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Abstract: ZnO nanowire-based surface plasmon polariton (SPP) nanolasers with metal–insulator–
semiconductor hierarchical nanostructures have emerged as potential candidates for integrated
photonic applications. In the present study, we demonstrated an SPP nanolaser consisting of ZnO
nanowires coupled with a single-crystalline aluminum (Al) film and a WO3 dielectric interlayer.
High-quality ZnO nanowires were prepared using a vapor phase transport and condensation
deposition process via catalyzed growth. Subsequently, prepared ZnO nanowires were transferred
onto a single-crystalline Al film grown by molecular beam epitaxy (MBE). Meanwhile, a WO3

dielectric interlayer was deposited between the ZnO nanowires and Al film, via e-beam technique, to
prevent the optical loss from dominating the metallic region. The metal–oxide–semiconductor (MOS)
structured SPP laser, with an optimal WO3 insulating layer thickness of 3.6 nm, demonstrated an
ultra-low threshold laser operation (lasing threshold of 0.79 MW cm−2). This threshold value was
nearly eight times lower than that previously reported in similar ZnO/Al2O3/Al plasmonic lasers,
which were ≈2.4 and ≈3 times suppressed compared to the SPP laser, with WO3 insulating layer
thicknesses of 5 nm and 8 nm, respectively. Such suppression of the lasing threshold is attributed
to the WO3 insulating layer, which mediated the strong confinement of the optical field in the
subwavelength regime.

Keywords: ZnO nanowires; nanolaser; WO3 insulating interlayer; plasmonics; aluminum

1. Introduction

The recent advancements in the miniaturization of semiconductor lasers hold the key to emerging
technologies, including biosensing [1,2], optical trapping devices [3,4], optical integrated circuits [5,6],
photovoltaic devices [7,8], subwavelength imaging [9], on-chip optical communication [10], and
computing systems [11]. Traditional semiconductor lasers are severely restricted by the fundamental
diffraction law in optics, which limits the size of the optical cavity in orders of the 3D volume to (λ/2n)3,
where λ is the free space wavelength and n is the refractive index of the dielectrics [12,13]. This size
restraint causes the shrinkage and scaling down of lasers. In contrast to conventional lasers, nanolasers
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based on surface plasmons (SPs) could provide a path to achieve a deep sub-diffraction wavelength
regime, by forming a nanoscale coherent light source far beyond the diffraction limit [14,15]. Surface
plasmons are quantized waves that are bounded at the interface between a metal and a dielectric and
that allow the manipulation of light at the nanoscale [16]. The surface plasmon polaritons show great
features when excited optically on metal films, such as strong photon–plasmon interactions beyond the
diffraction limit, which can lead to enhancement in deep subwavelength regions. Various efforts have
been made in the new age of semiconductor lasers, involving small laser volume sizes and low laser
thresholds. In recent years, approaches towards diffraction-unlimited plasmonic nanocavity have been
demonstrated [17–20]. This type of nanocavity strongly confines collective electron oscillations at the
metal-dielectric interface, because of its remarkable capability to generate intense optical fields and store
optical energy into free-electron oscillations in an ultra-compact cavity. The concept of surface plasmon
(SP)-based amplification of stimulated emission of radiation (spaser) was first proposed theoretically
by Bergman and Stockman [21]. Later, Noginov et al., inspired by this concept, demonstrated the first
spaser in 2009, which utilized optical feedback resonators based on the field coupling of gain media to
achieve lasing and could produce a strongly localized coherent surface plasmon mode [22]. In addition,
a new type of nanolaser was demonstrated, which depended on a nanowire gain medium that generates
photons when coupled with the metal form surface plasmons, separated by a dielectric layer forming a
Fabry Perot-type surface plasmon polariton cavity [23,24]. Compared with the nanolasers specified
above, ZnO exhibits better coupling in ultraviolet regimes [25,26]. Due to its relatively large exciton
binding energy of ~60 meV, which is larger than thermal energy ≈ 26 meV, it allows for coupling of
ZnO excitons and surface plasmon at room temperature, which is ideal for gain material [27].

