Supplementary Information

The Magnetic Proximity Effect Induced Large Valley Splitting in 2D InSe/FeI₂ Heterostructures

Yifeng Lin,¹ Changcheng Zhang,² Lixiu Guan,^{2,*} Zhipeng Sun,² and Junguang Tao^{1,*}

¹School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China; Hebut8124@sohu.com (Y.L.)

²School of Science, Hebei University of Technology, Tianjin 300401, China; hebut2017@139.com (C.Z.); hebut2016@126.com (Z.S.)

* Correspondence: lixiuguan@hebut.edu.cn (L.G.); jgtao@hebut.edu.cn (J.T.); Tel: +86-15222451579

Figure 1. The band structures of InSe/FeI₂ heterostructures with C-2 to C-6 configurations [(a)-(e)]. The red solid dots indicate the contributions from InSe with their size reflecting the relative weight.

Figure 2. Spin density for C-1 (a) and C-3 (b) configurations. The red and blue color represent charge accumulation and depletion, respectively. The isosurface value of 0.0003 e•Å-³. The green, pink purple and brown balls represent Se, In, I and Fe atoms, respectively.