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Abstract: The synthesis of nanostructured surfaces and thin films has potential applications in
the field of plasmonics, including plasmon sensors, plasmon-enhanced molecular spectroscopy
(PEMS), plasmon-mediated chemical reactions (PMCRs), and so on. In this article, we review various
nanostructured surfaces and thin films obtained by the combination of nanosphere lithography (NSL)
and physical vapor deposition. Plasmonic nanostructured surfaces and thin films can be fabricated
by controlling the deposition process, etching time, transfer, fabrication routes, and their combination
steps, which manipulate the formation, distribution, and evolution of hotspots. Based on these
hotspots, PEMS and PMCRs can be achieved. This is especially significant for the early diagnosis of
hepatocellular carcinoma (HCC) based on surface-enhanced Raman scattering (SERS) and controlling
the growth locations of Ag nanoparticles (AgNPs) in nanostructured surfaces and thin films, which is
expected to enhance the optical and sensing performance.

Keywords: nanostructured surfaces and thin films; physical vapor deposition; nanosphere lithography;
manipulation and applications of hotspots

1. Introduction

The synthesis of nanostructured surfaces and thin films using physical vapor deposition, such as
pulsed laser deposition, magnetron sputtering, thermal evaporation, e-beam evaporation, among
others, plays a key role in the development of a variety of applications in nanoplasmonics, nanoscale
photovoltaic devices, nanogenerators, flexible or nanobiological sensors, and so on [1–8]. For devices
based on nanostructured surfaces and thin films, diverse high-fidelity geometry is important for the
performance of the devices in practical applications. Reliable artificial nanopatterned surfaces and
thin films are fabricated by advanced lithographic methods, including electron-beam lithography
(EBL), photolithography, soft lithography, nanosphere lithography (NSL), and many others [9–12].
For example, the combined processes of EBL, metal deposition, and liftoff are utilized to obtain
patterned metallic structures on a scale of tens of nanometers to submillimeter [12]. However,
the multiple wet processes in EBL-based methodology is extremely time-consuming and may introduce
additional contaminations on the nanostructured surfaces, which may have non-negligible effects
on the quality of nanostructured surfaces and thus degrade the performance of the devices. More
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importantly, it significantly hinders the direct applicability of the devices, especially in the field of
nanostructure-based plasmonics, generators, sensors, and so on. Though many efforts have been made
to prepare nanostructured surfaces and thin films by EBL-based methodology, challenges remain in
the manipulation of hotspots that are usually observed in the sub-10 nm metallic nanogaps, where the
energy is localized to subwavelength dimensions due to the design of the nanostructured surfaces and
thin films.

Compared to the EBL-based methodology, the NSL-based approach has attracted much attention.
This method uses self-assembled polystyrene (PS) colloid sphere arrays as ordered templates/masks to
manipulate hotspots in nanostructured surfaces and thin films. The method is rapid, simple, low-cost,
practical, and produces no pollution [13]. Various nanostructured surfaces and thin films can be
achieved by the combination of NSL and physical vapor deposition, such as periodic nanocaps [14–18],
nanotriangles [19–22], nanobowls [23–25], nanorings [26–28], nanopillars [29,30], nanocones [31–33],
and other complex nanostructured surfaces and thin films, including nanohoneycomb, bridged knobby
units, nanoparticle cluster-in-bowl arrays, and so on [2,25,34–40]. These architectural designs of
nanostructured surfaces and thin films can be obtained by controlling a series of deposition processes
(the deposition time, angle, distance, and so on), PS colloid sphere etching, transfer, and their
combination steps, which manipulate the formation, distribution, and evolution of hotspots and have
significant implications in broad applications [41–55]. Based on these manipulation of hotspots in
nanostructure-based surfaces and thin films, plasmon-enhanced molecular spectroscopy (PEMS) and
plasmon-mediated chemical reactions (PMCRs) can be controlled, which is expected to enhance the
optical and sensing performance.