Chou et al. unveiled a low-threshold surface plasmon polariton laser by directly placing the ZnO
nanowires on an Al surface, and revealed that the threshold strongly depends on the permittivity
combination of metal and semiconductor [28]. In line with recent advancements, and to further
suppress the threshold of the SPP laser, herein, we synthesized high-quality ZnO nanowires as the gain
medium by using a chemical vapor deposition (CVD) method. To demonstrate the low-laser threshold
of SPP, an epitaxial Al film was grown through molecular beam epitaxy (MBE), which efficiently
reduced the metal scattering, absorption loss, and SPP damping caused by the surface roughness.
Further, as-prepared ZnO nanowires were transferred onto a single-crystalline Al film, and a thin WO3

dielectric interlayer was inserted between the ZnO nanowires and Al film. The purpose of introducing
the dielectric layer between the metal layer and the optical gain medium was to overcome the intrinsic
losses of metals and enhance the propagation length of surface plasmon. Moreover, the dielectric
layer significantly compensated for the propagation losses and enhanced the lasing performance.
An as-fabricated plasmonic nanolaser device, with a WO3 dielectric interlayer thickness of 3.6 nm,
achieved strong optical confinement and lower threshold (0.79 MW cm−2) lasing, which was eight times
lower than previously reported in ZnO/Al2O3/Al plasmonic lasers [29]. For further comparison, we
also fabricated the same plasmonic device with different thicknesses (5 nm and 8 nm) of WO3 dielectric
interlayers. The obtained results reveal that the lasing threshold of the plasmonic device increases with
increasing WO3 interlayer thickness. Optical simulations further confirm that the plasmonic device
with a WO3 dielectric interlayer thickness of 3.6 nm has strong confinement in the spacer region.

2. Experiment

2.1. Synthesis of ZnO Nanowires

The ZnO nanowires were prepared in a horizontal three-zone furnace via a vapor phase transport
and condensation process. A mixture of commercially available ZnO (Advanced Chemicals, 200 mesh,
99.999%, Materion Advanced Materials, Milwaukee, WI, USA) and graphite (Alfa Aesar, 200 mesh,
99.999%, metal basis, Thermo Fisher Scientific Chemicals Inc, Ward Hill, MA, USA) powders, with a
weight proportion of 3:1, was used as an evaporation source without any further purification.
A 10 nm-thick gold film coated silicon (100) substrate was placed at the center in the quartz tube at the
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downstream side and heated up to 800 ◦C. In this step, the gold film acted as a catalyst for nanowire
growth and was deposited via electron-beam evaporation. The source materials mixture was loaded
into an alumina boat, which was positioned at the heating center of zone 1 in the quartz tube reactor
and heated up to 1100 ◦C. Prior to the growth process, the pressure of the furnace was maintained at
1 × 10−2 torr, followed by the introduction of the carrier gas mixture of Ar and O2, with a volume ratio
of 10:1 at 0.16 torr. The samples’ heating and ramping times were set to 1 h and 80 min, respectively.
After the process, the samples were cooled down to room temperature in the furnace.

2.2. Growth of Epitaxial Aluminum Film

Epitaxial aluminum films were grown on c-sapphire substrates with high-purity (99.9999%)
aluminum source by molecular beam epitaxy. A Knudsen cell was used as the evaporator for the
growth of the epitaxial aluminum film, to confirm the precise thickness and to ensure that the deposition
rate was highly stabilized. Prior to the evaporation, the substrate was heated up for surface cleaning and
reconstruction. With the help of liquid nitrogen, the substrate was cooled down to room temperature.
During the growth process, a liquid-nitrogen-cooled substrate was used. The evaporation of high
purity aluminum source was maintained at a high deposition rate of ≈ 6.67 nm min−1. Finally, the film
was annealed and kept for a while at room temperature in an ultra-high vacuum chamber. Structural
and topographic properties of MBE-grown Al films were characterized by XRD (X-ray Diffraction,
Shimadzu D2 Phaser, Kyoto, Japan) and AFM (Atomic Force Microscopy, Bruker- ICON, Billerica, MA,
USA).

2.3. Measurement System

The plasmonic lasing measurement was performed using a micro photoluminescence (µ -PL)
system. The system was operated with an Andor Technology Shamrock 500 spectrometer coupled
with a thermoelectric-cooled CCD camera (Oxford Instruments, Tubney Woods, Abingdon, Oxon, UK).
The ZnO nanowires were excited using a 355 nm pulsed laser diode with a repetition rate of 1 kHz and
a pulse width of 2 × 10−9 s. A working distance of a 50× objective lens with a 0.85 NA (numerical
aperture) was used for focusing the incident laser beam. The focused spot size was approximately
5 µm in diameter. Observed light emitted from the plasmonic device was collected using a detector
and analyzed through a spectrometer.

