Bioelectrocatalysis of Hemoglobin on electrodeposited Ag Nanoflowers toward H₂O₂ Detection

Ajay Kumar Yagati 1,+, Hien T. Ngoc Le 2,+ and Sungbo Cho 1,3,*

Figure 1. Nyquist plot for bare ITO and AgNF/ITO electrodes, 3-MPA SAM formation, EDC-NHS activation, and Hb binding. Measurements were performed in 10 mM ($Fe(CN)_6$)^{3-/4-} with 0.1 M KCl as background electrolyte. Inset is Randles equivalent circuit used to fit the experimental data to extrapolate impedance parameters. Here, R_s is the solution resistance, R_{ct} is the charge transfer resistance, CPE is the constant phase element, and W_s is the Warburg diffusion impedance.

Figure S2. CVs of AgNF/ITO electrode in absence and in presence of H₂O₂ at a scan rate of 50 mV/s in 5 mL solution of 10 mM PBS (pH 7.0).

Figure S3. (a) CV and (b) plot of peak currents vs. scan rate v of Hb/AgNF/ITO in the presence of 10 mM H₂O₂ in 10 mM (Fe(CN)₆)³⁻ with 0.1 M KCl at different scan rate v from 50 to 175 mV/s.

Figure 4. Lineweaver-Burk plot of $1/\mathcal{C}_{H_{\mathbb{Z}}\mathcal{Q}_{\mathbb{Z}}}$ (mM⁻¹) vs. 1/I (mA⁻¹).