Figure 3. The measured wavelength ranges from 300 to 1000 nm, covering
the visible light spectrum (380 to 780 nm) [33]. The transmittance spectrum of the devices was presented
in Figure 3a. The first peak of the transmittance spectrum is observed between the range from 380 to
480 nm. By increasing the thickness of the outer MoO3 layer from 0 to 10 nm, there is a 10.2% increase
in the transmittance of the device from 40.3% to 44.9%. However, a 4.9% and another 8.0% drop in
the device transmittance is observed by increasing the layer thickness to 20 and 30 nm. In the second
and the third peak of the transmittance spectrum, 36.6% and 35.4% of increases are observed when
the layer thickness increased to 30 nm. Generally, as the thickness of the outer MoO3 layer increases,
the overall device transmittance increases.Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 11 
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In order to investigate the absorption of the devices, the reflectance spectrum of the devices was
measured. The following equation can calculate the absorption of the device:

Absorption = 100 − (Transmission + Reflection) (1)

The reflectance spectrum of the devices is presented in Figure 3b. The highest peak of the reflectance
spectrum is observed at around 975 nm of the wavelength, with a value of 53%. The second peak is
observed at around 400 nm, where the reflectance achieved about 38%. From 300–600 nm, the reflectance
of the device generally increases when the outer MoO3 layer increases from 0 to 30 nm. Over 880 nm,
around 40% of decrease is observed by increasing the outer MoO3 layer thickness from 0 to 30 nm.
In general, as the thickness of the outer MoO3 layer increases, the device reflectance increases at the
wavelength range from 300 to 550 nm and decreases at the wavelength range from 550 to 1000 nm.

With the measured transmittance and reflectance, the device absorption was calculated.
The absorbance spectrum of the devices is presented in Figure 3c. It is apparently to see that increasing
the outer MoO3 layer thickness causes the device absorbance to decrease. The decrease in device
absorbance was mainly caused by the increase of transmittance from 480 to 880 nm. By increasing the
outer MoO3 layer thickness from 0 to 30 nm, around 20% of the decrease in absorbance is observed.
Relating to the photovoltaic performance of the devices, a 22% drop from 10.0% of PCE to 7.8% is
observed by increasing the outer MoO3 layer thickness from 0 to 30 nm. The reduction in PCE may
result from the reduction of the light trapping in the device.

The AVT of ST-OSCs evaluates its semitransparency properties. Only visible light in the range of
380–780 nm was taken into consideration to describe the transmittance of the device considering the
sensitivity of the human eye. The AVT was calculated by using the following equation [35]:

AVT =

∫
T(λ)P(λ)S(λ)dλ∫

P(λ)S(λ)dλ
(2)

where λ represents the light wavelength, S represents the solar photon flux, T is the transmittance,
and P is the photopic response, which is dependent on the spectral sensitivity of the human eye.
A spectrophotometer is commonly used to measure the transmittance of the device [35]. It is worth
mentioning that the required AVT value strongly depends on the specific application. For example,
a 25% AVT is commonly required for window applications for ST-OSCs in BIPVs [10]. The AVT of
different devices was calculated and presented in Table 2. As the light cannot pass through the opaque
device, the AVT of the device is 0%. For the semi-transparent devices, by increasing the outer MoO3

layer thickness, the AVT increased from 24.45% to 31.26%. In general, when the MoO3 layer thickness
increased, the device transmission within the visible range increased. However, the device PCE is
also an essential factor in commercialisation. Hence, the relationship between AVT and PCE was
investigated, and the device was optimised to achieve a balanced result.

Table 2. The average visible transmittance (AVT) of the opaque and all fabricated semi-transparent
devices with different thickness of the outer MoO3 layer.

Devices AVT

Opaque Device 0.00%
Semitransparent Device (10 nm Ag/0 nm MoO3) 24.45%

Semitransparent Device (10 nm Ag/10 nm MoO3) 28.94%
Semitransparent Device (10 nm Ag/20 nm MoO3) 31.14%
Semitransparent Device (10 nm Ag/30 nm MoO3) 31.26%

The PCE and AVT of fabricated ST-OSCs are displayed in Figure 4a. From 0 to 10 nm, the AVT
increases by 18.36% from 24.45% to 28.94%. By using the 20 nm of the outer MoO3 layer thickness,
the AVT raises by 7.60% from 28.94% to 31.14%. Moreover, when the thickness of the outer MoO3 layer
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increases to 30 nm, there is only 0.39% increase from 31.14% to 31.26%. However, the increasing trend
becomes less apparent when the layer gets thicker. Conversely, the PCE decreases when the outer
MoO3 layer thickness increases. Increasing the thickness from 0 to 10 nm, the PCE decreases from
9.96% to 9.18%. When the outer MoO3 layer thickness increases to 20 nm, the PCE drops from 9.18% to
8.86%. Furthermore, when the thickness of the outer MoO3 layer increases to 30 nm, there is an 11.51%
decrease in PCE from 8.86% to 7.84%. The ratio of acquired AVT to sacrificed PCE was calculated
and displayed in Figure 4b. For the device with 10 nm thickness of the outer MoO3 layer thickness,
the ratio is 6.91%, indicating 6.91% of AVT can be acquired by sacrificing 1% of PCE. Furthermore,
the ratio of 20 and 30 nm is 6.63% and 3.56% equivalently. The result shows that the ratio of the outer
MoO3 layer with 10 nm thickness is the highest. 28.94% of AVT can be achieved with 9.2% of PCE.
Therefore, the device structure with 10 nm of the outer MoO3 layer thickness is the optimal case,
showing excellent performance in both photovoltaic and optical aspects.
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4. Colour Rendering Index

