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Abstract: Energy storage materials are finding increasing applications in our daily lives, for
devices such as mobile phones and electric vehicles. Current commercial batteries use flammable
liquid electrolytes, which are unsafe, toxic, and environmentally unfriendly with low chemical
stability. Recently, solid electrolytes have been extensively studied as alternative electrolytes to
address these shortcomings. Herein, we report the early history, synthesis and characterization,
mechanical properties, and Li+ ion transport mechanisms of inorganic sulfide and oxide electrolytes.
Furthermore, we highlight the importance of the fabrication technology and experimental conditions,
such as the effects of pressure and operating parameters, on the electrochemical performance of
all-solid-state Li batteries. In particular, we emphasize promising electrolyte systems based on sulfides
and argyrodites, such as LiPS5Cl and β-Li3PS4, oxide electrolytes, bare and doped Li7La3Zr2O12

garnet, NASICON-type structures, and perovskite electrolyte materials. Moreover, we discuss the
present and future challenges that all-solid-state batteries face for large-scale industrial applications.

Keywords: electrolytes; solid state; nanomaterials; sulfides; oxides; all-solid-state batteries; energy
storage; composites

1. Introduction

Inorganic oxide and sulfide materials have recently been studied as solid electrolytes for
all-solid-state batteries (ASSBs) owing to their high safety profile, wide temperature window, and better
mechanical properties than those of liquid electrolytes. Solid-state electrolytes (SSEs) can be widely
used for solid-state Li batteries [1,2], sensors [3,4], fuel cells [1], Li-air [1,5,6], and Li-S [7] batteries.
Although solid-state electrolytes can be used for all these different applications, we focused mainly
on electrolytes for all-solid-state Li batteries. Recently, Reddy et al. [8] summarized the early history
of Li batteries. In brief, a Li battery consists of a cathode (positive electrode), an electrolyte (Li
ionic conductor), a separator, and an anode (negative electrode). The cathode material consists of
either LiCoO2 (LCO), Li(NixMnyCoz)O2 (NMC), LiFePO4 (LFP), or LiMn2O4 (LMO), and in some
cases intercalated binary oxides, whereas Li metal, Li-In alloys, graphite, Li4Ti5O12 (LTO), or Si,
Sn-Co-C mixed composites are used as anode materials [2]. In addition, Li batteries use liquid [9],
gel polymer [10–12], or combinations of polymer and solid electrolytes. The electrode preparation
techniques for all-solid-state lithium batteries (ASSLBs) differ from those of commercial Li batteries.
Furthermore, the fabrication technologies of oxide and sulfide electrolyte-based ASSBs are different.
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For example, carbon is used as a conductive additive during the fabrication of sulfide electrolytes
but not for the fabrication of oxide electrolytes. Moreover, depending on the mechanical properties
of sulfide electrolytes, a suitable stack pressure is required for the assembly of ASSBs. Oxide solid
electrolytes require high-temperature (>700 ◦C) sintering to improve the particle-particle contact
between electrode and electrolyte. The general schematic diagram of ASSBs is presented in Figure 1.
The ideal electrolyte materials for ASSBs should feature the following important properties: (i) High
ionic conductivity of 10−3 S cm−1 at room temperature, (ii) low electronic conductivity of <10−8 S cm−1,
which prevents their self-discharge, (iii) wide electrochemical potential window, (iv) good chemical
stability over the operating temperature range and toward the electrodes, (v) transference number of
approximately 1, (vi) matching thermal expansion coefficients with the cathode materials, (vii) good
chemical stability; no crystal structure phase transformation should occur for the electrode active
materials up to/near their sintering temperatures, (viii) their sintering temperature should match that
of the electrode active materials, and (xv) low toxicity and cost effective [13].
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Figure 1. Schematic diagram of the fabricated electrolyte for all-solid-state Li batteries and its cross-sectional
scanning electron micrograph. Reproduced with permission from [13]. Copyright 2018 Royal Society
of Chemistry.

Many researchers have investigated new solid electrolytes to replace flammable liquid electrolytes
or improve the performance of existing solid electrolytes and elucidate their fundamental properties
and technological developments. Huggins (1977) [14], Weppner (1981) [15], Kulkarni et al. (1984) [16],
Minami (1985) [17], Pardel and Ribes (1989) [18], Adachi et al. (1996) [19], Owens (2000) [20],
Thangadurai and Weppner (2002) [21], Knauth (2009) [22], and Fergus (2010) [23] published reviews on
solid electrolytes. The journal Solid State Ionics devoted to these materials was created in 1980. This has
been considered a hot research topic worldwide and has generated many publications. To highlight
the advances on solid electrolyte fundamentals and electrode/electrolyte interface, analysis and its
applications have been reviewed by many workers. We highlight a few important reviews in the
following section.

The large number of reviews on solid electrolytes published during the last five years was
attributed to the increasing interest in the use of solid electrolytes for electric vehicles (EVs) applications
owing to their safety. Tatsumisago et al. [24] and Sakuda et al. [25] published important reviews
on sulfide electrolytes, while Thangadurai et al. [26,27] reviewed garnet electrolytes. Furthermore,
the fundamentals of ASSBs were reviewed by several authors [28–35]. The number of reviews on
various aspects of electrolytes, cathodes, mechanical properties, and interface engineering has grown
exponentially since 2018 [36–115]. For example, Famprikis et al. [51] and Zhang et al. [116] reported on
the fundamentals of electrolytes and Oudenhoven et al. [117], Julien and Mauger [60], and Rambabu
et al. [118] reviewed the technology of solid-state microbatteries. Moreover, in situ and ex situ
techniques were explored for elucidating the solid electrode/electrolyte interfaces [40,67,80,98,119–123]
and computational methods were reviewed by Xiao et al. [94] for understanding the conduction
mechanisms in both oxide and sulfide electrolytes.
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Herein, we report the brief history of each electrolyte system, summarize the recent advances
in solid electrolytes (oxides vs. sulfides) for ASSB applications, highlight the importance of the cell
fabrication technology and process parameters on the electrochemical storage performance, mechanical
properties, and interfacial mechanisms of the cells, and examine the challenges of the large-scale
fabrication of ASSBs. Furthermore, we summarize the important recent reports on electrolyte materials.
Owing to the vast literature on this topic, we were unable to include and highlight all the pertinent
publications in this review; however, some of the older publications are referenced in the most
recent reviews.

2. Ionic Conduction in the Solid State

2.1. Ionic Conduction

In an idealized crystalline structure, there is little space for an ion to diffuse. The available space
is only limited for vibration around its equilibrium position. In real systems, the degree of disorder
that generates point defects (Schottky or Frenkel defects) results in vacant sites in the crystal and any
ion in the immediate vicinity can jump from lattice site to lattice site. Ionic conduction is provoked by
the motion of some positively (or negatively) charged ions, which “hop” under the influence of an
electric field F. This ionic conductivity σi is expressed by:

σi = ni e µi, (1)

where ni is the number of ions per unit volume, µi the mobility of ions and e their charge. To move
through the crystalline network, ions must have sufficient energy to pass an energy barrier Ea.
Thus, ni in Equation (1) depends on the defect concentration in the crystal. So, in ionic frameworks,
the movement of ions is in fact the movement of vacancies. Regarding the defect concentration, a
useful classification of solid-state ionic conductors was proposed by Rice and Roth [124] as follows:

• Type I: Ionic solids with low concentration of defects ~1018 cm−3 at room temperature. They include
compounds with poor ionic conduction (NaCl, LiCl, etc.).

• Type II: Ionic solids with high concentration of defects ~1020 cm−3 at room temperature. They are
good ionic conductors (“fast-ionic conductors”, FICs), which belong to the class of materials of
“vacancy migration”.

• Type III: Best FICs, which have a “molten” sub-lattice or “liquid like” structure of the mobile
ions whose concentration is typically 1022 cm−3. The conduction mechanism in such FICs is
mostly “interstitial”.

In practice, for a useful solid electrolyte, the electronic conductivity σe is undesirable and the
transference number ti is defined as the ratio of the ionic conductivity to the total conductivity

ti = σi /(σe + σi) ≈ 1. (2)

In the one-dimensional (1D) model, the probability per unit time (P) for a vacancy to move to the
next position in the absence of electric field is given by:

P = ν0 exp
(
−

Ea

kBT

)
, (3)

where ν0 is the attempt frequency, T is the absolute temperature, kB is the Boltzmann constant, and Ea

is the potential barrier height or activation energy. Under an electric field, the barrier height is changed
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by the quantity eFa (see Figure 2a), where a is the lattice constant. The probabilities for the vacancy to
move in the direction of the field (P′) and in the opposite direction to the field (P”) can be written as:

P′ = ν0 exp

−Ea +
1
2 eFa

kBT

, (4)

P′′ = ν0 exp

−Ea −
1
2 eFa

kBT

. (5)
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The velocity of the vacancy in the lattice is expressed by:

νi = a(P′′ − P′) = aν0 exp
(
−

Ea

kBT

)
× 2sinh

( eFa
2kBT

)
. (6)

For low electric field, eFa << kBT, taking the Taylor series expansion of sinh(x) ≈ x, the last term
equals to eFa/2kBT and Equation (6) is simplified to:

νi =
a2eFν0

kBT
exp

(
−

Ea

kBT

)
. (7)

Hence, the mobility of vacancies is expressed as:

µi =
a2eν0

kBT
exp

(
−

Ea

kBT

)
. (8)

Combining Equations (1) and (8), the ionic conductivity can be expressed as:

σi =
nia2eν0

kBT
exp

(
−

Ea

kBT

)
, (9)

which can be simplified (Arrhenius equation), in which the first termσ0 = nia2e2ν0/kBT is the conductivity
pre-factor:

σi = σ0 exp
(
−

Ea

kBT

)
. (10)

Note that, in polycrystalline materials, Ea appears to be dependent on the crystallite size.
The Nernst–Einstein relation relates the ionic conductivity to the diffusion coefficient of ions as:

σi =
nie2Di

kBT
. (11)
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The typical Arrhenius plot for an idealized ionic conductor shown in Figure 2b presents two regions.
At low temperature, the conductivity (activation energy Em) is dominated by the mobility of extrinsic
defects. The carrier (ion) concentration is fixed by doping. For example, an improved conductivity of
0.5 mS cm−1 at room temperature was obtained for Li6PS5Cl doped with few mol% of LiCl. At high
temperature, the conductivity is due to thermally formed intrinsic defects. The carrier concentration varies
with temperature and the slope reflects the activation energy Ea, required for the creation of vacancies. Ea

is obtained from the slope of the semi-logarithmic Arrhenius plot (Equation 10):

ln σi = ln σ0 −
Ea

kBT
, (12)

Ea =
∆ ln σi

∆
(

1
T

) × kB, (13)

with kB = 1.38 × 10−23 J K−1, Ea is expressed in Joule or in eV (using the conversion 1 eV = 1.6 × 10−19 J).
In many substances, not only in solid polymer electrolytes (SPEs) and ionic conducting glasses

(ICGs) but also in Li0.5La0.5TiO3 perovskite-type FICs [125], for example, the ionic conductivity does
not follow the Arrhenius law due to strong ion–ion interactions. The temperature dependence of the
dc conductivity can be fitted to an empirical Vogel–Fulcher–Tamman (VFT) function of the form:

σi =
A
√

T
exp

(
−

B
kB(T − T0)

)
, (14)

where A is the pre-exponential factor, B is the activation energy, and T0 is the temperature at which the
free volume to transfer Li+ ions is zero. Usually, T0 is the same as the glass transition temperature (Tg)
in SPEs or glassy electrolytes. The “nonexponentiality” observed in electrical conductivity relaxation
has been examined using several models, such as the coupling model [126], diffusion-controlled
model, [127] or the jump relaxation model [128].

2.2. Ionic Transport Models

Several classes of transport models for the high ionic conduction in FICs have been developed (for
a summary, see [129]). Thus, theories, i.e., discrete and continuous models of conduction, have played
a central role in the field of FICs for optimization of materials. The reader can find a detailed
description in review articles by Mahan [130], Boyce and Huberman [131], Dieterich et al. [132],
and Geisel [133]. Specific and indirect assumptions are involved in most of the models such as
microstructure, distribution, and local environment of ions.

• Continuous models are concerned with the motion of ions as Brownian particles in periodic
potential. This approach allows the complete description of the dynamics of superionic conductors
and explains the local motion in vacant sites of the host lattice (i.e., the local motion includes
relaxation and oscillating processes).

• Discrete models are hopping or random-walk models, which have long been used to study
diffusion processes. There are rather simple, and a complete discussion of their dynamical
properties is possible. The situation is the following: The lattice defines a periodic array of sites
where the mobile ions can sit. An ion placed at one site is licked out of it after a certain time and
hops away. Discrete models are applied to ionic conductors where the diffusing ions are well
localized about given lattice sites over most of the time.

A common feature of these models is the fact that only the sub-system of diffusing ions is treated
explicitly. This simplification can be justified by the fact that usually the characteristic rate τ−1 for
particle jump is much smaller than a typical lattice vibrational frequencyωD withωD τ >>1 [132].

Transport models proposed to explain the high ionic conductivity include the weak electrolyte
model [134], the random site model [135], the dynamic structure model [136], the diffusion pathway
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model [137], the modified random network (MRN) model [138], the dynamic cluster model [139],
the cluster-bypass model [140], jump relaxation model [141], lattice-gas model [132], and liquid-like
model [132]. These models are briefly presented as follows.

The weak electrolyte model proposed by Ravaine [134] is applied for the ionic transport in
materials with lack of long-range order (glasses). Conversely, µi is assumed to be independent
of ion concentration, and only weakly temperature dependent, whereas ni depends strongly on both
concentration and temperature.

The random site model considers the existence of a wide continuous distribution of alkali ion sites
of differing free energies. A clear distribution between mobile and immobile species cannot be made;
thus, in this case, the summation of conductivities (Equation (1)) must be performed over the entire
distribution of ions [135].

In the dynamic structure model reported by Maas et al. [136], the ion transport in glass is presented
by postulating the existence of a site memory effect to visualize the formation of conducting pathways.
This quantitative theory explains the general occurrence of the mixed cation (alkali) effect in glassy
material and, in addition, shows that the anomalous dependence of conductivity on the modifier
content in single alkali glasses follows a simple power-law relation.

In the diffusion pathway model, the spatial dependence of the conductivity is understood by the
possible ion transport in the grains and at the grain boundaries, including intergranular pathways within
and between grains. Polycrystalline model can quantify the impact of grain boundaries on conductivity
as a function of grain size. Such insights provide valuable fundamental understanding of the role of
grain boundaries. The lowest energy of grain boundaries the higher electrochemical performance.

The modified random network (MRN) model is appropriate to describe the ionic transport in
glasses [138], which comprise two interlacing sublattices: Domains constructed from network former
and inter-network regions made up of modifier. For example, in oxide glasses, the strong correlations
associated with the network forming units masked the weak correlations between modifying cations
and the oxygen sublattice.

The dynamic cluster model [139] is based on the idea that ion-hopping processes are directly
coupled to localized structural relaxations occurring in glass even below Tg, while the cluster-bypass
model [140] states that ion diffusion occurs within microregions or clusters of material resembling to
crystal. In the jump relaxation model described by Funke [141], two competing relaxation processes are
considered after each initial forward hop of a charged defect: The backward hop of the defect and the
forward motion of the surrounding “defect cloud”. The model yields the power-law of the frequency
dependent conductivity.

In the lattice gas model, the role of ion interactions with respect to static properties is most easily
investigated by considering the system of conducting ions as a lattice gas. Such a model is characterized
by a Hamiltonian, which gives the energy of the various possible configurations. Each configuration is
specified by a set of occupation numbers referring to the different lattice sites [132].

The liquid-like model is applicable to the best ionic conductors characterized by very low potential
barriers WB ≈ kBT, where T ≈ 103 K [132]. Therefore, the probability of finding an ion between
preferred lattice sites becomes non-negligible and a discrete lattice gas model is no longer adequate.
The mutual repulsion of ions leads to an effective single particle barrier, which differs from the bare
potential WB. Such effect is important with respect to transport properties and its discussion requires a
continuous many-particle model. The statics of continuous systems to be described is that of a liquid
embedded in a periodic medium, for which the total energy is the sum of the periodic single particle
potential determined by the forces acting between mobile ions and the cage ions and the pair potential,
wich consists of a short-range repulsive part, the Coulomb part, and a phonon mediated part.

The bond-valence method has been used to model both absolute ionic conductivity and activation
energy from the “pathway volume” approach. This pathway volume–conductivity relation was found
to hold for glassy and crystalline FICs with silver ion conductivities [142] and La2/3−xLi3xTiO3 [143].
Due to the disordered Li sublattice, the Li+ ionic conduction in garnet-type electrolytes is facilitated
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by a cooperative-type migration instead of a single hopping process with a very small time-scale
for fluctuations at intermediate positions [144]. This mechanism was investigated by ab-initio and
classical molecular dynamics (MD) studies [145,146]. In the jump diffusion model, the dynamics of the
hopping motion of the mobile ions was investigated by Bruesch et al. [147] considering the Brownian
motion in a periodic lattice that included the effect of polarizability of the lattice and correlated jumps
of ions relevant to superionic conductors. In a modified model, Funke [148] has taken into account
the repulsive interaction between mobile ions resulting in a “cage effect”. Because of the cage effect,
the ions tend to stay at some distance from each other.

2.3. Impedance Spectroscopy

Ionic conductivity of the solid-state electrolytes is generally measured by the ac complex impedance
method (i.e., electrochemical impedance spectroscopy (EIS)). All samples are analyzed within wide
range of temperature with a small bias amplitude of 5–10 mV in the frequency range of 106 Hz ~10−2 Hz
(pulsation ω). Data are analyzed from the Nyquist plot (−Z” vs. Z′), the imaginary part −Z”(ω)
(capacitive) of the impedance against the real part Z′(ω) (resistive) [149,150]. The conductivity σi (in
Scm−1) is calculated using the equation:

σi =
1

Rb

d
S

, (15)

where d denotes the electrolyte thickness (in cm), S is the cross-sectional area of the electrode (in cm2),
and Rb is the bulk electrolyte resistance (in Ω).

For an idealized FIC, the bulk resistance is the quantity obtained from the diameter of the semicircle
in the Nyquist plot as shown in Figure 3a. The vertical line in the low-frequency region reflects the
capacity formed by the dielectric FIC sandwiched between two metallic electrodes. The equivalent
circuit model (inset) consists of the parallel combination of the bulk resistance Rb and the geometry
capacity Cb of the FIC (parallel plate capacitor) expressed by:

Cb =
ε′ε0S

d
, (16)

where ε′ is the permittivity of the material and ε0 is the free-space permittivity (8.854 × 10−14 F cm−1).
This Rb,Cb element is in series with a capacity of impedance 1/jωCe (j =

√
−1), which represents the

electrolyte/electrode interface). The ideal impedance of the bulk Zb is given by the expression:

Zb =
Rb

1 + jωRbCb
= Z′b + jZ′′ b, (17)

where Z′b and Z”b are the real and imaginary part of the bulk impedance. The −Im(Zb) vs. Re(Zb) plot
exhibits a standard semicircle centered at Rb/2. The real and imaginary parts of the impedance are
given by Equations (18) and (19):

Z′b =
Rb

1 +ω2R2
bC2

b

, (18)

Z′′ b = −
ωR2

bCb

1 +ω2R2
bC2

b

. (19)

The experimental Nyquist plot of a FIC sample placed between two stainless-steel electrodes
is shown in Figure 3b. This diagram deviates from the ideal impedance spectrum as the capacitor
in EIS experiments often does not behave ideally. The impedance spectrum consists of a depressed
semicircle, which can be visualized by the equivalent circuit including the parallel association of the
bulk resistance Rb with the capacitance Cb and a constant phase elements (CPE1), which represents
the geometry capacity and the effects of dipolar relaxation (i.e., system with a distribution of time
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constants), respectively. Similarly, CPE2 replaces the pure Ce capacitance due to surface roughness of
the electrode/FIC interfaces. The impedance of a CPE is expressed as:

ZCPE = T( jω)−p = Tω−p
[
cos

(pπ
2

)
− j sin

(pπ
2

)]
, (20)

where p is the exponent of CPE (0 < p ≤ 1) and T is the CPE constant (10−3 < T < 10−6). The constant
phase is φ = − pπ/2.
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Figure 3. (a) Nyquist impedance plot of an idealized fast-ionic conductor (FIC). The semicircle centered
at Rb/2 represents the response of the Rb, Cb parallel element and straight line is the capacity of the
electrolyte/electrode interface of impedance 1/jωCe. (b) Nyquist impedance plot of a FIC sample.
The depressed semicircle reflects the combination of Rb, Cb, CPE1 and the inclined straight line
represents the double-layer capacity of the inhomogeneous electrode surfaces.

Figure 4a,b show the frequency dependence of the real Z′(ω) and imaginary −Z”(ω) part of the
impedance, respectively, of a FIC sample measured at three temperatures. Atω > 103 Hz, the plots of
Figure 4a show a decrease of Z′ vs. frequency, so that σ(ω) increases with frequency (see Figure 4c). At
low frequency (f ≈ 1 kHz), σ(ω) increases importantly with temperature. At high frequencies, however,
Z′(ω) becomes almost temperature independent so that the Z′(ω) curves at different temperatures
merge approximately in a single curve. This is due to the release of space charges caused by reduction
in barrier properties of the material [151,152]. This unique curve at high frequency shows a dip,
which is associated with charge carrier hopping in the material. On the other hand, Z” = −Im(Z(ω))
reaches a maximum, which shifts towards higher frequency with temperature. This is attributed to the
active conduction through the grain boundaries of the sample. The peak broadening observed with
increasing temperature is attributed to a temperature-dependent relaxation process in the material.
The asymmetric broadening of the peaks indicates the spread of relaxation time in the sample.
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The frequency f m, at which −Im(Z(ω)) goes through a maximum, corresponds to the single
relaxation time, which fulfills the relation 2πf mτm = 1. For a thermally activated relaxation process,
the variation of τwith T obeys an Arrhenius law given by [153,154]:

τ = τ0 exp
( Eτ

kBT

)
, (21)

where τ0 is the pre-exponential factor and Eτ is the activation energy. The inset in Figure 4b shows the
temperature dependence of the relaxation time of FIC sample. When the mean relaxation time of the
process is measured in fraction of milliseconds, it implies slow relaxation, which can be imposed by
permanent molecular dipoles, ion defects of a dipolar type, or mobile hopping charge carriers [31].