In this article, the design and synthesis of nanostructured surfaces and thin films with various
hybridization of nanoshape arrays are discussed in detail, including large-area periodic nanohoneycomb,
nanocap star, nanoring nanoparticle, bridged knobby units, and three-dimensional (3D) nanopillar cap
arrays. The formation, distribution, and evolution of hotspots in these nanostructured surfaces and
thin films are controlled, which has potential applications in PEMS and PMCRs. Hopefully, this article
will inspire more ingenious designs of nanostructured surfaces and thin films using the NSL technique
to manipulate hotspots, which is expected to enhance the optical and sensing performance.

2. Experimental Section

2.1. NSL Technique and Physical Vapor Deposition Technique

The NSL technique originates from self-assembled monolayer nanospheres being used as a mask
to achieve large-area surface-patterned nanostructures, also known as “natural lithography” [49].
The nanosphere particles are arranged in an ordered array by spin coating, Langmuir–Blodgett
technique, electrophoretic deposition, micropropulsive injection (MPI) method, and so on [56–58].
Then, defect-free PS colloid sphere arrays from single layer (SL) to multilayer (ML) are fabricated,
which greatly extends the application of “natural lithography” and is called NSL [21,27,50,59].
Due to developments over the past several decades, the NSL technique has been recognized as an
effective way to fabricate large-scale ordered nanostructured surfaces and thin films with various
nanopatterns [34,42,60]. Normally, NSL have three main processes. First, SL or ML closely packed PS
colloid sphere arrays are prepared by the self-assembly method [27,28,56–58,61]. Briefly, PS colloid
sphere particles are dispersed in alcoholic solution, which is slowly dripped on the surface of a Si wafer.
Then, the Si wafer is slowly immersed into the container filled with deionized water. At the interface
between the PS colloid sphere particles and deionized water, the PS colloid spheres start to form an
unordered monolayer. After that, the monolayer is driven into a highly ordered array by interactions
including van der Waals forces, steric repulsions, and Coulombic repulsions [57]. Then, the highly
ordered PS colloid sphere array is picked up by the hydrophilic property substrate. The detailed
preparation process of large-scale ordered PS colloid sphere arrays is reported in our previous
works [9,13,17,18]. Then, the size, nanogaps, and surface morphology of the as-prepared PS colloid
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sphere arrays is modified by physical and chemical method, which serves as a template [29,30,37–39,53].
Finally, various materials, including metal, metal oxides, polymers, and so on, are deposited on the
ordered PS colloid sphere array templates by physical vapor deposition technique (for example, pulsed
laser deposition, magnetron sputtering, thermal evaporation, e-beam evaporation), which make the
nanostructured surfaces and thin films more functional.

2.2. Design of Nanostructured Surfaces and Thin Films and Manipulation of Hotspots

Based on the combination of the as-prepared PS colloid sphere array templates and physical vapor
deposition, various nanostructured surfaces and thin films can be designed by adjusting the fabrication
routes and deposition parameters. Under this strategy, PS colloid sphere arrays with a fixed diameter
(e.g., 100, 200, 500, 1000 nm) are selected as templates, and the etching, transfer, rotation, co-sputtering,
glancing angle sputtering, single- or multilayer deposition, or their combinations is performed to control
the shape of the PS colloid spheres, nanogaps between neighboring PS colloid spheres, the thickness of
films, the surface morphology of films, and other parameters of the complex structures. The variety
of nanostructured surfaces and thin films can be expanded, obtaining a set of novel nanopatterned
arrays by the corresponding control strategy. Several types of novel nanopatterned arrays, including
nanohoneycomb, nanocap star, nanoring nanoparticle, bridged knobby units, nanopillar cap, and other
hybrid nanostructure arrays, are described in detail in the next section.