The transmission spectrum of the devices can be used to calculate the colour rendering index
(CRI), which is a quantified value to describe the ability of a light source to redisplay the actual colour
of an object compared with a standard illuminant [18,25,36,37]. CRIs can be calculated by inducing the
equations below, which converts the transmittance spectrum in the visible region (from 380 to 780 nm)
into a tristimulus system (X, Y, Z) and the colour coordinates (x, y) [18]:

X =

∫ 780nm

380nm
S(λ) × x(λ) × T(λ)dλ (3)

Y =

∫ 780nm

380nm
S(λ) × y(λ) × T(λ)dλ (4)

Z =

∫ 780nm

380nm
S(λ) × z(λ) × T(λ)dλ (5)

X =
X

X + Y + Z
(6)

Y =
Y

X + Y + Z
(7)

In the Equations (3)–(7), S(λ) stands for the CIE Standard Illuminant D65, x, y, z are the colour
matching functions defined by the CIE protocol, and the T(λ) represents the device transmittance
spectrum. The coordinates (x, y) are the colour coordinates as defined in the CIE 1931 colour space.
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The colour coordinates display the colour variation of the light perceived by human eyes when
transmitting through the semi-transparent devices. The colour coordinates of all devices plotted in the
CIE colour space chromaticity diagram, as presented in Figure 5, and the calculated coordinates are
displayed in Table 3.
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Table 3. Colour rendering index (CRI) and corresponding colour coordinates (x, y) of different
semi-transparent devices.

Devices x y CRI

Semitransparent Device (10 nm Ag/0 nm MoO3) 0.2536 0.2692 97.3
Semitransparent Device (10 nm Ag/10 nm MoO3) 0.2702 0.2843 97.0
Semitransparent Device (10 nm Ag/20 nm MoO3) 0.2828 0.2942 95.4
Semitransparent Device (10 nm Ag/30 nm MoO3) 0.2994 0.3039 92.1

The calculated colour coordinates of the ST devices sit close to the achromatic (white point) on the
colour space diagram [38]. It indicates a pleasant colour sensation when the viewers look through cells
under the illumination of AM 1.5G. The colour coordinates of the devices with 30 nm thickness of
outer MoO3 layer are close to the illuminant D65 (0.31, 0.33) at (0.27, 0.30). These devices are capable of
letting the light pass through them without affecting much to the original colour of an object. For the
devices with a thinner layer thickness (10, 20 nm), the colour coordinates are located near the blue
colour on the CIE chromaticity diagram. According to the definition, the CRI equals to the ratio
of sample “colour rendering ability” to that of standard source in percentage. It ranges between 0
and 100, the higher the CRI value, the better capability to reveal the original light [10,39]. The CRIs
can be calculated by following the CIE 13.3 1995 protocol. The (x, y) coordinates are converted to
(u, v) coordinates in the colour space. The coordinates are adjusted from eight test colour samples,
which are known as ref samples and are divided from the visible spectrum, were illuminated under
the D65 source. Moreover, the test samples are colours of light which transmitted through the device.
The different reflection result of each sample accounts for the change of transmitted light colour [23,24].
As a result, the CRI values of all fabricated ST-OSCs are above 90, and the CRI decreases as the outer
MoO3 layer thickness increases. Generally, all fabricated PM6:N3-based semi-transparent devices
display well neutral-colour perception [33].
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5. Conclusions

In conclusion, high-performance semi-transparent organic solar cells were fabricated using
PM6:N3 as the active layer with a transparent D/M/D (MoO3/Ag/MoO3) electrode. The thickness of
the outer MoO3 layer was optimised to balance the trade-off between the PCE and AVT of the device.
Our works were conducted to study the relationship between the outer MoO3 layer thickness and the
device photovoltaic and optical performance. For the opaque device with 100 nm thickness of the
silver layer without the outer MoO3 layer, the device achieved 25.29 mA cm−2 of Jsc, 66.9% of FF and
13.8% of PCE. Compared with the opaque device, the reduction of efficiency in semi-transparent is
inevitable due to the reduction of silver layer thickness from 100 to 10 nm, which plays an essential
role in light capture ability. Increasing the outer MoO3 layer thickness decreased Jsc and PCE, but the
device transmittance increased in general. All the devices exhibit excellent optical performance, as the
AVTs are all above 24%. By increasing the outer MoO3 layer thickness from 0 to 30 nm, AVT increases
23% from 24.45% to 31.26%. We found that the 10 nm thickness of the outer MoO3 layer gives the
optimum device performance. The corresponding device achieved 19.15 mA·cm−2 of Jsc, 64.9% of
FF, 10.0% of PCE, 28.94% of AVT and 97 of CRI. The device exhibits excellent PCE and perfect colour
rendering property showing great potential for the window application.
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