The ac conductivity σac (Figure 4c) obeys the power law [153]:

σ(ω) = σac = σ0 + Aωn, (22)

where σ0 is the dc conductivity (atω ≈ 0), A is a thermally activated quantity, and n is the fractional
constant, which is 0.5 < n < 0.8 for an ionic conductor [155]. The frequency exponent n (Equation (4))
can be analyzed by a mechanism based on charge carrier hopping between defect sites proposed by
Elliott [156]:

n =
∂(ln σac)

∂(lnω)
= 1−

6kBT
Em

, (23)

where Em is the maximum barrier height (energy of the transport charge). Using Equation (22), from the
slope of curves in Figure 4c, one can derive at the highest frequency with n and the value of Em at
room temperature.

In practice, solid electrolytes are mainly polycrystalline ceramics with a microstructure composed
of intragrains (bulk) of dimension Lb separated from each other by a boundary (intergrain) of thickness
Lgb [102,157]. The typical impedance spectrum of polycrystalline FIC (Figure 5a) displays two
distinct depressed semi-circles: In the high-frequency range attributable to bulk (intragrain) and in
medium-frequency region assignable to grain boundary (intergrain) domains [157]. Thus, the Nyquist
plot can be visualized by the equivalent circuit (inset in Figure 5a) including the additional parallel
association of the intergrain resistance Rgb with the capacitance Cgb and a constant phase elements
(CPEgb). The value of Rgb is obtained from the difference of the intercepts on the Z′ axis:

Rgb = Rt − Rb, (24)

where Rt is the total resistance and Cgb is calculated by applying the equation of the frequency at the
semi-circle maximum (ωRgbCgb = 1). Irvine et al. [158] considered the factors controlling the magnitude
of the grain boundary impedance using a “brickwork model” (Figure 5b) for an idealized ceramic with
cube-shaped grains separated by intergrains of impedance Zgb. From the inverse relation between
dielectric thickness and capacitance (Equation 16), for this idealized case, Equation (25) indicates the
quality of the sintering and the nature of the narrow intergranular regions:

Cb
Cgb

=
Lgb

Lb
. (25)

For well-sintered samples, generally, the overall impedance of intergrains is 2–3 times greater than
the impedance of grains. Typical Arrhenius plot of the conductivities of bulk and grain boundaries is
shown in Figure 5c, which display different conduction mechanisms with increase of the intergrain
activation energy (Egb > Ea).
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3. Sulfide Solid Electrolytes

Owing to their high Li+ ion conductivity at room temperature, sulfide-based materials are more
promising electrolytes than oxide-based ones [159–304]. In addition, sulfide-based electrolytes are relatively
soft and deformable. Furthermore, the polarizability of sulfide-based electrolytes is higher than that of
oxide-based electrolytes, which leads to the attraction between the Li+ ions and sulfide framework being
weaker than that between the Li+ ions and oxide framework and the mobility of sulfide-based electrolytes
being higher than that of the oxide-based ones. In 1996, Otto [159] reported that the conductivity of the
Li2O–Li2Cl2–Li2SO4–SiO2–B2O3 (35:10:30:12.5:12.5) glass system was 3.3 × 10−6 and 9.7 × 10−2 S cm−1 at
25 and 350 ◦C, respectively. In 1997, Calès et al. [160] reported ionic conductivities of 1.0 × 10−3 S cm−1 at
300 ◦C for the B2O3–Li2O–LiX (X = F, Cl, Br, I) and B2O3–Li2O–Li2SO4 borate-based glassy electrolytes;
their publication led the search for new sulfide-based electrolyte systems. In 1981, Mercier et al. [161]
reported that the room-temperature conductivity of Li2S–P2S5–LiI (Li4P2S7·LiI) was 10−3 S cm−1. In 1986,
Pradel and Ribes [162,163] studied xLi2S(1−x)SiS2 (x ≤ 0.6) and Li2S–M (M = SiS2, GeS2, P2S5, B2S3, As2S3)
glasses. Furthermore, in 1986 and 1987, Kennedy [164,165] reported the melt quenching synthesis method
and performed conductivity studies on Li2S–SiS2 LiX (X = Br, I); in addition, in 1988 and 1989, Kennedy
and Zhang [166,167] investigated the SiS2–P2S5–Li2S–Li2S–LiI system, where LiX acted as an interstitial
dopant to improve the ionic conductivity. Rao and Seshasayee [168] conducted molecular dynamics (MD)
simulation studies of the x(0.4Li2S–0.6P2S5)–(1 − x)LiI and x(0.5Li2S–0.5P2S5)–(1 − x)LiI (x = 0.9, 0.75)
superionic sulfide glasses ternary systems and attributed their high room-temperature ionic conductivity
to the presence of non-bridging S atoms around the diffusing Li atoms. Moreover, the decrease in the glass
transition temperature (Tg) of these systems was ascribed to the presence of iodine atoms, which led to the
plasticization of the structure, rendering it less rigid and decrease in P–P bonds caused by the modifying
action of the Li atoms, which also weakened the glass matrix and contributed to the decrease in Tg.

From 1986 to 1989, Akridge and Vourlis [169], Balkanski et al. [170], Meunier et al. [171],
Creus et al. [172] and Jones and Akridge [173,174] introduced and developed the thin-film electrolyte
concept. In 1995, Takada et al. [175] reported that when ASSBs featuring thin-film cells with the
LiMO2 (M = Co, Ni)/Li3PO4 (LPO)–Li2S–SiS2/Li metal electrochemical chain, were cycled at a current
rate of 64 µA cm−2 in the voltage range of 2.0–3.8 V, their capacity ranged from 80–90 mAh g−1.
Subsequently, different glassy and nanocrystalline sulfide-based electrolytes have been explored by
researchers worldwide.

Many research groups studied Li–P–S-based glasses, glass-ceramics, argyrodites, Li6PS5X (X = Cl,
Br, I), thio-LISICONs, and Li11−xM2−xP1+xS12 (M = Ge, Sn, and Si) as electrolytes [176,177]. Among all
reported electrolyte compositions, Li6PS5Cl, β-Li3PS4 (β-LPS), and Li7P2S8I have been the most studied
owing to their excellent conductivity and remarkable mechanical properties, which facilitated the
fabrication of ASSBs. Few reviews, such as those published by Zhang et al. [176] and Takada [177]
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focused on sulfide-based electrolytes. Herein, we highlight the most important recent studies and focus
more on the fabrication technologies, importance of stack pressure on different electrolyte systems,
and role of the electrode and cell fabrication techniques on the electrochemical properties of ASSBs.

3.1. Argyrodite Electrolytes

In 2008, Deiseroth et al. [178] introduced a new Li6PS5X (X = Cl, Br, I) Li-argyrodite fast-ion
conductor and reported that the preliminary room-temperature conductivity values of this material
were in the range of 10−2–10−3 Scm−1. This work opened the avenue for the further understanding of the
structural and physical properties of solid-state electrolytes and facilitated the development of ASSBs.
Argyrodite presents high conductivity; moreover, argyrodite-based batteries are easier to fabricate
than those featuring oxide-based solid electrolytes, and therefore, below, we summarize a series of
reports on the synthesis, fabrication, and interfacial properties of argyrodite electrolytes [179–205].

(i) Li6PS5X (X = Cl, Br, I) compounds are isostructural with Cu- and Ag-argyrodite materials
with cubic unit cells (F-43m space group) (Figure 6a–c) [179]. In this cubic structure, Li+ ions are
randomly distributed over the remaining tetrahedral interstices (48 h and 24 g Wyckoff sites), in which
P atoms occupy the tetrahedral interstices (4b sites), while 16e sites are fully occupied by S2− forming
a network of isolated PS4 tetrahedra. X anions form a face centered cubic (fcc) lattice (4a and 4c
sites). Li occupy the 24g site in the Li6PS5Cl lattice, whereas they are distributed over the 24g and 48h
sites in the Li6PS5Br framework [180]. Li+ ion diffusion occurs via these partially occupied positions,
which form hexagonal cages connected to each other via the interstitial sites around the X− and S2− ions
for Li6PS5Cl and Li6PS5I, respectively. Rao and Adams [181] reported that the lattice parameters of the
polycrystalline Li6PS5Cl, Li6PS5Br, and Li6PS5I powders were a = 9.85, 9.98, and 10.142 Å, respectively.
Observed differences in the lattice parameter values are due to differences in the ionic radii (r) of the
anions in Li6PS5X, i.e., r(S2−) = 1.84 Å, r(Cl−) = 1.81 Å, r(Br−) = 1.95 Å, and r(I−) = 2.16 Å.Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 79 
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Figure 6. (a) Crystal structure of argyrodite-type Li6PS5X that crystallizes with cubic symmetry in
the space group F43m. In Li6PS5Cl, the Li+ ions solely occupy the 24g positions of the split site
48h−24g−48h′. In compounds with X = Br and I, they are distributed over the 24g sites and the 48h
positions. P resides on 4b. The 16e is fully occupied by S2− forming PS4

3− tetrahedra. Whereas in
Li6PS5I, the halide anions occupy only the 4a sites; in Li6PS5Br, the occupation factors, according to
neutron diffraction, amount to 78% (4a) and 22% (4d). For Li6PS5Cl, the occupation factors are 39% (4a)
and 62% (4d); thus, the majority of the Cl anions occupy the inner centers of the Li cages, which are
too small for I−. (b) Intracage and intercage Li diffusion pathways: Hopping between two Li cages
(48h−48h”, see also (c)), either following a direct or curved pathway, could be influenced by S2− anions
of a nearby PS4

3− tetrahedral. The jump distance depends on the lattice constant and, thus, on halogen
substitution. Possible rotational jumps are indicated that may open or block the Li+ pathway. (c) The
same cutout as in (a) but viewed along the c-axis. Two S2− anions of the PS4

3− tetrahedra are located
slightly above the direct 48h−48h” exchange pathway. Rotational jumps of the PS4

3− tetrahedra could
also influence the intracage jumps. Reproduced with permission from Ref. [179]. Copyright 2019,
American Chemical Society.
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(ii) In 2011, Rao and Adams [181] and Rao et al. [182] synthesized Li6PS5X (X = Cl, Br, I)
and performed neutron diffraction, conductivity, and bond valence computational studies on them.
They reported the presence of a three-dimensional (3D) pathway network for the long-range ion
conduction of all Li6PS5X (X = Cl, Br, I) phases, which consisted of interconnected low-energy
local pathway cages [180]. The experimentally measured ionic conductivity at 25 ◦C of Li6PS5Cl,
Li6PS5Br, and Li6PS5I prepared by ball milling followed by heating at 550 ◦C in inert atmosphere are in
the range 1.9 × 10−4–7.0 × 10−3 S cm−1 and calculated activation energies in the range 0.26–0.41 eV
(Table 1) [180–186]. Further, Boulineau et al. [183] reported the effect of enhancement of the conductivity
of Li6PS5Cl from 2× 10−4 S cm−1 to 1.33 × 10−3 S cm−1 when the ball milling time varies from 1 h
to 10 h. Rao and Adams [181] compared the values of Ea determined by both experimental and
computational method for Li6PS5X with X= Cl, Br, I in the range 0.25–0.38 eV. Camacho-Forero and
Balbuena [184] performed ab initio calculations and determined that conductivity, activation energy,
and the diffusion coefficient of Li+ ions at 27 ◦C were 0.17 × 10−3 S cm−1, 0.37 eV, and 1.2 × 10−9

cm2s−1 for Li6PS5Cl and 6.07 × 10−3 S cm−1, 0.27 eV, and 5.8 × 10−9 cm2s−1 for Li6PS5I, respectively.
The reported diffusion coefficient value of Li6PS5Cl was reported to be two orders of magnitude lower
than that determined using 7Li nuclear magnetic resonance (NMR) (7.7 × 10−8 cm2s−1 at 40 ◦C) [179].
According to Camacho-Forero and Balbuena [184], the ionic conductivity of Li6PS5I was significantly
lower than those of Li6PS5Cl and Li6PS5Br.

Table 1. Room temperature ionic conductivity σ(RT) and activation energy Ea of sulphide solid electrolytes.

Electrolyte Structure,
lattice Parameters (Å)

σ(RT)
(S cm−1)

Ea
(eV) Ref.

Li6PS5Cl amorphous
crystalline cubic, a = 9.85

3.3 × 10−5

1.9 × 10−9
0.38

0.35 a [181]

Li6PS5Br amorphous
crystalline, a = 9.98

3.2 × 10−5

6.8 × 10−3
0.32

(0.32) a [181]

Li6PS5I amorphous
crystalline, a = 10.142

2.2 × 10−4

4.6 × 10−7
0.26

0.25 a [181]

β-Li3PS4 amorphous 2.8 × 10−4 0.37 [229]

Li3.25Si0.25P0.75S4
crystalline, orthorhombic

a = 13.158, b = 8.029, c = 6.129 1.22 × 10−3 0.20 [222]

Li7P3S11
crystalline, triclinic

a=12.501, b= 6.031, c=12.530 0.1–0.2 × 10−3 0.2–0.4 [244]

Li7P2S8I crystalline, orthorhombic 6.3 ×10−3 0.31 [261]

Li7P2S8I crystalline, orthorhombic
a = 12.703, b = 8.45, c = 5.94 6.07×10−3 0.27 [184]

Li15(PS4)4Cl3
Li14.8Mg0.1 (PS4)4Cl3

crystalline, a = 14.308
a = 14.323

4.0 × 10−8

2.0 × 10−7
0.59
0.41 [188]

Li10GeP2S12
crystalline, tetragonal
a = 8.717; c = 12.634 12 × 10−3 0.24 [266]

Li10GeP2S12
tetragonal

a = 8.718, c = 12.660 9.0 × 10−3 0.22 [269]

Li10GeP2S12
crystalline, tetragonal
a = 8.712, c = 12.617 10 × 10−3 0.30 [292]

Li10SiP2S12
crystalline, tetragonal
a = 8.658, c = 12.519 2.0 × 10−3 0.30 [292]
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Table 1. Cont.

Electrolyte Structure,
lattice Parameters (Å)

σ(RT)
(S cm−1)

Ea
(eV) Ref.

Li10SiP2S11.3O0.7
crystalline, tetragonal
a = 8.666, c = 12.529 3.1 × 10−3 0.32 [290]

Li10SnP2S12
crystalline, tetragonal
a = 8.734, c = 12.773 Å 6.0 × 10−3 0.31 [292]

Li10Si0.3Sn0.7P2S12
crystalline, tetragonal
a = 8.741, c = 12.757 8.0 × 10−3 0.29 [292]

Li10.3Al0.3Sn0.7P2S12
crystalline, tetragonal
a = 8.743, c = 12.787 5.0 × 10−3 0.29 [292]

Li9.42Si1.02P2.1S9.96O2.04 tetragonal 1.1 × 10−4 0.23 [296]

Li9.54Si1.74P1.44S11.7Cl0.3
crystalline, tetragonal
a = 8.709, c = 12.569 2.53 × 10−2 0.23 [296]

Li11AlP2S12 crystalline 8.02 × 10−4 0.25 [302]

β-Li3PS4 amorphous 2.0 × 10−4 0.34 [303]

β-Li3PS4

crystalline, orthorhombic
a = 13.066, b = 8.015, c = 6.101

amorphous

1.6 × 10−4

7.4 × 10−5 0.36 [304]

a calculated by bond valence approach.

(iii) Argyrodite electrolytes can be synthesized using different methods [169,178–208], such as
the conventional sealed tube solid-state reaction [169], ball milling [181,183,187], and solution-based
methods [189,208].

(iv) The conductivities of argyrodite electrolytes depend on the preparation method,
grain boundary contributions, and conductivity measurement method and fabrication technique
of pelletized samples, including sintering cold-pressed pellets that influences the density of the
specimens [183]. Based on previous literature studies, conductivity values are also influenced by
cooling rate [186], porosity, and pore distribution [190]. Lower Li+ ion conductivities, in the range
of 10−5–10−4 mS cm−1, were reported when the electrolytes were synthesized via the solution-based
method, which were attributed to the presence of additional impurity phases in the compounds [189].

(v) Deiseroth et al. [185], Yu et al. [191–193], Hanghofer [179], Ganapathy et al. [194], Epp et al. [197],
and Adeli et al. [198] used the solid-state NMR method to characterize the structure and dynamics.
Results of the chemical shifts from 31P and 6Li MAS NMR spectra [179] are 85 and 1.6 ppm for X = Cl,
93.9 and 1.49 ppm for X = I, and 96.3 and 1.3 ppm for X = Br nanostructured samples synthesized
by the solid-state and ball milling methods. The conductivity, Ea, and Li-jump rate values obtained
from NMR measurements were 10−3–10−2 S cm−1, 0.2 eV, and 109 s−1, respectively, for Li6PS5Br and
Li6PS5I [197].

(vi) The reported electrochemical stability potential window of Li6PS5X (X = Cl, Br, I) was
determined to be 0–7 V vs. Li+/Li [20,176,177].

(vii) Kong et al. [199] determined that the substitution of S with O in Li6PS5X (X = Cl, Br) led
to the decrease in room-temperature conductivity by several order of magnitudes, to ~10−9 S cm−1;
moreover, the Ea of the O-containing compound was 0.66 eV. The observed low conduction mechanism
was further confirmed by Rao and Adams [181] using bond valence studies.

(viii) Kasemchainan et al. [200] and Doux et al. [201] reported the critical current density limits for
Li plating on Li6PS5Cl and studied the stack pressure limits of Li6PS5Cl, respectively.

(ix) Yokokawa [202] examined the thermodynamic stability of the sulfide electrolyte/oxide
interface of ASSBs; they proposed a potential diagram approach, in which the phase relationships at
the interfaces could be investigated by comparing the proper chemical potentials associated with the
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target devices. Understanding the aforementioned parameters is crucial for both fundamental and
industrial applications.

(x) In 2019, Rao et al. [188] reported the new Li15(PS4)4Cl3 and Li14.8Mg0.1(PS4)4Cl3 phases with the
I-43d space group and lattice parameters a of 14.308 and 14.323 Å, respectively, which were isostructural
with the Ag15(PS4)4Cl3 phases; in addition, they reported that Mg2+ doping led to the increase in ionic
conductivity from 4 × 10−8 S cm−1 for Li15(PS4)4Cl3 to 2 × 10−7 S cm−1 for Li14.8Mg0.1(PS4)4Cl3.

Many reports have been published on Li6PS5X (X = Cl, Br, I) sulfide electrolytes for ASSBs.
Herein, we highlight one of the recently published reports. Kasemchainan et al. [200] studied
the effect of the current density (0.1–4.0 mA cm−2) and pressure (3 and 7 MPa) on Li|Li6PS5Cl|Li.
Recently, Doux et al. [201] studied the effect of the stack pressure on the cycling of the Li|Li6PS5Cl|Li cell
and performed cycling studies on a mixture of 2 wt.% LiNbO3 (LNO)-coated LiNi0.80Co0.15Al0.05O2,
Li6PS5Cl, and carbon black with a weight ratio of 11:16:1 that was obtained using an agate mortar and
pestle. For this study, 12 mg of composite electrode was pressed on one side of the electrolyte pellet at
a pressure of 370 MPa and Li-In powder or a Li metal disc were subsequently pressed at 120 or 25 MPa,
respectively, on the other side of the electrolyte pellet. The effects of different stack pressures in the
range of 5–25 MPa on the fabricated Li symmetric cells during plating and stripping were reported
(Figure 7) [201]. The possible reasons for the good cycling are presented in the schematic diagram in
Figure 7(1). It was observed that at the stack pressure of 5 MPa, no short-circuit occurred for up to
1000 h; moreover, the capacity retention of the cell was 81% after 100 cycles (Figure 7(2)). In addition,
it was noted that as the pressure increased from 1 to 5, 10, 15, 20, and 25 MPa, the impedance decreased
from >500 Ω, to 110, 50, 40, 35, and 32 Ω, respectively. In conclusion, at low stack pressure (5 MPa),
Li plating occurred on the surface of the pellet because the pressure was not sufficient to allow Li to pass
into the pores of the electrolyte. Conversely, a pressure of 25 MPa led to the surface modification of the
electrolyte pellet, in which Li+ ions passed into the pores of the electrolyte along the interface. At the
high stack pressure of 75 MPa the cell underwent mechanical shorting before plating and stripping.

Moreover, Koerver et al. [203] and Kim et al. [204] applied high pressure in the range of 50–70 MPa
on β-LPS, which led to distinct differences in the stack pressures, which affected the mechanical
properties of the electrolyte. Furthermore, the structure and morphology of β-LPS were studied using
XRD and X-ray tomography on 2 mm diameter with an experimental resolution of 1 µm over the
entire volume. The tomography images and XRD patterns before and after the 25 MPa plating and
stripping are illustrated in Figure 8(1) [201]. The tomography images after plating and stripping at
25 MPa (Figure 8(2)) illustrate large low-density structures within the electrolyte.