2.4. Plasmonic Device Fabrication

The plasmonic laser device structure comprised of ZnO nanowires was dropped onto a high-quality
single-crystalline aluminum film deposited with a dielectric WO3 interlayer. The aluminum film,
with a thickness of 80 nm, was grown on a c-sapphire substrate using molecular beam epitaxy (MBE).
Hereafter, a dielectric interlayer WO3, with a thickness of 3.6 nm, was deposited on a single-crystalline
aluminum film through e-beam evaporation, in a vacuum condition greater than 5 × 10−6 torr and with
a rate of 0.01–0.02 nm/sec. Then, ZnO nanowires were dispersed in the DI water via ultrasonication,
and the solution was dropped-cast on the single-crystalline aluminum.

3. Results and Discussion

The device of the plasmonic nanolaser was composed of a single-crystalline aluminum film on
which ZnO nanowires were placed, separated by a thin dielectric interlayer forming a MOS structure.
The schematic of the plasmonic structure is shown in the Supporting Information (Figure S1). Due to
the smaller ohmic losses, Al (aluminum) was chosen as the plasmonic medium in the UV regime over
other metal materials [30,31].

The root-mean-square roughness of single-crystalline epitaxially grown Al was measured through
atomic force microscopy in a 20 × 20 µm2 area, as shown in Figure 1a. The root-mean-square (RMS)
roughness was 0.32 nm. The X-ray diffraction measurement, as shown in Figure 1b, indicates the (111)
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peak of Al film and (0006) peak of c-sapphire substrate, observed at around 38◦ and 42◦, exhibiting
single-crystalline nature.
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Figure 1. (a) 20 × 20 µm2 top view atomic force microscope (AFM) image of the single-crystalline Al
film. The root-mean-square (RMS) roughness of the surface was about 0.32 nm. (b) XRD spectrum of
the epitaxially grown Al film with an Al (111) peak and Al2O3 (0006) c-plane sapphire peak.

Figure 2 depicts the morphology and crystallinity of as-grown ZnO nanowires. Figure 2a
represents the XRD pattern of ZnO nanowires prepared on a 10 nm-thick Au-coated Si substrate
placed at low-temperature zone 3 at 800 ◦C for 1 h. The growth procedure schematic is shown in the
Supplementary Information (Figure S2). A dominant diffraction peak [002] indicates a high degree of
oriented growth with the c-axis vertical to the substrate surface and shows the single-crystalline nature
of the ZnO nanowires. Figure 2b shows the low-magnification and high-magnification top-view SEM
(Scanning Electron Microscope, Hitachi SU8010, Tokyo, Japan) images of the ZnO nanowires. It can be
seen that a high density of ZnO nanowires grew over the entire surface of the Si substrate, and the
diameters of the nanowires were about 90–110 nm. Typically, the length of the nanowires ranged from
4 to 6 µm. From the high-magnification SEM image, it is seen that the nanowires had hexagonal facets.
Figure 2c,d shows the typical TEM (Transmission Electron Microscope) and HRTEM (High-Resolution
Transmission Electron Microscope, Cs-corrected TEM, JEOL ARM 200FTH, Tokyo, Japan) images of
the ZnO nanowires. These results indicate that the ZnO nanowires have a fringe spacing of 0.26 nm
and match well with the inter-planar spacing of the (002) lattice plane of ZnO. In Figure 2e, in addition
to the HRTEM observation, the analysis of the diffraction pattern indicates that the ZnO nanowire
grew along the [002] direction, which is consistent with the XRD results.

