

Supplementary Materials

Gold-Deposited Nickel Foam as Recyclable Plasmonic Sensor for Therapeutic Drug Monitoring in Blood by Surface-Enhanced Raman Spectroscopy

Saiqa Muneer¹, Daniel K. Sarfo¹, Godwin A. Ayoko¹, Nazrul Islam² and Emad L. Izake^{1,*}

- ¹ School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia; saiqa.muneer@hdr.qut.edu.au (S.M.); daniel.sarfo@qut.edu.au (D.K.S.); g.ayoko@qut.edu.au (G.A.A.)
- ² School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia; nazrul.islam@qut.edu.au
- * Correspondence: e.kiriakous@qut.edu.au; Tel.: +61-7-3138-2501

Surface-Enhanced Raman spectroscopy (SERS) Quantification Using Raman Probe

SERS enhancement factor was calculated by the deposition of 10⁻¹² M solution of 2-Quinoline thiol, 2-QT (Raman probe) on plasmonic nickel substrate and 10⁻² M on bare Ni-F for 15 min. The acquired SERS spectra of QT before and after deposition of gold on SERS substrate are depicted in Figure S1.

Figure S1. (a) SEM images of gold deposition on nickel foam at different acquisition times 600, 900, and 1200 s (resolution 1 μ m); (b) SERS spectrum of 2-QT (10⁻⁶ M) at different acquisition times 600, 900, and 1200 s; (c) 2-QT on bare nickel foam substrate (10⁻² M); (d) 2-QT on plasmonic nickel foam substrate (10⁻¹² M).

Figure S2. Chemical structure of: (a) meropenem; (b) paracetamol.

Figure S3. (a) Reproducibility of SERS measurements in human blood plasma (RSD = 2.86%); (b) reproducibility of signals on SERS measurements in aqueous solution (RSD = 5.52%) (MPN conc. 200 μ g/mL, 5 × 10⁻⁴ M).

Figure S4. Degradation of drug in aqueous medium over time measured by plasmonic nickel SERS sensor.

Figure S6. (a) Trend of SERS signal intensity of MPN in human blood plasma in concentration range of 5×10^{-4} M to 1×10^{-12} M; (b) SERS calibration plot of MPN in human blood plasma within the same concentration range.

Figure S5. SERS spectra of (**a**) meropenem (MPN) spiked in human blood plasma; (**b**) MPN in aqueous solution; (**c**) blank plasmonic nickel substrate.

Figure S7. (a) MPN high-performance liquid chromatography (HPLC) chromatograms (n = 3) (RT = 5.22 min): (i) blank solvent, (ii) standard MPN in aqueous solution, (iii) blank human plasma, (iv) MPN spiked in human plasma; (b) calibration curve of MPN by HPLC (working concentration range 0.25 to 18 µg/mL).

Figure S8. SERS spectra of (**a**) (i) MPN on plasmonic nickel SERS substrate (ii) SERS substrate after desorption of MPN (iii) Fresh aliquot of MPN on recycled SERS substrate (**b**) Repeated cycles of measurements.

Figure S9. SERS spectra of 5×10^{-4} M MPN on plasmonic nickel foam. The spectra were acquired by the handheld Raman spectrometer (**a**) using automatic background correction, (**b**) without background correction.

Calculation of Limit of Quantification (LOQ) by SERS

For SERS measurements, limit of quantification (LOQ) is calculated by the formula; $LOQ = 10^*$ (standard deviation of low concentration/slop of calibration curve) [1].

[1] Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. *Chron. Young. Sci.* **2011**, *2*, 21–25.