Furthermore, the images revealed that Li dendrites formed and propagated between the electrolyte
grains along grain boundaries. Moreover, the XRD patterns revealed the presence of LiCl, Li2S, and other
P4 and Li3P7 phosphorous phases in the Li6PS5Cl structure [201]. Zhang et al. [205] reported the
inter- and intracycle interfacial evolution of a LiNi0.8Co0.1Mn0.1O2 (NMC)|Li6PS5Cl|Li cell using
impedance measurements, Raman spectroscopy, and scanning electron microscopy (SEM) studies.
Furthermore, Zhou et al. [206] studied the Li6PS5X (X = Cl, Br, I) and Li6−yPS5−yCl1+y argyrodites,
while Feng et al. [207] investigated Li6−xPS5−xCl1+x. Recently, Arnold et al. [208] reported an improved
conductivity of 0.53 × 10−3 S cm−1 at RT for Li6PS5Cl doped with LiCl and they showed the enhanced
electrochemical properties with cells assembled with Li||LTO (Li4Ti5O12) using bare and doped
electrolyte. Although Li6PS5Cl presented good ionic conductivity, further studies on large-scale packs
and the improvement in the air stability and surface protection of argyrodites are required to facilitate
their large-scale applications. Transport properties of sulphide solid electrolytes, i.e., room temperature
ionic conductivity sRT and activation energy Ea are summarized in Table 1.
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Figure 7. (1) (a) Design of solid-state Li symmetric cell that allows control and monitoring of the pressure
during cycling. (b) Normalized voltage of Li symmetric cells as a function of the plating and stripping
times at different stack pressures. At 75 MPa, the cell already mechanically short-circuited before cycling
began. At 5 MPa, no short-circuit was observed for over 1000 h. (c) Voltage profile of a full cell with Li
metal anode. The first cycle was run at a stack pressure of 5 MPa. The stack pressure was subsequently
increased to 25 MPa before the second cycle, during which the cell short-circuited. (2) (a) Voltage
profiles of the 1st, 2nd, 5th, and 10th cycles and (b) cycle life of a Li metal|Li6PS5Cl|LiNbO3-coated
LiNi0.8Co0.15Al0.05O2 all-solid-state Li-ion battery cycled at C/10 and a stack pressure of 5 MPa (black
and blue dots are specific capacity and coulombic efficiency data, respectively). No short-circuiting
behavior was observed. The average Coulombic efficiency (C.E.) over 229 cycles was 98.86%, and the
capacity retention of the cell was 80.9% over 100 cycles. The active material loading was 3.55 mg cm−2.
Reproduced with permission from [201]. Copyright 2020 Wiley.
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(100 − x)Li2S–xP2S5 binary system for x = 25 [203,204,209–238]. The first report on LPS was published 
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Figure 8. (1) Schematic of the effect of the stack pressure on the short-circuiting behavior of Li metal
solid-state batteries. (a) During cell fabrication, the contact between the electrolyte and Li metal was
poor before the Li metal was pressed on the electrolyte pellet. (b) Pressing the Li metal at 25 MPa
allowed the proper wetting of the electrolyte and (c) induced a large decrease in the impedance of the
symmetric cell even when the pressure was later decreased to 5 MPa. (d) Plating and stripping at a
stack pressure of 5 MPa. Li did not creep inside the solid-state electrolyte (SSE) pellet, and therefore,
the cell cycled for more than 1000 h. (e) At a stack pressure of 25 MPa, Li slowly crept between the
grains of the SSE and plating occurred on the dendrites, which eventually short-circuited the cell after
48 h. (f) When the stack pressure was too high, Li crept through the electrolyte and formed dendrites
that mechanically short-circuited the cell. (2) Schematic of the cell used for X-ray tomography and
X-ray diffraction (XRD) analyses; profile matching of the XRD and X-ray tomography patterns of a
Li|Li6PS5Cl|Li symmetric cell cycled under a stack pressure of 25 MPa (a) before plating and stripping
and (b) after short-circuiting. Before plating and stripping, only Li6PS5Cl was detected in the electrolyte
and Li metal was present on both sides. The X-ray tomography pictures confirmed that Li was not
present in the electrolyte. After the cell short-circuited, several additional phases, mainly Li2S, LiCl,
P4, and Li3P7, were detected inside the electrolyte; these were components of the solid electrolyte
interphase that formed when Li was in contact with Li6PS5Cl. The X-ray tomography pictures illustrate
that a large quantity of low-density dendrites formed in the electrolyte. Reproduced with permission
from [201]. Copyright 2020 Wiley.

3.2. Lithium Phosphorus Sulfide Electrolyte

The lithium phosphorus sulfide (Li3PS4, LPS) electrolyte was derived from the (100 − x)Li2S–xP2S5

binary system for x = 25 [203,204,209–238]. The first report on LPS was published by Tachez et al. [212]
in 1984; later on, Eckert et al. [213] performed solid NMR studies on these systems. It was not until 2002
that Tatsumisago et al. [214] reexplored the Li2S–P2S5 glass system and studied in detail its structure
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and storage properties. More studies on the synthesis, crystal structure, stability, and fabrication of
ASSBs based on these electrolyte systems have been performed since. LPS presents three polymorphs,
viz. α-, β- and γ-LPS, of which the γ and β phases presents the lowest (3 × 10−7 S cm−1) and highest
(~10−4 S cm−1) conductivities, respectively. Herein, we highlight the most important observations on
the β-LPS electrolyte reported in the literature as follows.

(i) Eckert et al. [213], Tatsumisago et al. [214], Minuzo et al. [215], Hayashi et al. [216,217],
and Murayama et al. [218] reported the synthesis of LPS using mechanical and solid-state methods,
and that of glass–ceramic LPS using ball milling. The room-temperature conductivity of LPS was
reported to be 3.2 × 10−3 S cm−1 (see Table 1) [229,301,302]. Subsequently, many research groups
explored the composition of LPS, to elucidate the crystal structure, ionic conductivity, and fabrication
of LPS-based ASSBs. Garcia-Mendez et al. [219] reported the effect of molding pressure on mechanical
and ionic conductivity values of LPS electrolyte, and recently, Ohno et al. [220] summarized various
other factors which influence the electrical properties of sulfate electrolytes.

(ii) Homma et al. [221] studied the crystal structure and phase transitions of LPS. High-temperature
synchrotron XRD and thermal studies were used to determine that LPS exhibited three phase transitions
at different temperatures. The γ, β, and α phases were present at low, medium (300−450 ◦C), and high
(473 ◦C) temperature. Among all phases, the β-phase has been the most studied owing to its high
ionic conductivity. Zhou et al. [222] reported that Li3.25[Si0.25P0.75]S4 is an entropically stabilized
fast-ion conductor. The β-LPS phase presents orthorhombic structure with the space group Pnma,
and its lattice parameters have been reported to be a = 13.066(3) Å, b = 8.015(2) Å, and c = 6.101(2) Å
(Figure 9a–d) [222].

(iii) Haruyama et al. [223] analyzed the LiCoO2/β-Li3PS4 (LCO/β-LPS) and LCO/LNO/LPS (where
LNO was the buffer layer) oxide/electrolyte interfaces using computational methods, i.e., density
functional theory (DFT) and U framework studies, and determined that surface protection was essential
for long-term electrochemical cycling. Their research was followed by many experimental studies on
surface-coated NMC cathodes such as LNO, LPO, and Li2O–ZrO2, which were aimed at reducing
the cathode/electrolyte interfacial reactions during electrochemical cycling. Few other computational
studies, such as that of Richards et al. [224], who predicted the formation of the Li3P and Li2S phases
at on LPS/Li interface and the formation of Co(PO3)2, CoS2, and S, at the LiCoO2/Li interface during
electrochemical cycling, have been published.

Tsukasaki et al. [209,225,226] and Atarashi et al. [211] reported the synthesis, solid-state battery
fabrication, electrochemical cycling, and thermal stability study of bare and coated LiNi1/3Mn1/3Co1/3O2

(NMC) and LPS electrolytes, and indicated that their reversible capacity after 50 cycles was
approximately 80 mAh g−1. Ex situ XRD [211] and in situ synchrotron XRD [227] measurements
were performed to analyze the thermal stability of LNO-coated–NMC–LPS composites. When heated
above 300 ◦C, the NMC cathode decomposed into transition metal sulfides, such as CoNi2S4 and
MnS, and led to the formation of O2 gas; conversely, LPS transformed to crystalline LPO owing to
the oxidation reaction between the electrolyte and generated O2 [226]. From the aforementioned
thermal studies, we concluded that the exchange reaction between S and O in LPS can be avoided
by P (Li3PS4), Sn (Li4SnS4) [227], or Sb (Li3SbS4) [228], which gives strong bond strength with S and
could decrease the reactivity with O2 and H2O in air. The slow reactions between Sb and Sn and Li
metal to form Li4.4Sn or Li3Sb, which occur during electrochemical cycling, are possible drawbacks
of these materials. Furthermore, although these electrolytes are stable in air, the Li–Sn–S electrolyte
presents low conductivity of 1.5 × 10−6 S cm−1 at room temperature, which hindered the use of Sn and
Sb electrolytes for SSB applications.

Dietrich et al. [229] analyzed the crystal structure of LPS electrolytes using synchrotron XRD,
Raman spectroscopy, NMR, and conductivity studies and Koerver et al. [203] investigated the
fabrication of the Li-In|b-LPS|NMC811|b-LPS ASSB (Figure 10a–e). They highlighted the importance of
the interfacial reactivity, cathode/electrolyte interphase (CEI) formation, and electro-chemo-mechanical
processes of the SSB active materials. The CEI formation, which mainly occurred during the first
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cycle, was monitored using in situ impedance spectroscopy, X-ray photoemission spectroscopy (XPS),
and SEM imaging. The initial irreversible capacity loss corresponding to a decomposition of the
β-Li3PS4 solid electrolyte is due to an additional resistance (Figure 10a,b). Impedance spectra during
(Figure 10d) charge and (Figure 10e) discharge periods were conducted after 1 h of charging or
discharging, respectively [203]. The XPS data suggested that the largest passivating layer fraction was
formed during the first charge and the layer continued to grow slowly upon further cycling, which led
to the slow capacity fading of the cell during cycling. Furthermore, based on these observations,
it was concluded that the capacity loss during the first cycle was due to the changes in the chemical
composition at the solid electrolyte/electrode interface (oxidation) and the contraction of the NMC
particles during delithiation (charging). Moreover, it was proposed that protecting the surface of the
cathode using different metal oxide coatings could help to improve the capacity fading and irreversible
capacity loss of the cell. Different metal oxides have been used for this purpose, and LiNbO3 has been
one of the most promising coating materials for the NMC cathode.
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from single-crystal data. (b) Structure of β-Li3PS4 (β-LPS) along the [010] direction. Views of (c)
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spheres denote Li(4c)-3A/B, and S atoms, respectively. Reproduced with permission from [222].
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In 2019, Kim et al. [204] studied the influence of the hybrid Li2CO3/LiNbO3 coating on the surface
of NMC622 cathode in solid-state cell using β-LPS as SSE. They characterized the surface coating
well using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, high-angle
annular dark-field scanning transmission electron microscopy, electron energy loss spectroscopy,
inductively coupled plasma optical emission spectroscopy, XPS, differential electrochemical mass
spectroscopy (DEMS), and infrared and impedance spectroscopy. The Li2CO3-LiNbO3–coated NMC
SSB presented improved capacity and cycling stability, and it delivered the initial charge–discharge
capacities of 157 and 136 mAh g−1, respectively, and exhibited a capacity retention of 91% up to 100 cycles
when cycled at a current rate of 0.1C. The improved cycling stability of the SSB was attributed to its low
interfacial resistance of approximately 25 Ω at the end of 100 cycles compared with those of the SSBs
with bare NMC (900 Ω) and Li2CO3-coated NMC (60 Ω) cathodes. The interfacial reactions were further
studied using XPS, and the results revealed that S oxidation occurred during cycling irrespective of the
surface modification of the NMC cathode; however, the decrease in thickness of the interfacial layer was
observed from the bare NMC to the Li2CO3-coated NMC and Li2CO3/LiNbO3-coated NMC cathodes.
Furthermore, the presence of PxOy species was noted and was ascribed to the reaction of the electrolytes
with the gases evolved at the cathode during electrochemical cycling. The results of the DEMS analysis
of the coated samples in charged state at 3.6 V vs. Li-In are presented in Figure 11A–C [204]. The CO2
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evolution of the Li2CO3-coated NMC cathode exceeded that of the Li2CO3/LiNbO3-coated NMC
cathode. Furthermore, because the mass ratio between SO2 and the Li2CO3-coated NMC cathode was
approximately m/z = 64, it was demonstrated that the formed O2 species reacted with the electrolyte to
produce corrosive SO2 gas. Based on this study, it was concluded that the decomposition of the surface
carbonate resulted in the formation of highly reactive 1O2 species, which further reacted with β-LPS
to form SO2. Subsequent SEM studies indicated that the decomposition of the solid electrolyte was
negligible when it was paired with the Li2CO3/LiNbO3-coated NMC cathode. Lastly, it was concluded
that the interfacial mechanism of solid electrolyte decomposition strongly depended on the coating
technique and surface chemistry, and the results are illustrated in Figure 11C.
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Figure 10. (a) Representative charge–discharge profiles of an ASSLB for the 1st, 2nd, and 50th cycle
(blue). The ASSLB was cycled between 2.7 and 4.3 V vs. Li+/Li. The orange curve represents the 1st
charge-discharge cycle of a liquid Li-ion battery (LIB) with NMC-811 as the cathode, and it was included
for comparison. The current density for all cycles was 0.1C. (b) Rate test and long-term cyclability of the
SSB at the current densities of 0.1, 0.25, 0.5, and 1C, followed by open-end cycling at 0.1C. A large first
cycle capacity loss was observed for the ASSLB, which did not occur for the LIB. Impedance spectra
recorded intermittently during galvanostatic battery cycling. (c) First cycle charge and discharge profile
of a Li–In|β-Li3PS4|NCM811/β-Li3PS4 cell at 0.1 C showing current interruption corresponding to the
periods of impedance measurement. Impedance spectra during (d) charge and (e) discharge periods.
Measurements were conducted after 1 h of charging or discharging, respectively. Spectra are stacked
with an offset of 40 Ω in the −Im(Z) direction. Reproduced with permission from [203]. Copyright 2017
American Chemical Society.



Nanomaterials 2020, 10, 1606 20 of 80

Nanomaterials 2020, 10, x FOR PEER REVIEW 20 of 79 

 

coated samples in charged state at 3.6 V vs. Li-In are presented in Figures 11A, 11B and 11C [204]. 
The CO2 evolution of the Li2CO3-coated NMC cathode exceeded that of the Li2CO3/LiNbO3-coated 
NMC cathode. Furthermore, because the mass ratio between SO2 and the Li2CO3-coated NMC 
cathode was approximately m/z = 64, it was demonstrated that the formed O2 species reacted with 
the electrolyte to produce corrosive SO2 gas. Based on this study, it was concluded that the 
decomposition of the surface carbonate resulted in the formation of highly reactive 1O2 species, 
which further reacted with β-LPS to form SO2. Subsequent SEM studies indicated that the 
decomposition of the solid electrolyte was negligible when it was paired with the 
Li2CO3/LiNbO3-coated NMC cathode. Lastly, it was concluded that the interfacial mechanism of 
solid electrolyte decomposition strongly depended on the coating technique and surface chemistry, 
and the results are illustrated in Figure 11C. 

 
Figure 11. (A) (a) The 1st and 2nd cycle voltage profiles, (b) corresponding Coulombic efficiencies, 
and (c) cycling performance at a rate of C/10 and 25 °C of solid-state batteries (SSBs) using bare 
(gray), Li2CO3-coated (blue), and Li2CO3/LiNbO3-coated NMC622 (red) cathodes. In (b), the error 
bars indicate standard deviations. (B) (a) The 1st cycle voltage profile at a rate of C/20 and 45 °C of 
SSBs using Li2CO3-coated (blue) and Li2CO3/LiNbO3-coated NMC622 (red) cathodes. (b) The CO2 
mass signals (m/z = 44) and (c) cumulative amounts. (d) Time-resolved ion current for the evolution 
of SO2 (m/z = 64). (C) Illustration of different interfacial reactivities of the Li2CO3-coated (indicated by 
the oxidation of the solid electrolyte in dark brown) or Li2CO3/LiNbO3-coated NMC622 cathodes of 
β-LPS–based SSBs. Reasonably stable solid electrolyte/cathode active material interfaces were 
achieved only for the Li2CO3/LiNbO3 hybrid coating. Reproduced with permission from [204]. 
Copyright 2019 American Chemical Society. 

Neumann et al. [230] further studied the LPS electrolyte/NMC622 microstructure and interface 
topology using X-ray tomography and 3D microstructure–resolved simulations and combined 
impedance technique and electrochemical studies that revealed the low electronic conductivity of in 
the fully lithiated NMC622 material (σ = 1.42 × 10−4 S cm−1 for Li = 0.4 down to 1.6 × 10−6 S cm−1 for 
Li = 1). This inherent restriction prevents a high cathode utilization, and also geometrical properties 
and morphological changes of the microstructure interact with internal and external interfaces, 
which significantly affect the capacity retention at higher current rates. Nakamura et al. [231] further 
improved the coating technology of electrodes and electrolytes and reported uniformly coating LPS 

on an NMC111 cathode using the dry-coating technique. This technique is advantageous owing to 

Figure 11. (A) (a) The 1st and 2nd cycle voltage profiles, (b) corresponding Coulombic efficiencies,
and (c) cycling performance at a rate of C/10 and 25 ◦C of solid-state batteries (SSBs) using bare (gray),
Li2CO3-coated (blue), and Li2CO3/LiNbO3-coated NMC622 (red) cathodes. In (b), the error bars
indicate standard deviations. (B) (a) The 1st cycle voltage profile at a rate of C/20 and 45 ◦C of SSBs
using Li2CO3-coated (blue) and Li2CO3/LiNbO3-coated NMC622 (red) cathodes. (b) The CO2 mass
signals (m/z = 44) and (c) cumulative amounts. (d) Time-resolved ion current for the evolution of
SO2 (m/z = 64). (C) Illustration of different interfacial reactivities of the Li2CO3-coated (indicated by
the oxidation of the solid electrolyte in dark brown) or Li2CO3/LiNbO3-coated NMC622 cathodes of
β-LPS–based SSBs. Reasonably stable solid electrolyte/cathode active material interfaces were achieved
only for the Li2CO3/LiNbO3 hybrid coating. Reproduced with permission from [204]. Copyright 2019
American Chemical Society.

Neumann et al. [230] further studied the LPS electrolyte/NMC622 microstructure and interface
topology using X-ray tomography and 3D microstructure–resolved simulations and combined
impedance technique and electrochemical studies that revealed the low electronic conductivity
of in the fully lithiated NMC622 material (σ = 1.42 × 10−4 S cm−1 for Li = 0.4 down to 1.6 × 10−6 S cm−1

for Li = 1). This inherent restriction prevents a high cathode utilization, and also geometrical properties
and morphological changes of the microstructure interact with internal and external interfaces,
which significantly affect the capacity retention at higher current rates. Nakamura et al. [231] further
improved the coating technology of electrodes and electrolytes and reported uniformly coating LPS on
an NMC111 cathode using the dry-coating technique. This technique is advantageous owing to its
amenability for large-scale preparation and good dispersion of the cathode and electrolyte. Recently Shi
et al. [232] used a Li2O–ZrO2 (LZO)-coated NMC cathode and an amorphous 75Li2S–25P2S5 (LPS) solid
electrolyte. They reported that a high cathode utilization was obtained by reducing the solid electrolyte
particle size and increasing the active cathode material particle size, over 50 vol.%. This concept was
confirmed computationally using ab initio MD and a model related to the ionic percolation in the
cathode composite. Ito et al. [233] adopted a sulfide-based electrolyte, Li2S–P2S5 (80:20 mol%) and
LZO-coated LiNi0.8Co0.15Al0.05O2 (NCA) cathode to fabricate ASSBs, which retained 80% of their initial
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capacity after 100 cycles. Camacho-Forero et al. [184], Kim et al. [234], and Pan et al. [235] performed
additional computational studies on β-LPS. Smith and Siegel [236] showed that the “paddlewheel”
mechanism combines the Li ion migration with quasi-permanent reorientations of PS4

3- anions in
Li2S-P2S5 glasses.

In 2019, Zhou et al. [222] investigated the ionic conductivity of Li3+x[SixP1−x]S4 (0.15 < x < 0.33)
prepared by solid solution methods using a mixture of Li2S, P2S5, Si, and S; 5 wt.% excess S was
added to the mixture to fully oxidize Si. First, the powder was pelletized, then it was placed
in a glassy-carbon crucible in a sealed quartz tube under vacuum. The sample was heated to
750 ◦C, slowly cooled to 725 ◦C for 18 h, and then cooled to room temperature at the rate of 5 ◦C
min−1. The material was further characterized using XRD, neutron diffraction, NMR, bond valence
calculations, and conductivity measurements. Crystal structure studies revealed that Li3+x[SixP1−x]S4

was isostructural with β-LPS (Figure 9); however, slight differences existed in the values of the
lattice parameters a and c. Li3+x[SixP1−x]S4 presented orthorhombic structure with Pnma space group;
a = 13.158(2) Å, b = 8.029(0) Å, and c = 6.129(1) Å (Figure 12a,b) [222]. The XRD patterns of LPS
revealed that the values of the lattice parameters a and c monotonically increased and decreased,
respectively, when the LPS lattice was doped with Si (Figure 12), which confirmed the formation of
solid solutions. 29Si and 31P magic angle spinning NMR studies on Li3+x[SixP1−x]S4 (x = 0.25, 0.33,
0.67) revealed the presence of peaks at the chemical shifts, of ∼5 and ∼86.5 ppm, which corresponded
to the SiS4

4– and PS4
3– moieties, respectively.

Nanomaterials 2020, 10, x FOR PEER REVIEW 21 of 79 

 

its amenability for large-scale preparation and good dispersion of the cathode and electrolyte. 
Recently Shi et al. [232] used a Li2O–ZrO2 (LZO)-coated NMC cathode and an amorphous 
75Li2S–25P2S5 (LPS) solid electrolyte. They reported that a high cathode utilization was obtained by 
reducing the solid electrolyte particle size and increasing the active cathode material particle size, 
over 50 vol.%. This concept was confirmed computationally using ab initio MD and a model related 
to the ionic percolation in the cathode composite. Ito et al. [233] adopted a sulfide-based electrolyte, 
Li2S–P2S5 (80:20 mol%) and LZO-coated LiNi0.8Co0.15Al0.05O2 (NCA) cathode to fabricate ASSBs, which 
retained 80% of their initial capacity after 100 cycles. Camacho-Forero et al. [184], Kim et al. [234], 
and Pan et al. [235] performed additional computational studies on β-LPS. Smith and Siegel [236] 
showed that the “paddlewheel” mechanism combines the Li ion migration with quasi-permanent 
reorientations of PS43- anions in Li2S-P2S5 glasses. 