At the nanostructured surfaces of some noble metals (e.g., Au, Ag, etc.), the coherent oscillations of
the conduction electrons can be driven by light, which will cause localized surface plasmon resonances
(LSPRs). Usually, the electromagnetic (EM) field is enormously enhanced in the region of LSPRs,
which is called “hotspots”. As is well known, these hotspots are usually observed in the sharp tips or
corners, sub-10 nm metallic nanogaps, and so on. Moreover, the formation, distribution, and evolution
of hotspots are very sensitive to the material, composition, and surrounding dielectric environment of
the nanostructures. Therefore, the manipulation of hotspots can be achieved by adjusting the aspects
mentioned above. To confirm the formation, distribution, and evolution of hotspots, finite-difference
time-domain (FDTD) software is used to simulate the EM field of the nanostructured surfaces and thin
films, which has guiding significance on the design of nanostructured surfaces and thin films and the
manipulation of hotspots.

2.3. Applications of Hotspots in PEMS and PMCRs

PEMS is a rapid and nondestructive spectroscopy technique for chemical detection, biosensing,
catalysis, and so on. The technique relies on the high density of hotspots to significantly intensify
surface-enhanced Raman scattering (SERS) signals, which is expected to achieve single-molecule
detection. Based on the SERS spectroscopy technique, nanostructured surfaces and thin films with
high density of hotspots as biomarker chips exhibit excellent performance for the specific detection
of α-fetoprotein (AFP) and α-fetoprotein-L3 (AFP-L3), which are very promising for the detection of
early hepatocellular carcinoma (HCC) markers [38,39].

In addition, based on manipulation of hotspots in nanostructured surfaces and thin films, PMCRs
have attracted much attention. Active sites with selectively controlled chemical reactions at the
nanometer level can be achieved by manipulating the formation, distribution, and evolution of hotspots
in nanostructured surfaces and thin films, which is an easy method to obtain a wide variety of ordered
nanostructures and is expected to enhance plasmonic performance.

3. Results and Discussion

3.1. Manipulation of Hotspots in Nanostructured Surfaces and Thin Films

The architectural design and fabrication of multiscale nanostructured surfaces and thin films are
carried out by the combination of NSL and magnetron sputtering deposition. An ordered PS colloid
sphere array with a size of 500 nm is fabricated by the self-assembly process on Si wafer, which is shown
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in the schematic diagram in Figure 1a and the scanning electron microscopy (SEM) image in Figure 1c.
Hexagonally arranged PS colloid sphere arrays with different sizes and layers can be obtained by a
similar process. Using as-prepared PS colloid sphere arrays as a template, when thin films are deposited
along the perpendicular direction, two basic nanostructures (nanocap array and triangular-shaped
array) are formed, which is the simplest design. By accurately controlling the parameters of the ordered
PS colloid sphere array and the processes of magnetron sputtering deposition, basic nanopatterned
arrays can be expanded and reinvented to novel nanostructured surfaces. For example, a novel
honeycomb nanostructured array can be prepared by selective reactive ion etching (RIE) and glancing
angle sputtering with rotation. In the first step, the as-prepared monolayer PS colloid sphere array is
etched for different times, which results in six tiny synaptic nanostructures per PS colloid sphere due
to the shadow effect, as shown in the schematic diagram in Figure 1b and SEM image in Figure 1d.
These tiny synaptic structures among the PS colloid sphere play a key role in the subsequent design
of the honeycomb nanostructured array. Then, the Au film is glancing angle sputtered onto the PS
colloid sphere array template with tiny synaptic nanostructures by magnetron sputtering (Figure 1e).
During the film deposition, the evolution of a well-formed honeycomb nanostructure can be achieved
by controlling the rotation speed of the PS colloid sphere array template and film sputtering time,
as shown in Figure 1f,g.
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Figure 1. (a,b) Schematic diagram of hexagonally arranged polystyrene (PS) colloid sphere array and
PS colloid sphere array with six tiny synaptic nanostructures after reactive ion etching (RIE) treatment,
respectively. (c,d) SEM image of hexagonally arranged PS colloid sphere array before and after RIE
treatment. (e) Schematic diagram of the magnetron sputtering chamber. (f,g) Desired honeycomb
nanostructure achieved by controlling rotational speed and film sputtering time. Reproduced with
permission from [38] American Chemical Society, 2019.