Figure 3a shows the measured power-dependent emission spectra of a 4.19 µm-long single-ZnO
nanowire placed on an epitaxially grown aluminum film, pumped at RT with a pumping laser
wavelength of 355 nm. This lasing emission characteristic was obtained from the micro-PL measurement
system (shown in the Supplementary Information (Figure S3)). Below the lasing threshold, a
broad spontaneous emission spectrum is observed. This band emission is centered at 384 nm with
FWHM ≈ 13 nm and can be seen at a relatively low pump density of ≈1.95 MW cm−2. As the
pumping power density increases, one oscillation peak appears with an observed lasing peak with
FWHM ≈ 1.3 nm. The corresponding light-in-light-out curve for the nanolaser is shown in Figure 3b.
From the log-log plot of the light curve, we can obtain the laser threshold at around 2.50 MW cm−2.
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Figure 2. Morphology and crystallinity of the ZnO nanowires. (a) XRD spectrum of ZnO nanowires on
Si-substrate. (b) Low-magnification SEM image of the ZnO nanowires with high-magnification SEM
image of ZnO nanowires shown in the inset. (c) Low-magnification TEM image of the ZnO nanowire.
(d) High-resolution TEM image of an individual ZnO nanowire grown along the [002] direction and
(e) the corresponding SAED (Selected Area Electron Diffraction) pattern.

In order to suppress the large, internal ohmic losses in metals, a dielectric layer was incorporated
between the semiconductor and metal, while maintaining the cavity mode volumes. The dielectric
spacer layer not only controls the optical confinement but can also isolate ZnO excitons from quenching
at the metal surface. The metallic Al films can facilitate the generation of surface plasmons (SPs)
and significantly affect the performance of plasmonic nanolasers. To evaluate the laser performance,
stronger interaction between plasmons and gain material was required. We then inserted 3.6 nm, 5 nm,
and 8 nm-thick WO3 dielectric interlayers to observe the ability of optical confinement. The lasing
characteristics for the ZnO/WO3/Al system, with different thicknesses of the WO3 interlayer, are shown
in Figure 3c–h. Accordingly, as depicted in Figure 3c, the lasing emission spectra for the ZnO/WO3/Al
system with 3.6 nm WO3 interlayer thickness was measured from 0.48 MW cm−2 to 2.06 MW cm−2 with
the observed linewidth narrowed down from 5 to 1 nm. A non-linear behavior of light-in-light-out
(L-L) curve, with the optical lasing threshold of 0.79 MW cm−2, was observed in the ZnO/WO3/Al
system with a 3.6 nm WO3 interlayer thickness (Figure 3d). For further optimization, the emission
spectra of the ZnO/WO3/Al system consisting of a WO3 interlayer thickness of 5 nm was measured,
with the optical pumping power from 1.19 MW cm−2 to 2.56 MW cm−2 and the FWHM ≈ 1.3 nm,
as shown in Figure 3e. From Figure 3f, the corresponding light-in-light-out (L-L) curve shows that the
output intensity drastically increased at threshold power ≈ 1.88 MW cm−2. Subsequently, we inserted
an 8 nm-thick WO3 dielectric interlayer between the ZnO nanowire and Al film and measured the
emission spectra for the ZnO/WO3/Al system (Figure 3g), with the optical pumping power measured
from 1.24 MW cm−2 to 5.55 MW cm−2 and the FWHM ≈ 1 nm. The corresponding light-in-light-out
curve in Figure 3h shows that the optical intensity at the lasing threshold pump density of 2.43 MW
cm−2 significantly increased. In short, the lasing threshold shows good agreement depending on the
loss-compensation system. Of special relevance, the lasing threshold of the ZnO/WO3/Al SPP laser
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with 3.6 nm WO3 interlayer thickness was nearly eight times lower than previously reported in similar
ZnO/Al2O3/Al plasmonic lasers (Table S1). Moreover, the SPP laser operation threshold increased with
the increasing thickness of the WO3 dielectric interlayer.
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Figure 3. The characteristics of a ZnO nanolaser. (a) Measured spectra of the ZnO nanowires on Al film with
the pumping power density from 1.95 MW cm−2 to 3.32 MW cm−2. (b) The corresponding light-in-light-out
(red dots) curve and linewidth versus input power density (blue dots) at room temperature. (c) Measured
spectra of the ZnO nanowire directly placed on Al film, with a 3.6 nm WO3 layer, and with the pumping
power density from 0.48 MW cm−2 to 2.06 MW cm−2. (d) The corresponding light-in-light-out (red dots)
curve and linewidth versus input power density (blue dots) at room temperature. (e) Measured spectra
of the ZnO nanowire directly placed on Al film, with a 5 nm WO3 layer, and with the pumping power
density from 1.19 MW cm−2 to 2.56 MW cm−2. (f) The corresponding light-in-light-out (red dots) curve
and linewidth versus input power density (blue dots) at room temperature. (g) Measured spectra of
the ZnO nanowire directly placed on Al film, with an 8 nm WO3 layer, and with the pumping power
density from 1.24 MW cm−2 to 5.55 MW cm−2. (h) The corresponding light-in-light-out (red dots) curve
and linewidth versus input power density (blue dots) at room temperature.