In 2019, Zhou et al. [222] investigated the ionic conductivity of Li3+x[SixP1−x]S4 (0.15 < x < 0.33) 
prepared by solid solution methods using a mixture of Li2S, P2S5, Si, and S; 5 wt.% excess S was 
added to the mixture to fully oxidize Si. First, the powder was pelletized, then it was placed in a 
glassy-carbon crucible in a sealed quartz tube under vacuum. The sample was heated to 750 °C, 
slowly cooled to 725 °C for 18 h, and then cooled to room temperature at the rate of 5 °C min−1. The 
material was further characterized using XRD, neutron diffraction, NMR, bond valence calculations, 
and conductivity measurements. Crystal structure studies revealed that Li3+x[SixP1−x]S4 was 
isostructural with β-LPS (Figure 9); however, slight differences existed in the values of the lattice 
parameters a and c. Li3+x[SixP1−x]S4 presented orthorhombic structure with Pnma space group; 
a = 13.158(2) Å, b = 8.029(0) Å, and c = 6.129(1) Å (Figures 12a and 12b) [222]. The XRD patterns of LPS 
revealed that the values of the lattice parameters a and c monotonically increased and decreased, 
respectively, when the LPS lattice was doped with Si (Figure 12), which confirmed the formation of 
solid solutions. 29Si and 31P magic angle spinning NMR studies on Li3+x[SixP1−x]S4 (x = 0.25, 0.33, 0.67) 
revealed the presence of peaks at the chemical shifts, of ∼5 and ∼86.5 ppm, which corresponded to 
the SiS44– and PS43– moieties, respectively. 

 
Figure 12. (a) Selected X-ray diffraction patterns of as-synthesized Li3+x[SixP1−x]S4 (x = 0.1, 0.15, 0.25, 
0.33, 0.5 0.67, 0.8); the black arrow indicates the (101) reflection for orthorhombic Li3+x[SixP1−x]S4 
(x = 0.1, 0.15, 0.25, 0.33, 0.5, 0.67) and the blue arrow indicates the (100) reflection for monoclinic 
Li3.8[Si0.8P0.2]S4. (b) Changes in lattice parameters and unit cell volume of orthorhombic Li3+x[SixP1–x]S4 
phases with the Si content for single crystal structure solutions at 280 K. Reproduced with 
permission from [222]. Copyright 2019 American Chemical Society. 

Li3.25Si0.25P0.75S4 presented the highest ionic conductivity of 1.22 mS cm−1 at room temperature of 
all Li3+x[SixP1−x]S4 (x = 0.1, 0.15, 0.25, 0.33, 0.5 0.67, 0.8) solid solutions (Figures 13a and 13b); moreover, 
its ionic conductivity was three orders of magnitude higher than that of bulk β-LPS [222]. Using soft 
bond valence calculations, Zhou et al. [222] predicted that Li3.25[Si0.25P0.75]S4 presented a 3D Li+ ion 
diffusion pathway and lower overall Ea (∼0.2 eV) than β-LPS and suggested that the Li+ ion diffusion 
occurred both along the b-axis and in the (a,c) plane. Owing to its flexible and ductile nature, the 

Figure 12. (a) Selected X-ray diffraction patterns of as-synthesized Li3+x[SixP1−x]S4 (x = 0.1, 0.15, 0.25,
0.33, 0.5 0.67, 0.8); the black arrow indicates the (101) reflection for orthorhombic Li3+x[SixP1−x]S4 (x = 0.1,
0.15, 0.25, 0.33, 0.5, 0.67) and the blue arrow indicates the (100) reflection for monoclinic Li3.8[Si0.8P0.2]S4.
(b) Changes in lattice parameters and unit cell volume of orthorhombic Li3+x[SixP1–x]S4 phases with
the Si content for single crystal structure solutions at 280 K. Reproduced with permission from [222].
Copyright 2019 American Chemical Society.

Li3.25Si0.25P0.75S4 presented the highest ionic conductivity of 1.22 mS cm−1 at room temperature
of all Li3+x[SixP1−x]S4 (x = 0.1, 0.15, 0.25, 0.33, 0.5 0.67, 0.8) solid solutions (Figure 13a,b); moreover,
its ionic conductivity was three orders of magnitude higher than that of bulk β-LPS [222]. Using soft
bond valence calculations, Zhou et al. [222] predicted that Li3.25[Si0.25P0.75]S4 presented a 3D Li+

ion diffusion pathway and lower overall Ea (~0.2 eV) than β-LPS and suggested that the Li+ ion
diffusion occurred both along the b-axis and in the (a,c) plane. Owing to its flexible and ductile
nature, the Li3+x[SixP1−x]S4 electrolyte could be more easily processed and densified than sulfide and
oxide electrolytes. Moreover, owing to its synthesis temperature being similar to that of the cathode,
this electrolyte could be useful for the preparation of ASSB oxide/sulfide composite electrolytes.
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Minami et al. [238–243], Yamane et al. [244], Hayashi et al. [245–247], and Kowada et al. [248] 
reported the synthesis of Li7P3S11 from the (100−x)Li2S–xP2S5 (x = 30) glass composite and evaluated 
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and electrolytic stability for ASSBs. Ujiie et al. [249,250] further analyzed the compositions 
(100−y)(0.7Li2S∙0.3P2S5)∙yLiX, i.e., 0 ≤ y ≤ 20 mol%, by substitution of LiX (X = F, Cl, Br) for Li7P3S11. 
They noted that the crystallinity of the LiX-substituted Li7P3S11 decreased with increasing the LiX 
content and the highest conductivity of 6.5 × 10−6 S cm−1 was achieved for the LiBr-substituted 
material. 

Onodera et al. [251] analyzed the origin of the ionic conductivity and crystal structure of the 
Li7P3S11 electrolyte using neutron diffraction and XRD and performed early computational studies to 
investigate the Li defects in this electrolyte by Xiong et al. [252] and combined computational and 
experimental studies by Chu et al. [253]. Furthermore, Mori et al. [254], Wohlmuth et al. [255], 

Figure 13. (a) Ionic conductivity (red dots) at room temperature and activation energy (Ea)
(blue triangles) of Li3+x[SixP1−x]S4 as function of the Si content (x); the squares around the data
points indicate the compositions for which the structure has been solved using single crystal diffraction.
(b) Arrhenius plots of Li3+x[SixP1−x]S4 (x = 0.15, 0.25, 0.33, 0.5, 0.67). Reproduced with permission
from [222]. Copyright 2019 American Chemical Society.

Kaup et al. [237] studied 30Li2S–25B2S3–45LiI–xSiO2 (Li1.05B0.5SixO2xS1.05I0.45) (0 ≤ x ≤ 1)
quaternary superionic Li oxythioborate glasses. The prepared compositions presented negligible H2S
evolution on pellets upon exposure to ambient air and a stable capacity of 230 mAh g−1 up to 230 cycles,
at a rate of 0.1C when paired with a TiS2 intercalation cathode (Figure 14a–c). Such a cell showed an
average voltage of ~2.2 V vs. Li much lower than that of pristine layered NMC cathode [2].
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◦C and (b) cycling performance of the battery cycled at C/10 at 25 ◦C. C rate capability study: discharge
capacity (black line), coulombic efficiency (red line). (c) cycling data at 60 ◦C at a rate of 1C. Reproduced
with permission from [237]. Copyright 2020 Wiley.

3.3. Li7P3S11

Li7P3S11 has been widely investigated in the form of either glass or ceramic [210,238–260].
Minami et al. [238–243], Yamane et al. [244], Hayashi et al. [245–247], and Kowada et al. [248] reported
the synthesis of Li7P3S11 from the (100−x)Li2S–xP2S5 (x = 30) glass composite and evaluated the effects of
the ball milling time and crystallization temperature on the conductivity (~0.2 mS cm−1) and electrolytic
stability for ASSBs. Ujiie et al. [249,250] further analyzed the compositions (100−y)(0.7Li2S·0.3P2S5)·yLiX,
i.e., 0 ≤ y ≤ 20 mol%, by substitution of LiX (X = F, Cl, Br) for Li7P3S11. They noted that the crystallinity
of the LiX-substituted Li7P3S11 decreased with increasing the LiX content and the highest conductivity
of 6.5 × 10−6 S cm−1 was achieved for the LiBr-substituted material.

Onodera et al. [251] analyzed the origin of the ionic conductivity and crystal structure of the
Li7P3S11 electrolyte using neutron diffraction and XRD and performed early computational studies
to investigate the Li defects in this electrolyte by Xiong et al. [252] and combined computational
and experimental studies by Chu et al. [253]. Furthermore, Mori et al. [254], Wohlmuth et al. [255],
Busche et al. [256], and Wenzel et al. [257] performed solid-state NMR interface studies. Liu et al. [258]
carried out XPS studies on the formation of the solid electrolyte interphase between Li7P3S11 and Li
metal. Wang et al. [259] reported the wet chemical synthesis of Li7P3S11 and noted that its conductivity



Nanomaterials 2020, 10, 1606 23 of 80

was lower than that of the Li7P3S11 synthesized using the solid-state method. Jung et al. [210] fabricated
Li2OHBr-substituted Li7P3S11 electrolytes, i.e., (100−x)Li7P3S11–xLi2OHBr (x = 0, 2, 5, 10, 20, 30, 40,
50), to improve the electrolyte stability. The conductivity of 90Li7P3S11–10Li2OHBr (4.4 × 10−4 S cm−1

at room temperature) was the highest value of all prepared samples; moreover, the reversible capacity
of 90Li7P3S11–10Li2OHBr was 135 mAh g−1. Preefer et al. [260] reported a rapid microwave assisted
synthesis of Li7P3S11 material, which was characterized by XRD, XPS, and Raman techniques and
showed a comparable conductivity of the material prepared by melt quenched method.

3.4. Li7P2S8I

Rangasamy et al. [261] reported that the room-temperature conductivity and Ea of Li7P2S8I
were 6.3 × 10−4 S cm−1 and 0.31 eV, respectively (Table 1). Later, Kang and Han [262] analyzed the
crystal structure and transport behaviors of solid electrolytes using DFT calculations and ab initio MD
simulations. They reported that the orthorhombic lattice (Pnma space group) parameter values were
a = 9.46 Å, b = 7.81 Å, and c = 11.74 Å, and β = 75.17◦, and these values were different than those
previously reported. Furthermore, computational studies demonstrated that the Li+ ions preferred to
diffuse along the c-axis over the a- or b-axis; moreover, the conductivity at room temperature was 0.3
mS cm−1, which is in good agreement with the experimentally reported value. Rangasamy et al. [261]
reported a conductivity value of 6.3 × 10−4 S cm−1 (Table 1). Rao et al. [188] performed the crystal
structure refinements on the Lix(PS4)yXz (X = Cl, Br, I) system and reported that it contained a mixture
of two phases: 13% LiI and 87% tetragonal Li4(PS4)I, whereas the LPS:LiI (2:1) sample comprised three
phases: 72.5% Li4(PS4)I, 15% Li4P2S6, and 12.5% unreacted LPS. Wang et al. [263] fabricated ultrathin
Li-thiophosphate solid electrolyte membrane β-Li3PS4 stable with metallic lithium anode up to 5 V.

Choi et al. [264] studied the cell with a composite cathode/electrolyte LNO-NMC622/Li7P2S8I/conducting
carbon (75:23:2) pressed at 30 MPa and Li metal anode. When the pellet-type test cell was tested at a current
rate of C/50 and the slurry-type cell was cycled at 55 ◦C and current rate of C/50, they delivered the initial
discharge capacities of ∼150 and ~120 mAh g−1, respectively. Kim et al. [265] analyzed a cell with 1–3 wt.%
LiNbO3-and-LiZr2O3-coated (LiNi0.6Mn0.2Co0.2)O2 and Li7P2S8I as the cathode and electrolyte, respectively,
using the resonant acoustic dry coating technique (Figure 15a,b).
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acoustic dry coating technique. Reproduced with permission from [265]. Copyright 2020 Elsevier.

A zirconia container was accelerated using acoustic waves and vibration energy of up to 60 G;
the LiNbO3 cluster was broken into nanoparticles, and the particles were deposited on the surface of
an NMC cathode. Subsequently, the aforementioned electrolyte and cathode were paired with a Li0.5In
alloy anode, which was manufactured by mixing Li and In powders (1:2 mole ratio), to fabricate an
ASSB. They improved high capacity with 3 wt.% coated NMC up to 20 cycles (Figure 16a–j [265].
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Figure 16. Charge–discharge curves of (a) LiNbO3 (LNO)-coated LiNi0.8Co0.1Mn0.1O2 (NMC),
(b) Li2ZrO3-coated NMC at a current density of 0.1C (current rate of 15 mA g−1), and (c) LNO-coated
NMC, (d) Li2ZrO3-coated NMC at a current density of 0.05C (current rate of 7.5 mA g−1) obtained
using the Li0.5In|Li7P2S8I|LiNi0.6Co0.2Mn0.2O2 cell in the range of 3.68–2.38 V. Cycle performances of:
(e) LNO-coated NMC, (f) Li2ZrO3-coated NMC at a current density of 0.1C (current rate of 15 mA g−1).
Cycle retentions of (g) LNO-coated NMC and (h) Li2ZrO3-coated NMC. C-rate performances of (i)
LNO-coated NMC and (j) Li2ZrO3-coated NMC at different current densities of 0.05, 0.1, 0.2, 0.5, 1,
2, and 0.05C obtained using the Li0.5In|Li7P2S8I|LiNi0.6Co0.2Mn0.2O2 cell in the range of 3.68–2.38 V.
Reproduced with permission from [265]. Copyright 2020 Elsevier.
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3.5. Li11−xM2−xP1+xS12 (M = Ge, Sn, Si) (LGPS)-Type Structures

In 2011, Kamaya et al. [266] synthesized the Li10GeP2S12 (LGPS) solid electrolyte and reported a
conductivity of 9 × 10-3 S cm−1 (Table 1) and electrochemical properties of a LiCoO2-LGPS|LGPS|In
cell. Moreover, other researchers have extensively analyzed this system [267–277]. LGPS presented
tetragonal crystal structure with the lattice parameters a = 8.708 Å and c = 12.605 Å and consisted
of negatively charged PS4

3− and GeS4
4− tetrahedra surrounded by (mobile) Li+ ions for charge

compensation as shown in Figure 17a, and X-ray powder diffraction patterns and Rietveld refinements
of Li11Si2PS12 and Li10SnP2S12 are compared with those previously reported for Li10GeP2S12 and
Li7GePS8 in Figure 17b [270]. The tetrahedrally coordinated Li1 and Li3 sites generated channels for
the facile Li+ ion diffusion along the c-axis and the octahedrally coordinated Li2 positions between
those channels were assumed to be inactive for diffusion [268].
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Figure 17. (a) Crystal structure of tetragonal Li10GeP2S12 (LGPS) obtained using single-crystal
X-ray diffraction. (b) X-ray powder diffraction patterns and Rietveld refinements of Li11Si2PS12 and
Li10SnP2S12 compared with those previously reported for Li10GeP2S12 and Li7GePS8. The side phase
was marked with a green asterisk. Reproduced with permission from [270]. Copyright 2014 Royal
Society of Chemistry.

Adams et al. [267] performed bond valence calculations and MD simulations on LGPS, and
Kuhn et al. [268,269] analyzed the structure dynamics of LGPS using various techniques, such as XRD,
electron diffraction, NMR, and impedance studies. They confirmed the previously reported high ionic
conductivity of LGPS of∼10−2 S cm−1 and Ea of ~0.22 eV (Table 1). Furthermore, Kuhn et al. [270] utilized
the high-pressure synthesis method used to fabricate Li11Si2PS12 for obtaining other Li11−xM2−xP1+xS12

(M = Ge, Sn) LGPS-type structures, such as Li10GeP2S12, Li7GePS8, and Li10SnP2S12, and reported that
the Li+ ion diffusion coefficients of Li11Si2PS12, Li10Ge2P2S12, and Li10Sn2P2S12 were 3.5 × 10−12, 2.2
× 10−12, and 2.8 × 10−12 cm2 s−1, respectively, which correspond to Li jump rate of 1.5 × 104 s−1 at
125 K, 1.4 × 104 s−1 at 135 K and 145 K obtained from NMR studies. Weber et al. [137] also studied
the structure and 3D diffusion pathways of LGPS-type structures. Using first principles computation
methods, Han et al. [271] calculated the intrinsic electrochemical stability window of Li10Ge2P2S12,
addressing the challenging problems of the interfacial stability and internal resistance. Ong et al. [272]
and Mo et al. [273] performed first-principles calculations on Li10±1MP2X12 (M = Ge, Si, Sn, Al, P,
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and X = O, S, Se) and analyzed in detail the phase stability, electrochemical stability, and Li+ ion
conductivity of the aforementioned superionic conductors. Their computational studies were very
useful for researchers studying sulfide electrolytes and led to better understanding of the stability
of the electrolyte and electrode materials. In addition, Hu et al. [274] and Du et al. [275] performed
computational analysis on LGPS-type structures, Binninger et al. [276] investigated the electrochemical
stability window of LGPS-type structures, and Gorai et al. [277] performed electronic structure and
defect chemistry calculations for LGPS-type structures.

Li et al. [278] fabricated ASSBs and performed interfacial studies on LiNi0.85−xCo0.15AlxO2 (x = 0.05,
0.15, 0.25) and Li10GeP2S12 using in situ and ex situ Raman and impedance spectroscopy. They noted
that the capacity and capacity retention of the Al-doped sample (x = 0.15) were higher than those
of the undoped sample; moreover, less reactions occurred at the electrode/electrolyte interface of
the Al-doped sample than at the interface of the undoped one. Mei et al. [279] measured the ionic
conductivity measurements of poly(ethylene oxide) (PEO)18–LiClO4–x wt.% LGPS. Deng et al. [280]
fabricated hierarchical LPO-coated NMC 811 (HLPO@NMC811) using the atomic layer deposition
(ALD) technique. A battery was fabricated using a 10 mm diameter commercial LGPS disk subjected
to 2 ton (~250 MPa) of pressure as the electrolyte. Then, a mixture of LPO-coated NMC811 and LGPS
powders (70:30 w/w) was subjected to 3 ton (~380 MPa) of pressure. In addition, the In/Li foil used
as the anode was placed on the opposite side of the LGPS pellets and the ensemble was subjected to
0.5 ton (~65 MPa) of pressure. Stainless-steel rods were used as the current collectors. No additional
pressure was applied during the electrochemical cycling of the battery. The battery delivered a specific
capacity of 170 mAh g−1 at a current rate of 0.1C, a capacity retention of 77.9%, and retained a capacity
of 96 mAh g−1 after 300 cycles (Figure 18(1),(2)), when the LPO-coated NMC cathode was optimized;
the charge–discharge experiments were performed in the potential range of 2.7–4.5 V vs. Li+/Li at
room temperature. The reported improvement in cycling stability was further confirmed using XPS
and X-ray absorption near edge structure studies, which demonstrated that the formation of SOx was
suppressed for the LPO-coated NMC811 sample; however, more side reactions that generated SOx

were noted for the bare NMC/LGPS electrodes. Zhang et al. [281] studied the chemical stability of LGPS
and improved the Li interface by coating Li with a protective LiH2PO4 layer. The ASSB fabricated
using LNO-coated LCO presented the reversible capacities of 131 and 114 mAh g−1 for the 1st and
500th cycles, respectively, at a current rate of 0.1C; moreover, the capacity retention of the ASSB was
86.7%. Zheng et al. [282] and Philip et al. [283] studied LGPS/PEO composites and Paulus et al. [284]
conducted NMR experiments that demonstrated the relaxation coupling of the 7Li (I = 3/2) longitudinal
magnetization order in the LGPS electrolyte. Electrochemical performance of sulfide-based electrolytes
for all-solid-state batteries are listed in Table 2.

Zhang et al. [285] prepared LGPS via planetary ball milling followed by heating. In addition,
Kim et al. [286] conducted studies on ionic liquids and LGPS composites. Few attempts were made to
improve the structural stability of the LGPS lattice via Ba, Al, or Si doping. Sun et al. [287] reported
that the ionic conductivity of Ba-doped LGPS (Li9.4Ba0.3GeP2S12) was 7.04 × 10−4 S cm−1 at 25 ◦C.
Moreover, they ascribed the improvement in the structural stability of the LGPS lattice to the strong
Coulombic interactions between the Ba2+ and Li+ ions. Although LGPS presented reasonably good
conductivity, the high cost of Ge and reaction with Li to form LixGe alloys limit the use of LGPS for
large-scale applications for SSBs.
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Figure 18. (1) (a) Schematic illustration of the detailed structure of HLPO@NMC811, (b–c) HR-TEM
images of the secondary LPO coating layer on the HLPO@NMC811 surface at different magnifications,
(d) EDX mappings of the cross-sectional HLPO@NMC811, (e–f) P K-edge XANES and P 2p XPS spectra
of HLPO@NMC811, (g) XRD patterns of the bare NMC811 and HLPO@NMC811. Scale bars in (b), (c),
and (d) are 20 nm, 5 nm, and 500 nm, respectively. (2) Effectiveness of various Li3PO4 modifications for
the performance of all-solid-state Li-ion batteries. (a) First cycle charge–discharge curves, (b) cycling
stabilities at the current rate of 0.1C, (c) corresponding Coulombic efficiencies, (d) electrochemical
impedance spectroscopy plots after 100 cycles, and (e) rate capabilities of four types of NMC811
cathodes. (f) Galvanostatic intermittent titration technique curves during the discharge process (top)
and corresponding polarization plots (bottom), (g) polarization plots at selected discharge voltages,
(h) cyclic voltammetry profiles at the first cycle of the optimal HLPO@NMC811 and bare NMC811
cathodes. (i) Long-term cycling stability of HLPO@NMC811 cathode at 0.2C. (j) Cycling performance
of the Ni-rich Li(NixMnyCoz)O2 cathodes in sulfide-based all-solid-state Li-ion batteries. Reproduced
with permission from [280]. Copyright 2020 Elsevier.
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Table 2. Electrochemical performance of sulfide-based electrolytes for all-solid-state batteries.