The morphological features and distribution of hotspots of the honeycomb nanostructures are
exactly controlled by RIE time, film sputtering time, and rotation speed during film deposition. To obtain
a PS colloid sphere array with tiny synaptic nanostructures and suitable separation, the as-prepared PS
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colloid sphere array is etched for 120, 180, 240, or 300 s. To optimize the morphological features, we can
increase the rotational speed of the etched PS colloid sphere array during the film deposition process
(from 10 to 60 rpm), which promotes the rate of film deposition onto the tiny synaptic nanostructure.
When the PS colloid sphere array is etched 180 s and the rotation speed is 60 rpm, the honeycomb
nanostructure is gradually distinct. The evolution of the honeycomb nanostructured morphology
depends on the film deposition time, as shown in Figure 2a–c. When the film deposition time is 5 min,
the morphology of the etched PS colloid sphere surface and around the tiny synaptic nanostructures
show slight changes (Figure 2a). When the film deposition is increased to 20 min, the synaptic
nanostructures around each PS colloid sphere exhibit continuous growth (Figure 2b). When the
film deposition time reaches 40 min, a satisfactory honeycomb nanostructure is achieved, where the
nanogaps between the sidewalls and the nanocaps are sub-10 nm (Figure 2c). We know that hotspots
usually localize in the sharp tips, corners, and sub-10 nm gaps of noble metallic nanostructures,
where the coupling EM field is enormously enhanced. FDTD solutions (Lumerical Solutions Inc,
Vancouver, BC, Canada) is utilized to simulate the formation, distribution, and evolution of the local
EM field in nanostructured surfaces and thin films, where the relevant nanostructural parameters are
extracted from the actual prepared patterned nanostructures. Figure 2d–f shows the EM intensity for
three fabricated samples (Au film deposition times of 5, 20, and 40 min). The FDTD results indicate that
the formation, distribution, and evolution of hotspots can be manipulated by changing the honeycomb
nanostructured morphology. The local EM field of the synaptic parts is increased by promoting
growth in tiny synaptic structures among the PS colloid sphere (Figure 2d). With an increase in the
film deposition time, the hotspots appear and increase in the synaptic nanostructures, as shown in
Figure 2e. It is obvious that the local EM field distribution in the nanogaps between the sidewalls
and the nanocaps lead to the density of hotspots being predominantly enhanced in a satisfactory
honeycomb nanostructure (Figure 2f).
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Figure 2. (a–c) SEM images of the process of honeycomb nanostructure formation with different
deposition times (5, 20, and 40 min, respectively). (d–f) The finite-difference time-domain (FDTD)
simulation for sectional views of the local EM field distribution in the process of honeycomb
nanostructure formation. Reproduced with permission from [38] American Chemical Society, 2019.

In addition, according to the design requirements, various hybridized, complex, or novel
nanostructured surfaces and thin films can be obtained by controlling the preparation strategy. Under a
similar process, nanocap star, nanoring nanoparticle, and others nanostructured arrays were achieved
in our previous reports [37]. In addition to the size and morphology of nanostructured arrays,
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the composition of nanostructured surfaces and thin films and the surrounding dielectric environment
also play important roles in the manipulation of hotspots. Based on this strategy, noble metals and
insulator composites are co-sputtered onto closely ordered PS colloid sphere (200 nm) arrays by
magnetron sputtering system (ATC 1800-F, USA AJA). Taking co-deposition of Ag and SiO2 as an
example, the SiO2-isolated Ag island (SiO2−Ag) nanocap forms on the PS colloid sphere, as shown in
Figure 3a. The transmission electron microscopy (TEM) image shows that the size of the nanogaps
between adjacent SiO2-isolated Ag nanocaps is under sub-10 nm (Figure 3b). The high-resolution
transmission electron microscopy (HRTEM) image indicates that the thickness of the amorphous SiO2