The characteristics of the ZnO nanowire supported on high-quality single-crystalline aluminum
film with dielectric interlayer were simulated using the finite-difference time-domain (FDTD) solution.
Figure 4 shows the calculated cross-sectional view of the energy density distribution of the plasmonic
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device, which was comprised of ZnO NW placed on 3.6 nm, 5 nm, and 8 nm-thick WO3 interlayers over
Al film, at wavelengths of 379 nm, where the hexagon cross-sectional side length was set to 60 nm of
ZnO NW. It demonstrates that the strong confinement of electromagnetic energy caused an ultra-small
space in the WO3 (3.6 nm) gap region, because of the continuation of electric field displacement near
the WO3 dielectric spacer layer.
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Figure 4. Energy-density distribution of different thicknesses of the WO3 spacer layer in ZnO/WO3/Al
structures simulated by finite-difference time-domain (FDTD) with the excitation wavelength of 379 nm.
The cross-section of ZnO nanowire in figures is indicated using white hexagons. (a) WO3 = 3.6 nm,
(b) WO3 = 5 nm, and (c) WO3 = 8 nm.

Previous work has shown that replacing the different dielectric constant based insulating materials
can be useful to reduce the lasing threshold [32]. In addition, the reduced surface roughness of the
dielectric spacer results in lower scattering losses. Figure 5a–c represents the surface topography of
WO3 characterized by AFM. The root-mean-square (RMS) of the WO3 (3.6 nm) is 0.278 nm, which is
considerably smaller than that of WO3 (5 nm) and WO3 (8 nm), where the RMS values are 0.5 nm for both,
resulting in lower optical loss. The height profile analyzed from AFM is shown in the Supplementary
Information (Figure S7). In order to find out the elemental and compositional information of the e-gun
deposited WO3 sample, X-ray photoelectron spectroscopy (XPS) was explored. The resulting XPS
survey spectrum is presented in the Supplementary Information (Figure S4), and the individual spectra
for O (1s) and W (4f) core levels are shown in Figure 5d,e. We found that only tungsten and oxygen are
both present in the film. The ratio of W to O is close to 1:3, with a chemical composition of 19.0% and
58.2%, respectively, and the rest is carbon. Ellipsometry measurements were utilized to analyze the
dielectric function of WO3, and are shown in the Supplementary Information (Figure S5). The results
indicate that this layer could be useful to reduce the lasing threshold.

Furthermore, the calculated effective indices for the simulated MOS structures, consisting of ZnO
nanowires placed on 3.6 nm, 5 nm, and 8 nm-thick dielectric oxide layers on thick epitaxial Al film,
are shown in the Supplementary Information (Figure S6), with the calculation carried out in eigenmode
solver in FDTD mode solutions. The increase in effective index implies that the separation among
surface plasmon and exciton is smaller, and, to compensate for propagation losses, the coupling of
semiconductor exciton and plasmon should be high enough for the energy rate transfer.
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4. Conclusions

We demonstrated a plasmonic device consisting of crystalline ZnO nanowires, separated from
epitaxially MBE-grown (on sapphire) Al film by a thin WO3 dielectric gap layer. This formed a
Fabry–Perot type SPP cavity, with an ultra-low lasing threshold down to ~0.79 MWcm−2, operating
at room temperature. The threshold value reached 2.50 MWcm−2 for a plasmonic laser when no
dielectric layer was inserted. The suppression of the ultra-low lasing threshold at optimal thickness
can be attributed to the insulating layer, which mediated the strong confinement of the optical field in
the subwavelength regime, which was eight times lower than previously reported for ZnO/Al and
ZnO/Al2O3/Al plasmonic lasers. The results indicate that replacing the dielectric material will improve
the lasing threshold significantly.
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