Electrode Fabrication Electrochemical Studies.
Specific Capacity
Rate Capability

Capacity Retention
Ref.

(Li−In|β-Li3PS4|NMC-811/β-LPS)
sRT (β-Li3PS4) = 3.2 × 10−3 S cm−1

Composite cathode/electrolyte ratio of 70:30
w/w. Powders pressed at 445 MPa

Voltage range 2.7−4.3 V vs. Li+/Li at 25 ◦C
Pressure during electrochemical

measurements was maintained at 70 MPa
(areal loading of 10.7 mg cm−2)

Specific capacity of 125 mAh g−1 at 0.1C rate [203]

Carbon-coated Li4Ti5O12 (LTO), β-LPS, and
Super C65 carbon black (3:6:1) (30 mg, ~120
µm thick, pressed at 125 MPa)|β-LPS (60 mg,
~500 µm thick, pressed at 125 MPa)|Li2CO3,
Li2CO3-LiNbO3–coated NMC622 (10–12 mg,

~90 µm thick, pressed at 375 MPa)

Voltage range 1.35–2.85 V vs. LTO
(equivalent to 2.9−4.4 V vs. Li+/Li) at 25 ◦C.

Pressure during electrochemical
measurements was maintained at 55 MPa

Bare NMC capacity of 136 and 106 mAh g−1;
rate of C/10; capacity retention of 64%.

Li2CO3-coated NMC; capacity of 148 and 124
mAh g−1; capacity retention of 79%

Li2CO3-LiNbO3–coated NMC; capacity of 157
and 136 mAh g−1; capacity retention of 91%

[204]

Li0.5In/Li6PS5Cl/|LiNi0.8Co0.15Al0.05O2
2 wt.% coated LiNbO3

Voltage range 2.5–4.3 V
Stack pressure during cycling of 5 MPa

150 mAh g−1 after 5 cycles at 0.1C rate
Capacity retention of 80.9% over 100 cycles

[201]

Li0.5In/Li7P2S8I/|LiNi0.6Co0.2Mn0.2O2
3 wt.% coated LiNbO3, Li2O–ZrO2

Voltage range 2.38–3.68 V, coin,
no pressure applied during cycling

Specific capacity135 mAh g−1

Current rate of 0.1C (18 mA g−1)
[265]

LiIn/LPS/NMC111:SE(75:25)
Composite electrode pressed at 360 MPa,

Li/In foil pressed at 240 MPa

Voltage range 1.9–3.8 V
Stack pressure during cycling of 25 MPa

Reversible capacity of 100 mAh g−1 and ~80
mAh g−1 after 50 cycles

Current rate of 0.13 mA cm−2
[209]

In|90Li7P3S11–10Li2OHBr
|Li(Ni0.6Co0.2Mn0.2)O2 (70:28:2)

(Li(NixMnyCoz)O2:electrolyte carbon)
Voltage range 2.38–3.62 V vs. In Reversible capacity of 135 mAh g−1

Current density of 0.05 C (7.5 mA g−1)
[210]

Li/LGPS/Li10GeP2S12 hierarchical coverage
Li3PO4-coated NMC811:LGPS (70:30)

Composite electrode pressed at ~380 MPa
Voltage range 2.7–4.5 V vs. Li

Reversible capacity of ~133 mAh g−1 at 0.1C
rate after 100 cycles (~96 mAh g−1 after 300

cycles)
[280]

Li-In/Li9.34Si1.74P1.44S11.7Cl0.3/LNO@NMC811
composite electrode pressed at 300 MPa

Li/In foil pressed at 280 MPa
Voltage range 2.1–3.8 V vs. Li Reversible capacity of 197 mAh g−1 at 0.3C

rate, 83% capacity retention after 500 cycles
[298]
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Further efforts have been devoted to the search for new inexpensive electrolytes with good
electrochemical stability. Whiteley et al. [288] used Li2S–SiS2–P2S5 to prepare the Li10SiP2S12 (LSiPS)
electrolyte via cold pressing. The obtained electrolyte was isostructural with LGPS and delivered
a room-temperature conductivity of 2.3 × 10−3 S cm−1, and this value was close to those reported
by Bron et al. [292] (Table 1). Moreover, LSiPS presented good stability when paired with Li metal
and good cycling voltage window when paired with a cathode material. The conductivity of
LSiPS could be further improved via hot pressing, and therefore, this could be a promising ASSB
electrolyte. Fitzhugh et al. [289] performed computational studies on Li10SiP2S12 paired with a
coated cathode. Kim and Martin [290] analyzed the effect of O-doping on the crystal structure of
Li10SiP2S12−xOx (LSiPSO) (0 ≤ x ≤ 1.75) using XRD, Raman, Fourier transform infrared, and solid-state
NMR spectroscopies, and ionic conductivity measurements. They noted that at low oxygen doping
levels (x = 0.7 and 0.9), the structure of the LSiPSO phases (Li10.35P1.65Si1.35S12 with lattice parameters
a = 8.66 Å and c = 12.52 Å) became more homogeneous with minor amounts of β-LPS impurity, while,
at high oxygen doping levels, the structure of the LSiPSO samples resembled to that of LGPS. For x = 0,
the compound is a mixture of LSiPSO and β-LPS impurity phase. Conductivity measurements
revealed that the Li ionic conductivity increased with the decrease in the amount of β-LPS phase,
and the highest Li ionic conductivity of 3.1 × 10−3 S cm−1 at 25 ◦C was achieved for x = 0.7 and
1.6 × 10−3 S cm−1 for x = 0. The ionic conductivity decreased when x ≥ 0.9 owing to the degradation
of the crystalline LGPS-like phase and generation of the O-rich LPO phase. Harm et al. [291]
reported a new Li7SiPS8 electrolyte, which is isostructural with the LGPS electrolyte and presented a
tetragonal structure with the P42/nmc (no. 137) space group and the lattice parameters a = 8.690(5)
Å and c = 12.570(3) Å. The room-temperature conductivity of this electrolyte was up to 2 mS cm−1.
Bron et al. [292,293] determined the conductivities of Li10Si0.3Sn0.7P2S12 and other two superionic
conductors, viz. Li10SnP2S12 and Li10GeP2S12 (Figure 19a–c).
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corresponding linear best fits in the temperature range of −140 to −60 ◦C. (c) Nyquist plots of electrolyte
compositions. Reproduced with permission from [292]. Copyright 2016 Elsevier.
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Li10Si0.3Sn0.7P2S12 and Li10SnP2S12 presented low grain boundary resistance; moreover,
the conductivity of Li10Si0.3Sn0.7P2S12 was 8 mS cm−1 at 25 ◦C with Ea of 0.29 eV, which was
similar to that of LGPS (Table 1). They complemented the mechanisms using time-resolved
impedance studies [293] of solid electrolytes sandwiched between Li foils using two airtight electrode
cells. The overall cost of using this electrolyte for large-scale applications was lower than that
of using the LGPS electrolyte. Nam et al. [294] performed first-principles density functional
theory calculations and ab initio MD simulations on Li10−xSnP2S12−xClx. Sun et al. [295] further
studied Li10+δ[SnySi1–y]1+δP2−δS12 solid solutions that were prepared using the solid-state method.
Among all analyzed samples, Li10.35[Sn0.27Si1.08]P1.65S12 presented the highest room-temperature
ionic conductivity of 1.1 × 10−2 S cm−1, and this value was similar to the previously reported ionic
conductivity of LGPS.

In 2016, Katto et al. [296] investigated Li9.54Si1.74P1.44S11.7Cl0.3, a new Li superionic conductor. The
excellent conductivity of this material of 2.5× 10−2 S cm−1 (Table 1) was twice as high as that of the LGPS
electrolyte (Figure 20a–c). This excellent ionic conductivity could be ascribed to the 3D conduction
pathway for Li+ ions. Later, Bai et al. [297] synthesized Li9.54Si1.74P1.44S11.7X0.3 (X = F, Cl, Br, I) and
reported that the conductivity of Li9.54Si1.74P1.44S11.7I0.3 was high as 1.35 mS cm−1. Choi et al. [298]
reported studies on electronic structures of Li9.54Si1.74P1.44S11.7I0.3 by atomic simulation.
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Figure 20. (a) Arrhenius conductivity plots of Li11−xM2−xP1+xS12 (M = Ge, Sn, Si) structures, Li9.6P3S12,
and Li9.54Si1.74P1.44S11.7Cl0.3 electrolytes. (b) Crystal structure of Li9.54Si1.74P1.44S11.7Cl0.3. The thermal
ellipsoids were drawn with 50% probability. The framework structure consists of one-dimensional
polyhedral chains (edge-sharing M(4d)X4 and Li(4d)X6) connected by P(2b)X4 tetrahedra. Conducting
Li is located at the interstitial Li(16h), Li(8f ) and Li(4c) sites. (c) Nuclear distributions of Li atoms in
Li9.54Si1.74P1.44S11.7Cl0.3 at 25 ◦C calculated using the maximum entropy method at the iso-surface level
of −0.06 fm Å-3. Reproduced with permission from [296]. Copyright 2016 Springer.

Recently, Li et al. [299] reported that the cells formed with a core-shell material, i.e.,
LiNi0.8Co0.1Mn0.1O2 (NMC-811) and LiNbO3-coated LiCoO2 (LNO@LCO), and Li9.54Si1.74P1.44S11.7Cl0.3

(73:27) pressed at 280 MPa, and a 10 mm Li-In alloy foil disk pressed at 300 MPa as the cathode active
materials, solid electrolyte, and anode, respectively, presented good cycling stability. They used a
cathode mass loading of approximately 14.0 mg cm−2 and voltage range of 2.1–3.8 V for their experiments.
The LNO-coated NMC@LCO cathode presented a reversible capacity of 197 mAh g−1 and high cycle
performance with a capacity retention of 82.3% after 500 cycles at 35 ◦C and a current rate of 0.3C
(Figure 21a–h). Recently, Zhang et al. [300] prepared the above electrolyte via elemental synthesis
gasifying separation route and carbothermal reduction ethanol-dissolution technique to synthesize pure
SiS2 and Li2S raw materials and they obtain a conductivity of 1.5 mS cm−1.
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Figure 21. Electrochemical performances of NMC-811, NMC@LNO, NMC@LCO, and NMC@LCO@LNO
cathodes for all-solid-state Li-ion batteries (ASSLB) with Li9.54Si1.74P1.44S11.7Cl0.3 as the solid electrolyte at
35 ◦C. Here NMC811, LCO, and LNO denote LiNi0.8Co0.1Mn0.1O2, Li[(Ni0.8Co0.1Mn0.1)0.9Co0.1]O2, and
LiNbO3, respectively. (a) Initial charge–discharge, (b) rate performance, and (c) cycle performance curves
after the rate performance test (1C = 200 mA g−1). (d)–(g) dQ/dV curves of the four ASSLB cathodes at the
1st, 50th, and 100th cycle at 35 ◦C. (h) Schematic diagrams of the mitigation of the side reaction by NBO
coating. Reproduced with permission from [298]. Copyright 2020 Elsevier.
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In 2012, Ooura et al. [301] prepared the (100−x)Li3PS4·xLiAlS2 (mol%) amorphous glassy electrolyte
system via high-energy ball milling. When x = 0–13.1, the obtained samples were amorphous and
when x ≥ 18.2, a crystalline Al2S3 phase formed. Among all samples, the one with x = 13.1 presented
the best conductivity of 6.0 × 10−4 S cm−1 at 20 ◦C; in addition, the Ea of the sample was 39 kJ mol−1.
The Li4.4Si|a-86.9Li3PS4·13.1LiAlS2|LiNi1/3Mn1/3Co1/3O2 ASSB was fabricated and the NMC cathode
delivered an initial discharge capacity of 100 mAh g−1 at a current density of 0.1 mA cm−2 in the
potential range of 2.0–4.0 V. The capacity faded during cycling owing to interfacial reactions. At the
end of the 35th cycle, the specific capacity was 185 mAh g−1 when TiS2 was used as the cathode at
the current rate of 64 µA cm−2 in the potential range of 1.0–2.5 V. Zhou et al. [300] synthesized the
Li11AlP2S12 electrolyte, which presented a thio-LISICON analogous structure. The conductivity of this
electrolyte was 8.02 × 10−4 S cm−1 at 25 ◦C and its Ea was 25.4 kJ mol−1 (0.254 eV) showing an excellent
electrochemical stability up to 5 V against Li metal.

4. Oxide Solid Electrolytes

Oxide electrolyte materials present large energy gaps between their valence and conduction bands,
which confer them high stability at high voltages; furthermore, the ionic mobility of oxide electrolytes
is higher than that of glass or polymer electrolytes [29,305–530]. Table 3 summarized the structural
and electrical properties of various oxide solid electrolytes. Oxide electrolytes are relatively stable
in air and easier to handle than sulfide electrolytes. In 1976, Goodenough et al. [305] conducted Na+

ion transport studies on Na1+xZr2SixP3-xO12, which presented a conductivity of ≤ 5 S cm−1 at 300 ◦C
for x ≈ 2; the observed conductivity value was comparable to that of β-alumina [306], which was one
of the best solid electrolytes at the time. Furthermore, it was mentioned that the exchange of Na+

ions with Li+, Ag+, and K+ ions was possible. This early concept led to the further development,
applications, and search for new Li-analogues, and the promising NASICON-type structure series of
materials were explored owing to their structural framework and high Li+ ion conductivities at room
and elevated temperatures.

In 1966, Otto [307], following from the work. in 1978 by Levasseur et al. [308,309], conducted more
studies on borate-type amorphous oxide-based glassy electrolytes, and their conductivities were >10−4

and 10−6 S cm−1 at 350 and 25 ◦C, respectively. In 1973, West [310] prepared Ge-, Ti-, and Zn-doped
Li4SiO4 electrolytes and reported conductivities in the range of 10−3–10−4 S cm−1 at 300 ◦C. In 1977,
Shanon et al. [311] described a series of electrolyte systems, viz. Li2+xC1−xBxO3, Li3−xB1−xCxO3,
Li4+xSi1−xSi1−xAlxO4, Li4−xSi1−xPxO4, Li4−2xSi1−xSxO4, and Li5−xAl1−xSixO4. Li0.8Zr1.8Ta0.2P3O12.
Subsequently, many researchers attempted on the electrolytes as additives or electrolytes.

Different types of oxide electrolyte systems based on NASICON-, perovskite-, and garnet-type
crystalline materials have been reported in the literature [312–497]. Among all compositions,
the garnet-based Ta-, Ga-, Al-doped Li7La3Zr2O12 (LLZO) and Li1.3Al0.3Ti1.7(PO4)3 (LATP) oxides have
been well studied for ASSBs owing to their good conductivities. Note that most of the ceramic solid
electrolytes (LLZO, LATP) are polycrystalline and demonstrate grain/grain-boundary microstructure
(see Section 2).
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Table 3. Room temperature ionic conductivity σ(RT) and activation energy Ea of oxide solid electrolytes.

Electrolyte Structure,
Lattice Parameter (Å)

σ(RT)
(S cm−1)

Ea
(eV) Ref.

Li7La3Zr2O12
garnet type, cubic

a = 12.82–13.01 10−3–10−4 0.31–0.34 [73]

Li7La3Zr2O12
crystalline, tetragonal
a = 13.068, c = 12.66 10-5 -10-6 0.40-67 [317]

Li6.75La3Zr1.75Ta0.25O12
crystalline, cubic

a = 12.96 0.87 × 10−3 0.22 [317]

Li6.5La3Zr1.5Ta0.5O12
crystalline, tetragonal

a = 12.929 0.75 × 10−3 - [355]

Li6.15La3Zr1.75Ta0.25Al0.2O12 crystalline, cubic, a = 12.95 0.37 × 10−3 0.30 [317]

Li6.25La3Zr2Al0.25O12 crystalline, cubic, a = 12.96 0.68 × 10−3 - [355]

Li6.15La3Zr1.75Ta0.25Ga0.2O12 crystalline, cubic, a = 12.95 0.41 × 10−3 0.27 [317]

Li6.25La3Zr2Ta0.25Ga0.2O12 crystalline, cubic a= 12.97 1.04 × 10−3 - [355]

Li1.5Al0.5Ti1.5P3O12
crystalline, hexagonal

a = 8.50, c = 20.52 3.0 × 10−3 0.26 [377]

Li1.5Al0.5Ge1.5P3O12
crystalline, hexagonal

a = 8.25, c = 20.65 4.0 × 10−4 0.35 [365]

Li3xLa(2/3)–x�(1/3)–2xTiO3
(x = 0.1) crystalline, cubic, a = 3.872 1.0 × 10−3 0.40 [458]

Li0.34La0.56TiO3 crystalline, cubic, a = 3.872 1.53 × 10−3 0.33 [466]

Li0.34La0.56TiO3
crystalline, tetragonal

a = 3.87, c = 7.74 6.88 × 10−4 0.35 [466]

Li4Al1/3Si1/6Ge1/6P1/3O4 LISiCON type structure 0.9× 10−3 0.28 [502]

Li3.53(Ge0.75P0.25)0.7V0.3O4 LISICON-type 5.1 × 10−5 0.43 [503]

Li2.88PO3.73N0.14 (LIPON) amorphous 3.3 × 10−6 0.54 [523]

Li3+xSixP1−xO4 (LiSiPON) amorphous 2.06 × 10−5 0.45 [530]

4.1. Garnet-Type Electrolytes

Garnet-based Li+ ion conductors are attractive candidates for ASSBs owing to their high chemical
stability when paired with Li metal, and good ionic conductivity. Several seminal articles on the
synthesis of Li-stuffed garnets [312], Li5La3M2O12 (M = Nb, Ta) [313], Li6ALa3Ta2O12 (A = Sr, Ba) [314],
and Li7La3Zr2O12 named as Li5, Li6, and Li7 phases, respectively, have been published between 2003
and 2007. Among all, LLZO presented good room-temperature ionic conductivity in the range of
10−3–10−4 S cm−1. This led to the further search for and optimization of fast ion conducting ASSB
oxide electrolytes. Hundreds of papers have been published on the synthesis, doping, and ionic
conductivity of ASSB electrolytes, and only a few on their fabrication. Thangadurai et al. [26], Samson
et al. [73], Ramakumar et al. [314], and Zhao et al. [315] reviewed garnet-based electrolytes, and their
most important findings are summarized below.

(i) The general formula of garnet-based materials is A3B2(XO4)3, where A = Ca, Mg, La, Y, or rare
earth metals; B = Al, Fe, Ga, Ge, Mn, Ni, or V; and X = Si, Ge, or Al. In addition, A, B, and X are eight-,
six-, and four-O coordinated cation sites, respectively. The typical crystal structure of Li7La3Zr2O12,
a Li-based cubic garnet, is illustrated in Figure 22a,b [73]. Li atoms randomly and partially occupy the
interstices of the framework structure within two types of sites: The tetrahedral 24d and octahedral
48g or off-centered 96h and 96h sites are displaced off the 48g sites, the framework contains eight-fold
coordinated LaO8 dodecahedra (24c) and six-fold coordinated ZrO6 octahedra (16a). The 48g to 96h site
displacement is ascribed to the Li+–Li+ repulsions across shared site faces. The 24d tetrahedral cage
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faces are face-shared with four neighboring octahedral cages and form a 3D network of conduction
pathways (a segment of this network is illustrated in Figure 22b).
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(ii) Various synthesis strategies, including solid-state synthesis [73], ball milling [316], wet-chemical
solution (sol-gel) methods [317], combustion synthesis [318], electrospinning [319], molten salt
methods [320,321], spark plasma sintering (SPS) route [322,323], and the pulsed laser deposition
(PLD) technique [324], could be used to stabilize the cubic structure. The reaction conditions, such as
temperature and sintering time, and also M-site doping have been reported for the Li3M3Te2O12

(M = Y, Pr, Nd, Sm, Lu) Li3-phases, Li5La3M2O12 (M = Nb, Ta, Sb) Li5-phases, Li6ALa3M2O12 (A = Mg,
Ca, Sr, Ba; M = Nb, Ta) Li6-phases, and Li7La3M2O12 (M = Zr, Sn) Li7-phases. Among all phase series,
the Li7-phases present promising potential as ASSB electrolytes owing to their high ionic conductivity
and good stability when paired with Li metal.

(iii) Most Li3-, Li5-, Li6-, and Li7-garnet phases present cubic lattices, and their lattice parameters
are in the ranges of 12.15–12.56, 12.66–13.06, 12.69–13.0, and 12.82–13.0 Å, respectively. Li7La3Zr2O12

presents both cubic and tetragonal phases (a = 13.12 Å, c =12.66 Å); Li7La3M2O12 (M= Zr, Sn, Hf) and
Li7Nd3M2O12 present only tetragonal lattices (a = 12.94–13.12 Å and c =12.63–12.71 Å) [26].

(iv) The Li+ ion conductivity of the garnet-type electrolytes increases with increasing Li content in
the garnet structure, and the maximum Li+ ion conductivity was achieved when the Li content was in
the range of 6.4–7.0.

(v) Among all Li7−xLa3Zr2−xTaxO12 Ta-doped compounds, materials with the cubic structure
(x = 0.25) reported by Allen et al. [317] presented a bulk Li+ ion conductivity of 0.87 × 10−3 S cm−1 and
Ea of 0.22 eV (Table 3); in addition, the ionic conductivity and Ea of Li6.15La3Zr1.75Ta0.25Al0.2O12 were
0.37 × 10−3 S cm−1 and 0.30 eV, respectively, and those of Li6.15La3Zr1.75Ta0.25Ga0.2O12 were 0.41 × 10−3

S cm−1 and 0.41 eV, respectively [317]; moreover, the ionic conductivity of Li7−xLa3Zr2−xTaxO12 (x = 0.6)
at 25 ◦C was 1.0 × 10−3 S cm−1 [325]. Owing to the good conductivity and stability of Ta-doped LLZOs,
many researchers focused on the optimization of sintering temperature and synthesis techniques.