and the size of Ag nanoparticles (AgNPs) are around 2−5 and 5−10 nm, respectively. These amorphous
SiO2 and Ag nanoparticles are intertwined, which helps form nanoscaled surface roughness and more
nanogaps (Figure 3c). The corresponding area element analysis mapping of SiO2−Ag nanocap arrays
show that Ag, Si, and O elements are uniformly distributed in the nanocaps, as shown in Figure 3d.
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When closely ordered PS colloid sphere arrays are etched, the diameter of PS colloid spheres
decreases, and tiny synaptic nanostructures around each PS colloid sphere are observed. After SiO2−Ag
film deposition, the SiO2−Ag nanocap is still formed on the smaller PS colloid spheres, as shown
in Figure 4a. The film preferentially grows around the tiny synaptic nanostructures, which forms a
bridge between adjacent nanocaps. With increasing deposition time, the surface roughness of the
SiO2−Ag nanocaps increases, and the nanogaps between the units of bridged knobby units gradually
decrease (Figure 4b–d). The results of FDTD simulations indicate that the hotspots where the EM field
is coupling are mostly distributed on the surface of the SiO2-isolated Ag nanoparticles on the nanocaps
and the bridges between nanocaps, as shown in Figure 4e. In addition, the trilayer or multilayer
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Ag/SiO2 composite shell or 3D pillar-cap arrays also significantly improve the enhancement of the EM
field, which manipulates the distribution of hotspots [29,45,51]. The SiO2 addition not only immensely
increases the surface roughness of the designed nanostructure surfaces and thin films but also improves
the enhancement of the EM field at the nanogaps, which manipulates the formation and evolution
of hotspots. The manipulation of hotspots in nanostructured surfaces and thin films has potential
applications in the field of plasmonics, including SERS, biomarker chips, mediated chemical reactions,
and so on.
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3.2. Applications of Hotspots in Plasmonics

PEMS and PMCRs are two important branches in plasmonics. PEMS includes fluorescence
spectrum, infrared spectrum, and SERS. Among the three spectra, SERS is the most promising
spectroscopy technique, which can achieve obviously enhanced Raman signals by hotspots in
nanostructured surfaces and thin films. As mentioned above, Au nanohoneycomb and SiO2−Ag
nanocap arrays show typical SERS spectra when 4-mercaptobenzoic acid (4-MBA) is used as a probe.
Figure 5a–b show that SERS peaks at about 1575, 1073, and 1173 cm−1 are assigned to the aromatic ring
vibrations and the C−H deformation vibration modes, respectively [37]. The SERS intensity of 4-MBA
increases with the manipulation of hotspots in nanostructured surfaces and thin films and obtains the
highest enhancement, which is in good agreement with the FDTD simulation.

Based on the SERS technique, the biological and biomedical detection of some mortal diseases
has been achieved by determining changes in the shift and intensity of the SERS signals. For instance,
using SiO2−Ag nanocap arrays with high density of hotspots as biomarker chips, the early diagnosis
for HCC can be detected based on the analysis of the shift in characteristic peaks of the probe molecule
4-MBA and AFP-L3. The whole preparation and immune process of biomarker chips for the detection
of HCC is shown in Figure 6a. First, the biomarker chip, which is composed of SiO2−Ag nanocap
arrays with bridges, is immersed in the 4-MBA, 1-(3-(dimethylamino)propyl)-3-ethylcarbodimide
hydrochloride (EDC), and N-hydroxysuccinimide (NHS) solutions. Then, the 4-MBA-derived coupling
agent is generated using EDC–NHS, which is used to bind the anti-AFP antibody. After the reaction,
bovine serum albumin (BSA) is added into the mixed solution to block unconnected anti-AFP antibodies.
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In addition, the anti-AFP is diluted and used as a blank contrast sample. Antigens with different
concentrations (3, 30, 300, and 3000 pg/mL) are added and allowed to react with the biomarker chip
in the centrifuge tubes. After the process, antibody-capturing chips are made and characterized
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by SERS. The SERS spectrum of 4-MBA connected with different AFP concentrations are shown in
Figure 6b. When the concentration of the AFP increases, the peaks of 4-MBA around 1073 cm−1