(vi) The ionic conductivity of the tetragonal polymorph of Li7La3Zr2O12 was one to two orders of
magnitude lower than that of the cubic phase, particularly at low temperatures.

(vii) All Ta-doped garnets presented good chemical stability when paired with Li metal at
potentials of up to 6 V vs. Li+/Li at room temperature [26].

(viii) The cubic phase of Li6.25La3Zr2AlxO12 (x = 0.2–0.3) can be stabilized via intrinsic Al-doping
at high temperatures from the reaction with the Al crucible used for preparation. The ionic conductivity
of the low-temperature synthesized bare LLZO (1 × 10-6 S cm−1) was approximately two orders of
magnitude lower that than that of Al-doped LLZO (σ = 2 × 10-4 S cm−1) [496].
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(ix) The Li+ ion conduction mechanism was analyzed using solid-state NMR experiments [326] and
computational calculations, indicating that the Li conduction occurred mostly between the octahedral
sites. Moreover, the Li+ ions that occupied those sites were connected to each other in a 3D network
that allowed the Li+ ions to hop from one edge of the shared octahedra to another. Furthermore,
the Li+ ion conduction pathways appear to be correlated with the concentration of Li in the garnet
structures [26].

(x) Li–garnet-based oxide electrolytes undergo proton exchange reactions in water, aqueous
LiCl/LiOH solutions, and dilute acids, and the exchange appears to be favored at the tetrahedral sites.
Li5La3M2O12 undergoes proton exchange reactions more readily than other Li-rich phases, such as
the Li6- and Li7-garnet phases. More details on the chemical and electrochemical stability in aqueous
solution or in the presence of moisture/humidity, CO2, and Li metal are included in the recent review
published by Hofstetter et al. [327].

(xi) Few researchers have focused on the chemical stability of LLZO solid electrolytes paired
with LiFePO4, LiCoO2, LiMn2O4, LiCoMnO4, LiFe0.5Mn1.5O4, LiNi0.5Mn1.5O4, Li(Ni1/3Co1/3Mn1/3)O2

(NMC) cathode materials [26,328,329]. For these studies, typically 1:1 w/w mixtures of electrolytes
and cathodes were used, and the electrolytes were sintered in the temperature range of 800–900
◦C. Among all cathodes, LCO and NMC111 presented better stability when paired with Ta-LLZO
electrolytes. Few reports indicated that the additional reactive phases that formed during sintering
were LaCoO3, Co3O4, or La2Zr2O7.

(xii) SSBs were fabricated using different forms of electrolytes, i.e., solid, bare, and composite
semi-solid/liquid electrolytes, and few efforts were devoted to sintering them with additives like
Li3BO3, Li2.3C0.7B0.3O3, Li3PO4, and Li4SiO4. The melting points of Li3BO3 and Li2.3C0.7B0.3O3 of 700
and 690 ◦C, respectively, were the lowest of all analyzed solid electrolytes [330–332]. Ohta et al. [333]
fabricated an ASSB using Nb-doped LLZO as the solid electrolyte and Li3BO3 as the solid electrolyte
mixed with the LiCoO2 cathode. Few case studies on SSBs are discussed in detail in the following.
The reactivity of the cathode–electrolyte pairs varies with the reaction temperature, reaction time,
and sintering conditions, such as the pressure and atmosphere (air, Ar, or O2).

(xiii) Critical current limits have been studied, and it was revealed that Li plating occurred
at current densities above ~0.5–1.0 mA cm−2 during the charging penetration of Li in the solid
electrolyte [334,335], which led to short circuiting. This low operating current limits the use of these
oxide electrolytes for large-scale electric vehicle battery applications, which require discharge current
rates in the range of ~1–10 mA cm−2.

(xiv) Gong et al. [336] performed in situ TEM studies on Ag|Ta-LLZO|LCO and revealed that
the Li extraction mechanism in solid electrolytes was different than in liquid electrolytes; moreover,
hexagonal phase transitions occur when LCO was cycled using commercial liquid electrolytes [337].
Based on TEM observations, LCO single crystal became a polycrystalline material with 5–15 nm grains
after delithiation and formed coherent twin boundaries and antiphase domain boundaries along its
(010) axis.

(xv) Researchers have determined that the shortcomings at the LLZO/electrode interfaces, for
both the Li anode and cathode, must be addressed using advanced techniques to render solid-state
Li-ion batteries useful for commercial large-scale applications. The interface drawbacks of SSBs have
been highlighted in 1986 by Hagenmuller [338] at the international seminar on solid-state devices in
Singapore. He mentioned the need for stable highly conductive electrolytes, the concerns associated
with the fabrication technology, and highlighted the importance of the cooperation between scientists
and engineers [339].

Thangadurai et al. [26] and Samson et al. [73] reviewed the literature on LLZO electrolytes published
until early 2019. Herein, we discuss a few additional, more recent publications on LLZO electrolytes,
as follows. Posch et al. [340] studied the ion dynamics of Al-doped Li6.46Al0.15La3Zr1.95O11.86 (Al-LLZO)
using solid-state NMR and conductivity measurements. The measured ionic conductivity of Al-LLZO
(8.3 × 10−5 S cm−1) was slightly lower than the value 10−4 S cm−1 reported for polycrystalline
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Al-LLZO [26]. It was noted that when the Al content was optimal (0.2–0.3 mol.% Al3+) the Al-LLZO
samples reached conductivities of up to 10−3 S cm−1. Solid-state NMR spin-lattice relaxation
measurements revealed that the Ea of the samples was in the range of 0.18–0.38 eV; these values
describe both the local barriers of the elementary jump processes and diffusion on a wider length scale,
and were similar to that obtained via conductivity measurements (Ea = 0.36 eV). Marbella et al. [341]
performed solid-state NMR analysis on the Li|Li6.5La3Zr1.5Ta0.5O12|Li solid electrolyte system during
Li-stripping and plating and noted that the growth of Li dendrites increased with increasing cycle time;
moreover, dense Li microstructures that grew into the electrolyte pellet surface were observed before
short-circuits occurred during the electrochemical measurements at low current rates < 0.5 mA cm−2.

Recently, Bock et al. [342] reported that the thermal conductivity of Li7La3Zr2O12 was
approximately 0.47 ± 0.009 W K−1 m−1. Moreover, de Klerk and Wagemaker [343] reported the
mathematical space charge model of the LLZO electrolyte and electrode materials, such as graphite and
LCO. In addition, Binninger et al. [276] determined the electrochemical stability window of the LLZO
electrolyte using computational techniques. Few other reports on doping Li7-garnet series have been
recently published [344–347]. Farooq et al. [344] reported that the ionic conductivities of the Ba-doped
Li6.5La2.5Ba0.5TaZrO12 solid electrolytes sintered at 1100 to 1200 ◦C were 1.07 × 10−6 and 6.62 × 10−5 S
cm−1, respectively, at 26 ◦C. In addition, Huo et al. [322] used other dopants to substitute the La sites of
the Li6.5La2.5A0.5TaZrO12 (A = Ca, Sr, Ba) compounds via SPS, and among all, the Sr-doped garnets
presented the highest Li+ ion conductivity of 3.08 × 10−4 S cm−1 at 20 ◦C and lowest Ea of 0.35 eV.
Furthermore, they analyzed the effect of structural stability, ion mobility, and interfacial mechanisms
during air exposure.

Kotobuki and Koishi [323] prepared the dense (99.7%) Y-doped LLZO (Li7.06La3Zr1.94Y0.06O12,
LLYZ) solid electrolyte using the SPS technique. The samples were sintered in the temperature range
of 800–1100 ◦C for 10 min and under the pressure of 40 MPa, and the reported total conductivity
of the pellet sintered at 1100 ◦C was 9.8 × 10−4 S cm−1, which was higher than that of the pellet
prepared using the conventional synthesis method; moreover, the sample presented good stability in
the potential window of 0–9.0 V vs. Li+/Li. Recently, Paolella et al. [345] studied the effect of chemical
phase evolution of bare and doped LLZO in relation with the Li loss at high temperature.

Owing to their good electrolyte/cathode interface properties, a series of polymer solid composite
electrolyte have been developed for Li batteries. After the introduction of the polymer electrolyte
concept for Li batteries by Armand [346], many attempts have been made to use polymers and metal
oxides, such as TiO2 and SiO2, as solid electrolytes. Mei et al. [279] measured the ionic conductivity
of PEO18–LiClO4–x wt.% Li6.4La3Zr1.4Ta0.6O12. Zhang et al. [347] prepared organic–inorganic
composite protective membranes that consisted of poly(vinylidene fluoride-co-hexafluoropropylene)
(PVDF-HEP) and LLZO composites using the tape-casting method. Xu et al. [348] synthesized
a LLZO/polyacrylonitrile composite with gel polymer electrolyte used in cell with LiFePO4

cathode. Gao et al. [349] studied the performance of the lithiated Nafion (Li-Nafion)-garnet ceramic
Li6.25La3Zr2Al0.25O12 (LLZAO) composite in LiFePO4||Li cell at 30 ◦C and reported that the specific
discharge capacity of the cell was 160 mAh g−1, its capacity retention was 97% after 100 cycles at a
current rate of 0.2C, and the retained capacity after 500 cycles at 1C was 126 mAh g−1. Liu et al. [350]
studied the Ta-LLZO/liquid electrolyte interface. Zhang et al. [351] used a SPE-based composite
with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) as Li salt and reported that the cell with
10 wt.% PEO-LiTFSI Li6.7La3Zr1.7Ta0.3O12 composite solid electrolyte and LiFePO4 cathode delivered a
reversible capacity of 140 mAh g−1 at the current rate of 0.2C at 60 ◦C; moreover, the cell retained a
capacity of 139 mAh g−1 after 200 cycles.

Thangadurai et al. [26] and Samson et al. [73] dedicated considerable efforts to the analysis of
the fundamental aspects of garnet electrolytes. In addition, Lobe et al. [352,353], who are considered
experts in the fabrication of solid oxide fuel cells, explored the fabrication of ASSBs using thin film
deposition. Furthermore, Tsai et al. [13,335] evaluated the screen-printing technique and investigated
the sol–gel and solid-state preparation methods.
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Herein, we summarize a few recent advances on the fabrication technology of garnet electrolytes,
which could lead to further improvements in the fabrication technology of ASSBs. Lobe et al. [352,
353] reported the challenges of thin film deposition of garnet electrolytes for ASSBs. In addition,
they analyzed the ionic conductivity of garnet-structured thin films obtained using the radio-frequency
(RF)-sputtering deposition technique, and optimized the deposition parameters such as the substrate
temperature, power, total pressure, and target substrate distance required to achieve films with
optimal chemical composition, morphology, thermodynamics, diffusion, and reactivity (Figure 23).
They noted that the large-scale fabrication of batteries would be hindered owing to the high sintering
temperature. In addition, appropriate, inexpensive, low reactive substrates and well-sintered and
high-ionic-conductivity membranes with optimum composition, which must be nonreactive with the
cathode or electrolyte, would be needed.
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Wang at al. [354] analyzed the effects of the stack pressure on the conductivity of LLZO
electrolytes. Recently, Han et al. [355] studied the mechanical and electrical properties of hot-pressed
Ta-, Al-, and Ga-doped LLZO fabricated at a constant pressure of 47 MPa for 40 min in Ar flow as
follows: Li6.25La3Al0.25Zr2O12 (Al-LLZO) at 1225 ◦C, Li6.50La3Ta0.50Zr1.5O12 (Ta-LLZO) at 1225 ◦C,
Li6.25La3Ga0.25Zr2O12 (Ga-LLZO) at 1100 ◦C. They noted that the Ga-doped LLZO possessed the highest
fracture stress (~143 MPa) and fracture toughness followed by Ta-LLZO and Al-LLZO. The mechanical
properties and costs of all dopants are summarized in Figure 24. The room-temperature bulk and (total)
conductivities of 5.9 mm thick Au-coated Al-LLZO, Ta-LLZO, and Ga-LLZO pellets were determined
to be 0.75 (0.68), 0.79 (0.75), and 1.5 (1.04) mS cm−1, respectively (see Table 3). The bulk and total
conductivities of thinner (1.2–1.3 mm) pellets were similar. Therefore, Ga was considered to be the
best dopant in this study, owing to its cost and mechanical properties of the doped samples. Other
properties, such as the chemical and structural stability achieved when these cathodes were paired
with Li metal anodes or the cathode/electrolyte interface properties, were not evaluated in this paper;
however, these parameters are very important for the fabrication of ASSBs.

Recently, Tsai et al. [13] studied the ASSB formed when Ta-doped Li6.6La3Zr1.6Ta0.4O12 (LLZO)
solid electrolyte fabricated via solid-state sintering at 1175 ◦C in air was paired with LCO as the
cathode without interface modifications. Ta-doped LLZO was used as the electrolyte owing to its good
chemical stability when paired with the LCO cathode, which is known to be the highest electronic
conductivity. The thermal expansion coefficient of LLZO (1.5 × 10−5 K−1) was similar to that of LCO
(1.3 × 10−5 K−1). To fabricate the ASSB, LCO and Ta-LLZO (1:1 w/w) were weighed and milled using
Y-stabilized zirconia balls and ethanol as the solvent for 24 h to reduce the particle size distribution
range to D(n, 0.5) = 1.03 µm followed by drying the slurry at 60 ◦C. Then, the screen-printing ink
slurry was prepared by a three-roll milling using composite powder (5 wt.%), 6 wt.% ethyl cellulose in
terpineol (3 wt.%):8250 thinner (2 wt.%). A brush was used to paint the ink on ~0.6 mm thick Ta-LLZO
discs, which were cut using a diamond saw, at 55 ◦C in air. Subsequently, the painted disks were heated
to 600 ◦C (heating rate of 2 ◦C min−1) followed by heating to 1050 ◦C in air for 30 min in a tube furnace.
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After sintering, the non-painted side of the Ta-LLZO disk was polished to remove impurities using SiC
paper (~300 µm) and the surface was cleaned via plasma etching. Lastly, a thin Au film was sputtered
on the surface of the composite electrode, electrolyte, and top surface of the Ta-LLZO disk using a
desktop sputter coater to facilitate In adhesion. An indium foil was used as the anode to improve the
interface with Ta-LLZO heated up 200 ◦C on a hot plate, before placing it into a Swagelok cell.
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No reaction byproducts of LCO or Ta-LLZO were observed in the XRD profile and Raman spectra
of the composites sintered at for 1 h at 1050 ◦C in air (Figure 25A,B) [13]. The LaCoO3 or Co3O4 phases
were absent from the high-resolution Raman spectra and a weak band at 689 cm−1 was observed in
the spectrum of the Ta-LLZO grains, which indicated that the concentration of Co that was diffused
into the Ta-LLZO grains was low. The calculated ionic transport number of the sintered Ta-LLZO
was ~1, which indicated the negligible self-discharge of the fabricated ASSB. A good reversible peak
at 3.47/3.20 V vs. Li-In (4.09/3.82 V vs. Li+/Li) was observed in the cyclic voltammogram of the
battery during the anodic (positive) and cathodic (negative) scans (Figure 26A–F). This was the first
time well-defined LCO redox peaks reported when Ta-LLZO was used as the ASSB solid electrolyte.
In contrast with the use of standard liquid electrolyte, i.e., 1 mol L−1 LiPF6 (EC:DMC) with LiCoO2,
the main redox couple peaks (~4.0/3.8 V) and other additional hexagonal phase transitions (~4.2/4.15,
~4.57/4.44, ~4.65/4.53 V) were observed as a function of the preparation temperature and Li content
of molten salt synthesized LiCoO2 [356]. Authors noted that Li1+xCoO2 cathode with well sintered
sample showed improved capacity due to suppression of hexagonal phase transformation.

Researchers should consider analyzing the performance of the SSB with the excess Li-doped
LCO cathode. The galvanostatic charge–discharge profiles (Figure 26B) of the ASSB revealed that
the first charge and discharge capacities were 2.01 mAh cm−2 (140 mAh g−1) and 1.62 mAh cm−2

(113 mAh g−1), respectively, and the irreversible capacity loss and at end of the 100th cycle was
approximately 27 mAh g−1, because the capacity of 1.62 mAh cm−2 (36 mAh g−1) was retained [13]
(see Table 4). The irreversible capacity was correlated with the decrease in the number of Li+ ion
conduction pathways and irreversible formation of new interfaces. Irrespective of the good redox
potential observed in the cyclic voltammogram (CV) of the ASSB, the capacity faded with the cycle
number owing to the gradual increase in cell polarization with cycling (Figure 26).
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Figure 25. (A) X-ray diffraction patterns of LiCoO2/Li6.6La3Zr1.6Ta0.4O12 composite cathode with the
mass ratio of 1:1 that was sintered at 1050 ◦C for 30 min in air. (B) High-resolution micro-Raman
mapping of the cross-section of the ASSLB. (a) Optical image of the ASSLB cross-section and its mapping
area. Raman mappings and spectra of (b) LiCoO2, (c) Ta-LLZO, and (d) epoxy. Reproduced with
permission from [13]. Copyright 2019 Royal Society of Chemistry.
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Figure 26. (A) Cyclic voltammogram of the LCO|Ta-LLZO|Li-In ASSB collected in the voltage range
of 2.4–3.6 V vs. Li–In. The inset illustrates the first cycle charge–discharge performance of the SSLB
at a constant current density of 20 µA cm−2 before it was subjected to CV scanning. (B) Discharge
profile of the SSLB at different current densities. The discharge profiles of the cell were obtained in
sequence from the lowest to the highest current density. Therefore, the capacity fading owing to the
cycling of the cell was not taken into account for capacity calculations. The inset depicts the SSLB,
which features a black composite polymer electrolyte in front, which lights up an LED. (C) Long-term
charge–discharge cycling of SSLB (a), and first discharge voltage points for the cycles and calculated
area resistance of the SSLB (b). (D) Electrochemical impedance spectroscopy diagram of the SSLB
before and after long-term galvanostatic cycling. (E) (a) SEM and energy-dispersive X-ray spectroscopy
(EDS) mapping of the sintered composite positive electrode. Monochromatic EDS mappings of (b) Zr,
(c) La, (d) Ta, and (e) Co. (F) Scanning electron microscopy (SEM) cross-section images of the SSLB that
underwent 100 galvanostatic charge–discharge cycles at 50 ◦C. Reproduced with permission from [357].
Copyright 2019 Royal Society of Chemistry.



Nanomaterials 2020, 10, 1606 41 of 80

Table 4. Electrochemical performance of oxide solid electrolytes for all-solid-state batteries.

Electrode Fabrication Electrochemical Studies
Reversible Capacity

Current Rate
Coulombic Efficiency

Ref.

LCO/Ta-LLZO|Ta-LLZO|Li-In
Ta-LLZO is Li6.6La3Zr1.6Ta0.4O12

Composite cathode/electrolyte 1:1 w: w
Volume ratio of 51.4:48.6 - ASSB
thickness of ~50 µm - Electrolyte

thickness of 300 µm

Voltage range 2.4−3.65 V vs. Li-In at 50 ◦C
Tested using Swagelok cells

No pressure was applied during the electrochemical
measurements

Composite mass loading of active material of
32 mg cm−2 gives 16 mA cm−2

Charge and discharge capacity of 1.48 mA cm−2

(117 mAh g−1)
Current density of 50 µA cm−2

Coulombic efficiency of 81.5%

[13]

Li/LCO@Li2CO3 + Li2.3C0.7B0.3O3
+LLZO@Li2CO3

Li6.4La3Zr1.4Ta0.6O12 (LLZO)
weight and corresponding volume ratios

of 58:30:12 and 45:30:25

Mass of active material of 1–3 mg cm−2

Cathode layer thickness of 20 µm
Tested using Swagelok cells - Voltage range 3.0–4.05 V
Initially cells were placed in an oven at 100 ◦C to ensure

good contact between the electrodes and electrolyte

Specific capacity of 94 mAh g−1 at the rate of
0.05 C at 25 ◦C.

Capacity of 106 mAh g−1 at the rate of
0.05C at 100 ◦C.

(1C = 115 mA g−1)

[357]

NMC + 5 wt.% LATP glass ceramic on
LLZO pellet - cathode: NMC111

Voltage range 3.0–4.2 V at 100 ◦C
Pressure applied during electrochemical cycling

of 150 kPa

Specific capacity of 150 mAh g−1

Current rate of 50 µA cm-2 [358]

Li/ PEO–LiCF3SO3 LATP
((Li1.5Al0.5Ti1.5(PO4)3) electrolyte was 25

wt%/LiFePO4

Voltage range 2.5–3.8 V at 60 ◦C
Reversible capacities of 150 and 118 mAh g−1 at

C/20 (42 µA cm-2) and C/2 (0.42 mA cm-2),
respectively

[393]

Li/PPC (Poly-propylene carbonate)-SCE
30 wt.% LAGP (Li1.5Al0.5Ge1.5(PO4)3)–30

wt.%/LiFePO4

Voltage range 2.5–4.0 V at 55 ◦C Capacity of 151 mAh g−1 at 0.05C
92.3% capacity retention at 100 cycles

[430]

Li/PVDF, LITSF-CPE (composite polymer
electrolyte) (15 wt.% LLTO)/LiFePO4

Voltage range 2.5–4.0 V at 25 ◦C Reversible capacities of 147, 129, 120, 107, and 91
mAh g−1, at 0.2, 0.5, 1, 2, and 5C rates [495]
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Possible mechanisms of interface evolution were proposed using the energy-dispersive electron
spectroscopy mapping of the sintered composite electrode, which revealed the presence of clean edges
for La and Co between LCO and Ta-LLZO, and therefore, confirmed that no diffusion occurred during
cycling. In addition, microcracks were observed on the composite electrode and electrolyte (Figure 26),
which were caused by the repetitive expansion and contraction of the electrode and caused the capacity
degradation of the ASSB. The pressure applied during electrochemical cycling and its effects on further
technology optimization should be studied in more detail. Although LLZO-based solid state batteries
are easier to handle than those using sulfide electrolytes, their capacity and cycling stability should be
improved for expanding their practical applications. Overall, Ta-LLZO and LCO were sintered at 1050
◦C, and it was noted that shortening the sintering time at high temperature could prevent the element
inter-diffusion and minimize crack formation. In addition to bare cathode and electrolyte composite
sintering, the use of coatings and additives has also been experimentally investigated. Ohta et al. [333]
used Li3BO3 as an additive for Nb-doped LLZO/LiCoO2–Li3BO3.

Ohta et al. [333] used Li3BO3 as an additive for Nb-doped LLZO/LiCoO2–Li3BO3.
Later, Han et al. [357] reported the low cathode/electrolyte interfacial resistance obtained by thermal
soldering of the Li2CO3-coated LCO cathode and Ta-LLZO (Li6.4La3Zr1.4Ta0.6O12) solid electrolyte
together using Li2.3C0.7B0.3O3 as additive, which has an ionic conductivity of 10−5 S cm−1 at 100 ◦C.
The advantage of this additive is a reasonably low melting point of approximately 690 ◦C and can
be well soldered with the Li2CO3-coated cathode and the LLZO electrolyte. Li2.3C0.7B0.3O3 powder
was prepared by heating a mixture of Li2CO3 and Li3BO3 in air at 650 ◦C for 10 h. A thin Li2CO3

layer was deposited on LCO as follows. The as-prepared LCO was soaked in a mixed 1 mol L−1 LiOH
and 0.25 mol L−1 LiNO3 aqueous solution for 30 min. The obtained solid was then filtered, dried in
a vacuum oven, and heated to 250 ◦C in CO2 atmosphere for 5 h. Subsequently, Li2CO3 was coated
on the Ta-LLZO SSE by exposing the milled powder for 1 h and then stored in air. The results of the
electrochemical studies performed using 1–3 mg of active material revealed the irreversible capacity loss
of 32 mAh g−1 during the first cycle and reasonably good stability during cycling (Figure 27a–f) [357].
The low mass of active material used in this study cannot be compared with the higher loadings
reported in the literature; moreover, in this study, the high Ta doping (0.6 wt.% Ta) led to the increase in
the cost of the raw materials. For practical application, the concentration of Ta should be ≤ 0.25 mole.

Kato et al. [358] deposited the LNMC + 5 wt.% LATP composite on LLZO pellets and reported
that the areal capacity of the ASSB was 0.5 mAh cm−2 (specific capacity of approximately 150 mAh
g−1) over 90 cycles at a current rate of 50 µA cm−2 (Figure 28a–c). In addition, the authors used stack
pressure during cycling and the addition of 5 wt.% LATP to LNMC improve the interfacial contact
between the electrode and electrolyte. These results should be of further interest for oxide-based
electrolyte systems. Improvement of the interfacial contact between electrodes and polymer-based
electrolyte composites has been obtained by mixing 10–20 wt.% LLZO with polymer, ionic liquids,
and inorganic salts, such as 1 mol L−1 LiClO4 and 1 mol L−1 LiPF6. Thus, the optimization of the stack
pressure during electrochemical cycling of hot-press–manufactured Ta-LLZO cathode materials is
required for large-scale applications. Barai et al. [497] revealed the growth of Li dendrites through
local inhomogeneities of polycrystalline LLZO-based ceramics and subsequent short-circuit of the
ASSB. They developed atomistic simulations using a mesoscale model to estimate the dendrite growth
velocity. Results showed that the average growth velocity increased with the lithium yield strength.
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Figure 27. (a) Charge–discharge profiles of the interphase-engineered all-ceramic Li| Li6.4La3Zr1.4Ta0.6O12|

LiCoO2 (Li|LLZO|LCO) cell for the first three cycles at 0.05C and 100 ◦C. (b) Charge–discharge profiles of
the interphase-engineered all-ceramic Li|LLZO|LCO cell at different current rates in the range of 0.05–1C
at 100 ◦C. The profiles at the different rates were obtained using fresh cells after one activation cycle at
0.05C. (c) Rate performance of the interphase-engineered all-ceramic Li|LLZO|LCO cell at 100 ◦C. The
capacities at the different current rates were obtained using fresh cells, and each cell is represented using
a different color. (d) Cycling performance of the interphase-engineered all-ceramic Li|LLZO|LCO cell at
0.05 C and 100 ◦C. The cycling performances of all-ceramic Li|LLZO|LCO cells with cathode composites
consisting of uncoated LCO (LCO + Li2.3C0.7B0.3O3 + LLZO@Li2CO3) and uncoated LLZO (LCO@Li2CO3

+ Li2.3C0.7B0.3O3 + LLZO) are also included. (e) Charge–discharge profiles of the interphase-engineered
all-ceramic Li|LLZO|LCO cell for the first three cycles at 0.05 C and 25 ◦C. (f) Cycling performance of the
interphase-engineered all-ceramic Li|LLZO|LCO cell at 0.05C and 25 ◦C. The specific capacity was calculated
based on the weight of LCO in the cathode composite. Reproduced with permission from [357]. Copyright
2018 Elsevier.
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Figure 28. (a) Cross-sectional scanning electron micrograph of the LLZO/NMC-LATP composite film
prepared using LTP-5. (b) Charge–discharge curves of the all-solid-state battery (ASSB) featuring the
Li/LLZO/NMC-LATP composite film prepared using LTP-5 as the cathode. The measurements were
performed at 100 ◦C, the charge current density was maintained at 50 µA cm−2, and the discharge
current density was varied in the range of 50–1000 µA cm−2. (c) Specific discharge capacity of ASSB vs.
cycle number. Reproduced with permission from [358]. Copyright 2016 Elsevier.

4.2. Li-Analogues of NASICON

Sodium zirconium phosphate (NaZr2(PO4)3 (NZP) is the parent compound of the Na-based
super ionic conductor named NASICON [359–407]. The crystal structure of NASICON (NaM2(PO4)3

M = Ge, Ti, Zr) was reported in 1968 by Hagman and Kierkegaard [359] to be hexagonal with the R-3/c
space group. The crystal structure of NASICON consists of MO6 octahedra interconnected via corner
sharing with PO4 tetrahedra, which share all their vertices to form a 3D network with interconnected
channels. The Na+ or Li+ ions are located in these channels and can occupy two different sites in the
crystal structure: The type I or M1 sites are six-fold coordinated directly between two MO6 octahedra;
conversely, the Type II or M2 sites are eight-fold coordinated and are located between two columns of
MO6 octahedra. For NZP, only the Type I sites are filled (Figure 29a–c). Cationic carriers move from one
site to another through bottlenecks, and the size of the bottlenecks depends on the nature of the skeleton
ions and carrier concentrations. Many efforts have been invested to chemically substitute the Na and Zr
sites of NASICON and obtain a variety of isostructural Li compounds, such as Li(M2

4+)(PO4)3, (M = Ti,
Zr, Hf, Ge, Sn) [360–363], LiMVMIII(PO4)3 (MV = Nb, Ta; MIII = Al, Cr, Fe) [364], Li1−xM2-−xM′xP3O12 (M
= Hf, Zr; M′ = Ti, Nb) [353], and Li1+x(M2−x

4+,Nx
3+ )(PO4)3 (M = Ti, Zr, Hf, Ge, Sn; N = Al, Ga, In) [362].
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Among the aforementioned electrolytes, hexagonal-type structures LATP and Li1.5Al0.5Ge1.5P3O12

(LAGP) (Figure 29) have been well studied owing to their high ionic conductivities. Although LAGP
presents high ionic conductivity of up to 5 mS cm−1 its large-scale applications for Li batteries [49] or
Li–air batteries [365] have been ruled out owing to the very high cost of Ge.
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DeWees and Wang [49] and Xiao et al. [82] have recently surveyed the literature on LATP
electrolytes, and their findings can be summarized as follows.

(i) In 1986, Subramanian et al. [360] synthesized a NASICON-type LiTi2(PO4)3 (LTP) electrolyte and
performed conductivity studies on it. The conductivity of LTP was 7.9 × 10−8 and 5.0 × 10−3 S cm−1

at room temperature and 300 ◦C, respectively. Its low conductivity and poor sinterability were
disadvantageous. To improve the conductivity and densification of pellets, in 1989, Aono et al. [366]
replaced a fraction of the Ti4+ ions (ion radius of 0.60 Å) in the parent LTP material with smaller trivalent
cations, such as Al3+ (ionic radius of 0.53 Å) and obtained compounds such as Li1.3Al0.3Ti1.7(PO4)3

(LATP), and reported the successful increase in the total ionic conductivity up to 5× 10−4 S cm−1, and the
grain conductivity (without the limitations of grain boundaries, secondary phases, and porosity) of
approximately 3 × 10−3 S cm−1. Later, Birke et al. [367] fabricated a Li4Ti5O12|Li1.3Ti1.7(PO4)3|LiMn2O4

solid-state cell with 15 wt.% (0.44 LiBO2:0.56LiF) additive in the cathode. Subsequently, Cretin et al. [368]
prepared LATP using different synthesis routes such as sol–gel, solid-state, and co-grinding methods.

(ii) Many researchers have attempted to improve the Li+ ion conductivity of LATP electrolytes using
different synthesis methods, such as the solid-state, sol–gel [363], melt quenching, co-precipitation [369],
microwave-assisted reactive sintering, SPS [370], spray drying, spin coating [371], tape casting [372],
and RF magnetron sputtering [373] methods, and different reaction conditions, such as different
synthesis temperatures in the range of 700–1100 ◦C. Among all preparation methods, the sol–gel
and solution-based ones generated LATP electrolytes with improved conductivity (Figure 30a–d).
The crystallization of LATP starts at approximately 700 ◦C and its phase formation occurs in the range
of 750–850 ◦C; in addition, decomposition (or phase segregation) occurs at 850 ◦C and leads to the
formation of AlPO4, TiO2, and Li4P2O7 phases [374]. Further details on the synthesis of LATP can be
found in recent reviews [49,82].

(iii) LATP presents a hexagonal lattice and its lattice parameters are in the ranges of a ≈ 8.50 Å
and c ≈ 20.52 Å; cell volume of 1305 Å3. The crystal structure of LATP consists of TiO6 octahedra and
PO4 tetrahedra sharing corners that are connected to form a 3D network structure (Figure 28), in which
Li ions are located into two sites labeled MI and MII. Three different Li sites (Li(1), Li(2), and Li(3)) can
be distinguished in the LATP (or LiGe2(PO4)3) structure [49]. The Li(1) sites are expected to be fully
occupied, whereas the Li(2) and Li(3) sites are only partially occupied. The increase in conductivity
of LATP was correlated with the increase in the M–O bond strength and decrease in the Li–O bond
strength upon the partial substitution of Ti4+ ions with Al3+ ions.
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(iv) Nairn et al. [375] and Vinod-Chandran et al. [376] studied the Li+ ion conductivity and
evaluated the diffusion coefficients of LATP via NMR. The obtained lithium diffusion coefficients
and activation energies are in the range 0.3-5.0 × 10-8 cm2 s−1 and 0.16–0.17 eV, respectively, and the
conductivity is close to 10−3 S cm−1 at 27 ◦C (Table 3) [377].

(v) Additives have been reported to improve the ionic conductivity of LATP. For example,
the product obtained by sintering of a mixture of Li2.9B0.9S0.1O3.1 and LATP (mole ratio of 1:9) at 800 ◦C
presented a total conductivity of 1.5 × 10−5 S cm−1 at room-temperature [378].

(vi) Owing to its high Li+ ion conductivity, LATP is an important ASSB ceramic electrolyte;
however, when Li metal is used as the anode, the LATP membrane has to be separated from it using an
additional protective layer to avoid the Ti4+/Ti3+ reduction reaction, because the presence of this redox
couple during electrochemical cycling leads to slow structural phase transitions and lowers the Li+ ion
conducting properties of the LATP electrolyte during cycling. The cycling performance of ASSBs at
high charge–discharge rates remains challenging owing to the low conductivity of the decomposition
products and small contact areas or space-charge layers. de Klerk and Wagemaker [343] proposed a
mathematical model to elucidate the space charges of the LATP cathode.

Recently, Dashjav et al. [372] reported the microstructure, ionic conductivity, and mechanical
properties of the LATP prepared using the tap cast technique. Using this technique, they obtained
99.8% highly dense sheets by adding 1.5% amorphous silica to the slurry; moreover, the elastic modulus
and low-load hardness of LATP:Si were 109 ± 5 GPa and 8.7 ± 0.4 GPa, respectively (Figure 31A–C).
These properties are important for the fabrication of SSBs. Moreover, the ionic conductivities of LATP
and LATP:Si at 20 ◦C were reported be 0.1 and 0.2 mS cm−1, respectively. In addition, the films were
sintered at 920 ◦C and it was concluded that the conductivity of the films increased with the sintering
temperature. The microstructure of LATP ceramics fabricated by milling after spark plasma sintering
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at 950 and 1000 ◦C is shown in Figure 31C. The LATP main phase is interrupted by small amounts of
secondary phases and residual porosity. Thereby, the grain growth with increasing temperature and
the inclusion of intergranular pores are observed [378].
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Figure 31. (A) Typical crack surface of a Li1.5Al0.5Ti1.5P3O12:Si (LATP:Si) sample. Images (a)–(d)
illustrate the same sample at different magnifications. The area encircled in blue in (a) is magnified in
(b), where the area encircled in red depicts the potential fracture origin; images (c) and (d) illustrate the
highly magnified fracture surface. The area encircled in red in (d) illustrates the transgranular crack
growth. (B) Elastic modulus and hardness of LATP:Si as functions of the indentation load. Reproduced
with permission from [372]. Copyright 2020 Elsevier. (C) Microstructure of LATP ceramics fabricated
by milling powder after spark plasma sintering at (a) 950 and (b) 1000 ◦C. The LATP main phase is
interrupted by small amounts of secondary phases and residual porosity. Thereby, the grain growth
with increasing temperature and the inclusion of intergranular pores are observed. Reproduced with
permission from [378]. Copyright 2020 Elsevier.

Recently, Kou et al. [379] reported the remarkable cycling stability of a spray-drying and assisted
sintering-processed ASSB where Li1.3Al0.3Ti1.7(PO4)3 (LiATP), LCO, and Li metal were the electrolyte,
cathode, and anode, respectively. They reported that the capacity of the cell was 150 mA g−1 at the
rate of 0.1C. Moreover, the cell presented good charge–discharge profiles and cycling performances,
similarly to that of liquid electrolyte cell showing the main redox couples (4.0/3.85 V) and hexagonal
phase transformations of LiCoO2 around ~4.06, ~4.18, ~4.5 V vs. Li [356]. We note that it is not in the
experimental part that authors used any liquid or polymer electrolyte to improve the wettability, as they
may lead to improved cyclability. Kwatek et al. [380] examined the impact of Li2.9B0.9S0.1O3.1 glass
additive on the structure and electrical properties of the LATP-based ceramics. Using high-resolution
synchrotron-based X-ray and neutron powder diffraction, Monchak et al. [381] characterized the crystal
structure of LATP samples prepared by a water-based sol-gel process and evaluated the possible
lithium diffusion pathways using the difference bond-valence approach.

Hofmann et al. [382] fabricated LATP and LiCoPO4 thin films using the PLD technique and
reported various surface analysis methods. Time-of-flight secondary-ion mass spectrometry studies on
the as-deposited (unheated) films revealed well defined interfaces; conversely, the interdiffusion of
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Co and Ti ions was observed between the heat-treated electrolyte and cathode films. Atomic force
microscopy analysis revealed that LATP presented well-defined smooth surface and XPS studies
indicated that no changes occurred in the oxidation states of the ions at the electrode/electrolyte
interface. Recently, Bock et al. [342] reported that the thermal conductivity of LATP was approximately
0.49 ± 0.2 W K−1 m−1.

Waetzig et al. [378] synthesized LATP using the sol–gel method followed by ball milling and
further densification of the powders using the SPS technique. The LATP pellets sintered at 1000 ◦C
presented the excellent room-temperature Li+ ion conductivity of 1 × 10−3 S cm−1, bulk density of
2.92 g cm−3, and relative density of 99.4%. In contrast, the Li+ ion conductivities of the samples
sintered at 800 and 850 ◦C were 1.1 × 10−4 and 4.8 × 10−4 S cm−1, respectively, and their relative
and (bulk) densities were 87.4 % (2.57 g cm−3) and 96.1 % (2.824 g cm−3), respectively. Although the
excellent ionic conductivity of the LATP pellets sintered at 100 ◦C was ascribed to the samples being
homogeneous and crack-free (Figure 31C), the optimum sintering temperature range for the NMC
cathodes for ASSBs is 700–800 ◦C, as in this temperature range, the formation of a reactive phase at
the cathode/electrolyte interface is avoided. However, the aforementioned surface morphology is
of interest for the fabrication of ASSBs. Pogosova et al. [383] studied the effect of storing the LATP
electrolyte in air and Ar atmosphere and reported that the total initial room-temperature conductivity
of 4 × 10−4 S cm−1 decreased significantly, by 76% and 28% for the samples stored in air and Ar,
respectively, after three months.

Recently, Case et al. [384] performed computational studies of LATP and Binninger et al. [276]
analyzed the electrochemical stability window of the LATP electrolyte using computational methods.
Furthermore, Siyal et al. [385] analyzed a gel polymer electrolyte with 15 wt.% LATP composite, and
few other researchers studied bare and LATP composite electrodes [379,386–388]. Yen et al. [389]
characterized LATP powders prepared by hydrothermal synthesis followed by calcination (900–1100 ◦C),
cold pressing (90 MPa), and post sintering, which exhibit ionic conductivity of grain and grain boundary
of 6.57 × 10−4 and 4.59 × 10−4 S cm−1, respectively. The fabricated NCM523|LATP|artificial graphite
pouch cell delivered a high reversible capacity of 16.7 mAh at 0.5C after 360 cycles with 63.2% capacity
retention (voltage range, 2.80–4.25 V).

Few attempts have been made to combine polymer electrolytes with LATP to obtain solid
electrolyte composites. Ma et al. [390] paired a 10% LATP and polymer electrolyte/ionic liquid
composite with a LiFePO4 cathode and reported a capacity of 138 mAh g−1 after 250 cycles with
98% capacity retention at 60 ◦C. In addition, Wang et al. [391] and Jin et al. [392] studied LATP
polymer composites. Yu and Manthiram [393] fabricated a slurry cast PEO–LiCF3SO3–LATP composite
membrane solid electrolyte and paired it with a LiFePO4 cathode. Moreover, they studied the effect
of various LATP solid electrolyte and polymer compositions and reported that the highest ionic
conductivity of 1.6 × 10−4 S cm−1 at 60 ◦C was achieved when the amount of LATP electrolyte was
25 wt.%; in addition, when the membrane was paired with a Li metal anode, it was stable for up to
1800 h (Figure 32(1)). The cell formed by combining this composite electrolyte with a LiFePO4 cathode
and Li metal anode presented the charge capacities of 150 and 118 mAh g−1 at the rates of C/20 and
C/2 (1C = 2.1 mA cm−2), respectively, at 60 ◦C (Figure 32(2)). These electrolyte systems were difficult
operate at room temperature owing to their conductivity limitations. Further improvement in cycling
temperature is possible via polymer backbone modifications (Table 4).

DeWees and Wang [49] reviewed various synthesis (see Figure 29) and ionic conductivity
analysis methods for the LAGP electrolyte. It was concluded that the processing parameters such as
heat-treatment and time and precursor compositions have a great importance in solid-state reaction
and sol-gel method, respectively. For example, the use of phosphorous source (H3PO4) as precursor
provides the best LAGP phase purity and the highest ionic conductivity of ~5 × 10−4 S cm−1 at 25 ◦C.
In addition, few studies on the synthesis, conductivity (~4 × 10−4 S cm−1, see Table 3 [365]) and
interface mechanisms, and physical and electrochemical properties of LAGP have been published since
2019 [49,342,394–437].
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Figure 32. (1) Current and voltage profiles of the symmetric Li|PEO-LiCF3SO3-LATP|Li cell at a
current density of ±1.0 mA cm−2 and 60 ◦C(a). Here PEO and LATP denote polyethylene oxide and
Li1.5Al0.5Ti1.5P3O12, respectively. (b) Magnified profile of marked region of the current and voltage
plots in (a). (c) Current and voltage plots of the symmetric Li|PEO-LiCF3SO3-LATP|Li cell at 60 ◦C.
The applied current density was ±1.0 mA cm−2. (d) Magnified profile of the marked region of the
current and voltage profiles in (c). (2) Rate capability of the Li|PEO-LiCF3SO3-LATP|LFP cell: (a)
Charge−discharge profiles at various cycling rates at 60 ◦C, (b) cyclic voltammetry curves at different
cycles, and (c) long-term electrochemical performances of the cell; Coulombic efficiency and discharge
capacity vs. cycle number. The cell was operated at a rate of C/2 and 60 ◦C. Reproduced with permission
from [393]. Copyright 2020 American Chemical Society.

Bock et al. [342] reported that the thermal conductivity of LAGP was approximately
0.5 ± 0.2 W K−1 m−1; moreover, Rohde et al. [398] reported other thermo-physical properties of
the (Li1+xAlxGe2−x)(PO4)3 solid electrolyte with x = 0.3–0.7. Recently, Paolella et al. [438] reported the
optimum conditions for densification of Li1.5Al0.5Ge1.5(PO4)3 at a low temperature of 650◦C using
hot-press technique (56 MPa applied pressure); this solid electrolyte was used in all-solid-state battery
with LiFePO4 cathode without addition of any further polymer or liquid electrolyte additives.