shifts to the left and the intensity of the peaks at 998 cm−1 are enhanced, as shown by the dashed
frame in Figure 6b. The changes in the two peaks confirm the success of the MBA-based antibody
absorption. Subsequently, the preparation of immunogold and immunological recognition are
implemented to detect HCC by analyzing the ratio of AFP-L3 to total AFP. For analyzing AFP-L3,
5,5′-dithiobis (succinimidyl-2-nitrobenzoate) (DSNB) is used as a probe between the antibody and
the AuNPs. Colloidal gold is fabricated by the Lee and Meisel approach, which is added to the
DSNB acetonitrile solution. Next, the anti-AFP-L3 is put in and stored at room temperature. After
the reaction, BSA and borate buffer are added into the solution for later use. Finally, the biomarker
chip is formed after being immersed in solutions of different concentrations (3, 2, 1 ng/mL and 300,
30, 3 pg/mL) to ensure sufficient immunological recognition. Figure 6c shows the SERS spectrum of
the immunogold-decorated biomarker chip with different AFP-L3 concentrations. The SERS peak at
1331 cm−1 is used as a characteristic immunogold signal in the dashed frame in Figure 6c, which reflects
the degree of coupling between AuNPs. With the methods mentioned above, the detection limits for
AFP and AFP-L3 are below 3 pg/mL, which proves that the designed nanostructured surfaces and thin
films with ordered hotspots is of great significance for the early detection of HCC, clinical application,
and SERS immune detection [38,39].

PMCRs can be designed based on manipulation of hotspots in nanostructured surfaces and
thin films. As we know, the hotspots of Au nanobowl arrays are located on the edge of the Au
nanobowl, as shown in Figure 7a. Due to the formation, distribution, and evolution of hotspots under
the photoinduced effect of the enhanced EM field, the Au nanobowl arrays induce a photoreaction,
leading to accelerated chemical reaction on defined positions. Interestingly, the size and position of
the AgNPs are precisely controlled by polarized light and reaction time, as shown in Figure 7b–d.
When using vertically circular polarized light incident to the surface of the Au nanobowl arrays,
a six-axis symmetric patterned arrays of AgNPs growth is achieved. Furthermore, three-axis symmetric
nanostructured arrays are obtained using linearly polarized oblique waves with a incidence angle of
50 degrees. The manipulation of hotspots can be used to accurately control a chemical reaction at the
nanometer level, which has significant applications [41–48,53,55].Nanomaterials 2019, 9, x FOR PEER REVIEW 10 of 14 
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NSL-based nanostructured surfaces and thin films have also been focused on various fields,
including superhydrophobicity [62], protein patterning [63], magnetization reversal [64], solar cells [65],
light trapping enhancement [66], resonant optical transmission [31], flexible broadband antireflective
coatings [67], flexibly tunable smart displays, and many others [68], which show more novel and
interesting properties.

4. Conclusions and Outlook

In summary, various hybrid and even complex nanostructured surfaces and thin films can be
designed and achieved by the combination of NSL, physical vapor deposition technique, etching,
transfer, chemical reactions, or their combination steps. The formation, distribution, and evolution
of hotspots can be manipulated by fabricating novel nanohoneycomb and SiO2−Ag nanocap arrays
to control the enhancement of the EM field, which has potential applications in PEMS and PMCRs.
In particular, detection of HCC based on SERS and controlling the growth locations of AgNPs are
attracting more and more attention, which is expected to enhance the sensing performance. However,
solving the defect formation during the self-assembly process for nanostructure-based devices is
necessary in NSL technology. The notable result on defect-free PS colloid sphere arrays over a large
area (36 wafers and 1 m2) has been demonstrated using the micropropulsive injection method to
achieve high-throughput (6 × 6 wafers) periodic surface nanotexturing [58]. Recently, NSL-based
nanostructured surfaces and thin films with functional materials have shown significant application
in emerging magnetic skyrmion-based spintronic devices [69]. Thus, further functionalization of
nanostructured surfaces and thin films with more ingenious designs are expected to allow for
unprecedented versatility of NSL in a broad range of applications.
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