In 2019, Wang et al. [430] studied a composite solid electrolyte comprising LAGP embedded with
30% poly(propylene carbonate) (PPC) and compared it with the standard LiTFSI electrolyte using
the steps illustrated in Figure 33A. They reported that the conductivity and Ea, of the LAGP–30 wt.%
PPC–SCE electrolyte are 5.5 × 10−4 S cm−1 at 50 ◦C and 0.506 eV, respectively, and Tg of 8.11 ◦C. An SSB
was fabricated using LAGP–30 wt.% PPC–SCE, LiFePO4, and Li metal as the composite electrolyte,
cathode, and anode, respectively. The battery was formatted at 80 ◦C for 12 h to ensure optimal contact
between the electrodes and electrolyte, and then it was subjected to galvanostatic cycling at 55 ◦C.
The cell presented good reversible charge–discharge profiles at ~3.5/3.4 V vs. Li and delivered a capacity
of 151 mAh g−1 at a current rate of 0.05 C with 92.3% capacity retention (Figure 33B). Electrostatic
impedance studies revealed that the electrode/electrolyte interfacial contact improved with cycling,
and the overall resistance decreased with increasing cycle number. In 2007, Notten et al. [439] developed
the concept of 3-D integrated all-solid-state rechargeable batteries. Pareek et al. [440] conducted a recent
study on the conductivity of NASICON-type lithium tin zirconium phosphate (LiSnZr(PO4)3) with
PVDF and LiTFSI polymer-salt matrix. Xie et al. [441,442], Prabhu et al. [443], and Cassel et al. [444]
studied bare and Ca-doped LiZr2P3O12 and reported room-temperature conductivities in the range of
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10−4–10−6 S cm−1. In addition, Abdel-Hameed et al. [445] investigated the effect of F− and B3+ ions and
heat treatment on the enhancement of electrochemical and electrical properties of nanosized LiTi2(PO4)3

glass-ceramic for ASSB and Kahlaoui et al. [446] examined the influence of preparation temperature on
ionic conductivity of titanium-defective Li1+4xTi2−x(PO4)3 NASICON-type oxide solid electrolytes.
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Figure 33. (A) Schematics of all-solid-state battery assembly. Step 1 illustrates the hot press progress of
the LiFePO4 cathode and LAGP/30%-SCE electrolyte (where LAGP and SCE denote Li1.5Al0.5Ge1.5(PO4)3

and solid composite electrode, respectively) and scanning electron micrograph of the cross-section of
the contact interface. Step 2 depicts the preactivation of the LiFePO4-SCE||Li cell. (B) Voltage profiles
of the LiFePO4-SCE||Li cell at the current rate of 0.02C (a). Rate performance of the LiFePO4-SCE/Li
cells at current rates in the range of 0.02–1C (b). Cycling stability of the LiFePO4-SCE/Li cell at the
current rate of 0.05 C and 55 ◦C (c). Nyquist plots of the LiFePO4-SCE||Li cells before and after different
cycles, and magnified areas of the plots in the inset (d). Reproduced with permission from [430].
Copyright 2019 American Chemical Society.

4.3. Perovskite-Type Structure Electrolytes

In 1984, Latie et al. [447] reported the synthesis and transport properties of two-dimensional
LixM1/3Nb1−xTixO3 (M = La, Nd) perovskite (ABO3)-type oxides. In addition, they investigated
the ion conduction mechanism of these materials using the NMR technique. Furthermore, in 1984,
Kochergina et al. [448] published a report on Li0.5La0.5TiO3. Subsequently, the Li3xLa(2/3)−x�(1/3)−2xTiO3

phase (with 0 < x < 0.16) (LLTO), where� denotes a structural vacancy, and its related compounds, have
been thoroughly studied by numerous workers [451–467]. Afterwards, in 1987, Belous et al. [449] studied



Nanomaterials 2020, 10, 1606 51 of 80

the effect of the Li content on the structure of Li3xLa(2/3)−x�(1/3)−2xTiO3 (0.04 ≤ x ≤ 0.17) and performed
conductivity measurements. In 1993, Inaguma et al. [450] studied the Li0.34La0.5TiO2.94 electrolyte.
Among all Li3xLa(2/3)−x�(1/3)−2xTiO3 structures, x ≈ 0.1 presented a conductivity of 1 × 10−3 S cm−1

at 25 ◦C [458] and an Ea of 0.40 eV. In 2003, Stramare et al. [459] reviewed the perovskite-type solid
electrolytes in detail.

Herein, we summarize the findings of the previous reports and discuss a few recent additional
studies as follows.

(i) Many efforts have been invested to elucidate the crystal structure and conduction mechanism
of Li3xLa(2/3)−x�(1/3)−2xTiO3 by (a) analyzing the effect of the preparation method: Solid-state [458],
sol–gel [461], precipitation [459], electrospinning [462], and thin film (RF sputtering and PLD) [463],
and reaction conditions, such as temperature and time; (b) investigating the concept of doping,
i.e., substitution of La by other lanthanides (Pr, Nd, Sm, Gd, Dy, Y) [464], using various Li doping
contents [451], or substituting other alkali ions, such as Na+ and K+ ions, or alkaline-earth ions,
such as Sr2+ and Ba2+ ions, or Ag+ ions at the La sites; (c) in 2000, Mizumoto investigated the
conductivity relaxation in various lithium ion conductors with the perovskite-type structure [465],
and (d) considering doping the Ti sites with tri- (e.g., Al3+) [466], tetra- (e.g., Zr4+), penta- (e.g., Ta5+,
Nb5+) [485], and hexavalent ions (e.g., W6+). It was determined that the conduction mechanism of the
LLTO compounds varied with the composition, A-site deficiency, Li+ and La3+ ions concentration,
and dopants [466]. For example, the decrease in Ea and increase in ionic conductivity was noted with
increasing the rare-earth metal ion size as follows: Sm3+ < Nd3+ < Pr3+ < La3+; furthermore, the
microstructure, density, domain size, and composition of the domain boundaries affected the ionic
conductivity and Ea values of the LLTO compounds [467–470]. Solid-state NMR studies revealed
that the Li+ ions hopped between cages through the bottleneck in the ab plane at low temperature,
whereas at high temperature, the Li+ ions hopped in all three directions. The reported conductivity
values of Li0.34La0.56TiO3 range from ~7 × 10−4 to ~1 × 10−3 S cm−1 (Table 3).

(ii) The Li3xLa(2/3)−x�(1/3)−2x(A)Ti(B)O3 perovskite electrolyte presents three different types of
polymorphs [459], viz. simple cubic: a = 3.872 Å, for x = 0.97–0.11, tetragonal: a = b= 3.87 Å and
c = 7.74 Å, for x = 0.11–0.2, and orthorhombic: a = 3.864 Å, b = 3.875 Å, c = 7.786 Å, for x = 0.03–0.09.
Among all polymorphs, the cubic structure presented the highest conductivity followed by the
tetragonal and orthorhombic ones, for the same bulk composition. The low ionic conductivity of
the well-ordered phases was correlated with the uneven ordering of Li, La, and vacancies along the
c-axis. The Li3xLa(2/3)−x�(1/3)−2x(A)Ti(B)O3 LLTO presents perovskite (ABO3)-type structure, where the
A-sites consist of La, alkaline (Li+, Na+, K+), or rare earth ions, which are arranged in the corners
of a cube and the B-sites consist of transition metal (Ti) ions, which are located at the center of the
cube; the face-center positions are occupied by O atoms. Typically, the A- and B-sites present 12- and
6-fold coordination (BO6), respectively, that share corners with each other (Figure 34a,b) [469,471].
The A-sites contain a large number of defects, and the composition of Li3xLa(2/3)−x�(1/3)−2x(A)Ti(B)O3

can be written as La2/3TiO3, which is intrinsically A-cation deficient, with 1/3 of vacant A-sites. The La
vacancies are partitioned into alternating La-rich and La-poor layers along one axis to form a partially
ordered super lattice structure at room temperature. Depending on the Li content of the materials,
they present different symmetries. The Li-poor (0.03 ≤ x < 0.1) compositions present orthorhombic
symmetry, with high La-site occupancy (≥90%) in the La-rich layer and antiphase tilting of the TiO6

octahedra. Conversely, the Li-rich (0.1 ≤ x < 0.167) compositions present tetragonal symmetry, and the
occupancies of the two types of La layers become less dissimilar as the Li content increases [471].

(iii) The experimental observations were further validated by the results of the computational
study performed by Jay et al. [472]. They revealed the non-significant significant ordering of the
A-site cations in the layers normal to the c-axis and indicated that the Li+ ions could also diffuse along
c-axis. Computational studies offered further insight into the size of the bottleneck and indicated a
possible increased using large rare-earth or alkaline-earth metal ions as A-site ions; moreover, changing
the bond strength between the B-site cations and O also affects the conductivity of these electrolytes.
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In addition, Binninger et al. [276] performed computational studies on the electrochemical stability
voltage window of these electrolytes.Nanomaterials 2020, 10, x FOR PEER REVIEW 51 of 79 
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(iv) The good room-temperature ionic conductivity values motivated researchers to further
elucidate the reactivity of LLTO electrolytes with Li metal anodes and the processes that occur at
the electrode/electrolyte interface. According to the early study conducted by Bohnke et al. [473]
on the galvanostatic cycling of LLTO, the main redox peak occurred at approximately 1.5 V vs. Li.
Owing to this drawback, at operating voltage below 2.8 V, the electrochemical reaction with Li leads
reduction of Ti4+ to lower oxidation state. These studies revealed that the temperature dependence
of the ionic conductivity can be modelized by a Vogel–Tamman–Fulcher (VTF)-type relationship.
Klingler et al. [474] analyzed LixLa(2−x/3)TiO3 (x = 0.14, 0.23, 0.32, 0.35) and Pr-, Tb-, Cr-, and Fe-doped
compounds with the cycling lower limit of up to 1.1 V vs. Li. Lithium intercalation was noted for all
analyzed electrolytes, which led to the formation of the Ti4+/Ti3+ redox couple, which is a drawback
when this electrolyte is used for ASSBs.

Recently, Wenzel et al. [475] studied the LTO/Li metal interface and noted the reduction of Ti4+ to
Ti3+,2+, 0 using XPS analysis. Owing to this drawback, only few reports on the application of the bare
LLTO electrolyte for ASSBs have been published. However, for academic purposes, the study conducted
by Araki et al. [476] on the fundamental physical properties of Li3xLa1/3−xMO3 (M = Ta, Nb) revealed
that the thermal expansion coefficient was ~3 × 10−6 K−1 above 400 K regardless of x. More studies
were conducted to analyze modified synthesis methods, understand the interface mechanisms, and
improve the conductivity using modified strategies [276,477–491] such as combining 10–15 wt.% LLTO
electrolyte with polymer electrolytes/ionic liquid [492] or commercial 1 mol L−1 LiPF6 in mixture of
ethylene carbonate+dimethyl carbonate+diethyl carbonate (EC:DMC:DEC) electrolytes with LLTO,
and in some cases using polymer separators. These batteries are typically termed “hybrid composite
SSBs”, and the reduction of Ti in the LLTO electrolyte cannot be suppressed in these cells. Lai et al. [493]
developed an inter-phase film fabricated by sol-gel electrospinning, which consists of a Li0.33La0.56TiO3

nanofiber (NF) layer deposited on the top of thin lithiophilic Al2O3 NF layer. This electrolyte was
used to form a cell using 1 mol L−1 LiPF6 (EC:DMC:DEC) and Celgard 2500, LiNi0.8Co0.15Al0.05O2,
and Li metal as the separator, cathode, and anode, respectively, and the capacity of the cell was 133
mAh g−1 at a current rate of 5C in the voltage range of 2.7–4.3 V. Xu et al. [494] observed interdiffusion
and amorphous film formation for the Li0.33La0.57TiO3/LiMn2O4 half-cell. Jiang et al. [486] formed
a cell using the LLTO-41/PEO composite, LFP, and Li metal as the electrolyte, cathode, and anode,
respectively, and reported that its capacity was 145 mAh g−1 with 86.2% capacity retention after 50
cycles; cycling was performed at 65 ◦C at the current rate of 0.1C. Li et al. [495] fabricated flexible CPE
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based on LLTO nanofibers embedded in a PVDF matrix with LiTFSI as Li salt and studied the sandwich
type LiFePO4|PVDF, LiTFSI-CPE (15 wt.% LLTO)|Li cell, in which the 15 wt.% electrospun LLTO
fibers (Figure 35A,B) were dispersed with PVDF. The room-temperature conductivity of the LiTFSI
electrolyte membrane was 5.3 × 10–4 S cm−1; moreover, the membrane presented high mechanical
strength (stress of 9.5 MPa and strain of 341%), and good thermal stability (thermal degradation at 410
◦C). The reversible capacities of the fabricated battery at the current rates of 0.2, 0.5, 1, 2, and 5C were
147, 129, 120, 107, and 91 mAh g−1, respectively (Table 4); moreover, good capacity retention was noted
at low and high current rates (Figure 35C). Several workers examined the local structure of LLZO; Jin
at al. [496] synthesized Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method, while
Barai et al. [497] investigated the role of the polycrystalline grain/grain-boundary microstructure.
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oxide electrolytes. The conductivities of Li4SiO4 [310,498,499] and Li4Si0.6Ti0.4O4 [310] were reported to 
be 2 × 10−9 and ∼3 ×10−4 S cm−1 at room temperature and 300 °C, respectively. These materials present 
the γ-Li3PO4 structure, where Li+ ions that are located in the LiO4 tetrahedra diffuse between these 
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Figure 35. (A) Schematic illustration of the preparation procedure of the PVDF–CPEs, and illustration
of the electrode configuration for the LMB. Here PVDF, CPE, and LMB denote polyvinylidene fluoride,
composite polymer electrolyte, and lithium-metal battery, respectively (a). Schematic diagram of
changes in PVDF molecular linkages in composite electrolytes(b). (B) X-ray diffraction pattern
(a), field-emission scanning electron micrograph (b), transmission electron micrograph (c), and
high-resolution transmission electron micrograph (d) of LLTO nanofibers; the inset in (d) is the
corresponding fast Fourier transform pattern of the LLTO nanofibers. Digital photographs of PVDF,
PVDF–CPE, and PVDF–CPE (15%) membranes (e). Digital photograph of bent PVDF–CPE (15%)
illustrating its good flexibility (f). (C) Performances of all-solid-state batteries at 25 ◦C. Charge–discharge
curves of the Li|PVDF–CPE (15%)|LiFePO4 cell at the current rate of 0.2C (a). Long-term cycling (b) and
rate performances of PVDF–CPE and PVDF–CPE (15%) at the current rate of 1C (c). Electrochemical
impedance spectroscopy profiles of batteries with PVDF–CPE and PVDF–CPE (15%) electrolytes before
cycling and after 100 cycles at the current rate of 0.2C (d). Reproduced with permission from [495].
Copyright 2019 American Chemical Society.
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4.4. Li Superionic Conductor-Type Structure Oxide Electrolytes

In 1972, West [498] published a report on Li superionic conductor (LISICON)-type structure
oxide electrolytes. The conductivities of Li4SiO4 [310,498,499] and Li4Si0.6Ti0.4O4 [310] were reported
to be 2 × 10−9 and ~3 ×10−4 S cm−1 at room temperature and 300 ◦C, respectively. These materials
present the γ-Li3PO4 structure, where Li+ ions that are located in the LiO4 tetrahedra diffuse between
these tetrahedra and interstitial sites in the PO4 network. Different solid solutions could replace the
P5+ ions in γ-Li3PO4 with tetravalent atoms, such as Si, Ti, and Ge, to create compositions such as
Li3+x(P1−xMx)O4.

In 1978, Hong [500] reported LISCON-type structured compounds, such as Li14Zn(GeO4)4 and
doped Lil6.2Ax(BO4)4, in which A2+ = Mg, Zn, B4+ = Si, Ge, and x = 1, 2, or 3. Among the analyzed
specimens, Li14ZnGeO4 presented good conductivity (8 S cm−1 at 300 ◦C). Ivanov-Shitz and Kireev [501]
reported that the conductivity of single crystal Li3.34P0.66Ge0.34O4 was ~1.8 × 10−6 and 3.7 × 10−2 S
cm−1 at 40 and 400 ◦C, respectively.

Deng et al. [502] conducted both experimental and MD computational studies on several
LISICON-related compositions, viz. Li4±xSi1−xXxO4 (X = P, Al, or Ge), Li4SiO4, Li3.75Si0.75P0.25O4,
Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4, and Li4Al1/3Si1/6Ge1/6P1/3O4. They observed that the
conductivities of the P-, Al-, and Ge- doped samples were higher than those of the other samples.
In addition, the MD simulation studies revealed that the conductivity of Li4Al1/3Si1/6Ge1/6P1/3O4 was 0.9
mS cm−1; furthermore, its Ea of 0.28 eV was the lowest of all analyzed samples. Recently, Zhao et al. [503]
studied the co-doped Li3.75±y(Ge0.75P0.25)1−xMxO4 (M = Mg2+, B3+, Al3+, Ga3+, and V5+) LISICON-type
structures and reported that Li3.53(Ge0.75P0.25)0.7V0.3O4 presented the highest ionic conductivity of 5.1
× 10−5 S cm−1 at 25 ◦C of all samples, and also the low Ea of 0.43 eV (Table 3).

The low room-temperature conductivity of bare oxide electrolytes is a drawback, and hence,
very few studies have focused on their use for AASBs. However, some bare oxide electrolytes
can be used for high-temperature applications, and according to some recent studies, once the
interactions at the cathode/electrolyte interface are elucidated, a few compositions could be promising
SSB electrolyte materials.

4.5. Amorphous Thin Film Electrolytes

Commercial Li-ion batteries for mobile applications use bulk electrode materials.
Conversely, thin-film microbatteries have been explored for miniaturized device applications,
such as smart cards, microwave microelectromechanical systems, and other biomedical applications.
The electrode and electrolytes of microbatteries are a few microns thick and are deposited layer-by-layer
using RF-sputtering, PLD, evaporation, and other techniques. These batteries can only be used for
low-power applications owing to their thin film nature; in addition, the deposition technique used for
fabricating these devices is expensive compared with the traditional slurry coating method used to
manufacture Li batteries. Despite these limitations, after Oudenhoven et al. [117] proposed the concept
and design of 3D microbatteries, the use of thin-film electrolytes for microelectronic applications has
been explored by many researchers [504–521].

Lithium phosphorous-oxynitride (LiPON) is one of the most studied oxide-based electrolytes
owing to its reasonably good ionic conductivity and stability when paired with Li metal anode Bates
et al. [522] reported that the conductivity of the thin-film Li3.3PO3.9N0.17 electrolyte prepared via RF
sputtering using an LPO target and N2 reactive gas, was 2 × 10−6 S cm−1 at 25 ◦C. Yu et al. [523]
further explored LiPON electrolytes and determined that the conductivity, Ea, electrochemical stability
window, and bandgaps of Li2.88PO3.73N0.14 were 3.3 × 10−6 S cm−1 at 25 ◦C, 0.54 eV, 0–5.5 V, and 3.45
and 3.75 eV, respectively (Table 3). Hamon et al. [524] and Fleutot et al. [525–527] reported the effect
of the RF-sputtering parameters, such as power, flow rate, and total pressure, under pure N2 gas
atmosphere on the composition and conductivity properties of LixPOyNz (z = 0.4–1.2) LiPON thin films,
and noted that the ionic conductivity increased with the incorporation of N2 into the glassy structure.
The correlations between composition, local structure (by XPS), and the electrical properties were
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reported for lithium borophosphate (Li3PO4Bx, x = 0.08–0.24) thin films and for xLiBO2:(1−x)Li3PO4

(x = 5, 10, 15, 20, 25) glasses [527]. The effect of the B/P ratio on the conductivity of the electrolytes
was analyzed demonstrating that the electrolyte with the B/P ratio of 0.1 presented the highest ionic
conductivity of 1.1 × 10−6 S cm−1 and lowest Ea of 0.52 eV of all analyzed samples.

Joo et al. [528] studied (1−x)LiBO2–xLi2SO4 (LiBSO) (x = 0.4–0.8) amorphous solid electrolytes thin
films and reported that the ionic conductivity of the electrolyte increased with x and was the highest (~2.5
× 10−6 S cm−1) when x = 0.7 at room temperature. In addition, they noted that at x > 0.7 the conductivity
values slowly decreased owing to the partial crystallization of the electrolytes. Furthermore, Schwenzel
et al. [529] studied the LiAl|LiPON|LiCoO2 thin film battery and Notten et al. [439] fabricated 3D
microbatteries, in which LiPON and LCO were used as the electrolyte and cathode, respectively
(Figure 36). Recently, Famprikis et al. [530] reported that the maximum ionic conductivity and Ea of the
Li3+xSixP1−xO4 (LiSiPON) thin films obtained via RF sputtering under Ar and N2 atmospheres were
2.06 × 10−5 S cm−1 and 0.45 eV, respectively, and these values were one order of magnitude higher
than those of LiPON thin films. Furthermore, Clancy and Rohan [531] conducted modelling studies of
thin-film batteries and electrolytes.
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Figure 36. Schematic diagram of three-dimensional microbattery with lithium phosphorous oxynitride
electrolyte. Reproduced with permission from [439]. Copyright 2007 Wiley.

4.6. Other Electrolytes

In 1981, Hellstrom and Van Gool [532] reported that the Li+ ion conductivity values of Li2ZrO3,
Li4ZrO4 and LiScO2 were 3.3 × 10−5, 3.0 × 10−4, and 4.2 × 10−7 S m−1, respectively, at 300 ◦C. Although
these materials presented low room-temperature conductivity, their chemical stability when paired
with Li metal anodes was good. Furthermore, few studies focused on Zr-based fast ion conductors,
such as bare and Ta-, Nb-, Y-, and In-doped Li6Zr2O7 [533–535]. The ionic conductivity of Ta-doped
Li6Zr2O7 oxide was reported to be 1 × 10−3 S cm−1 at 300 ◦C [536].

5. Conclusions

In this review article, we summarized the recent advances and challenges of ASSBs with sulfides
and oxide electrolyte systems. Owing to their excellent ionic conductivities, Li3PS4 and LiPS5Cl have
been the most studied sulfide electrolytes. The AASBs formed when these electrolytes were paired
with Ni-rich NMC cathodes achieved high energy densities. Although the room-temperature ionic
conductivity of sulfide electrodes is good and these electrolytes can be easily fabricated, their stability
should be further improved to expand their large-scale applications. To fabricate batteries with good
electrochemical performance, the sulfide electrolyte should be paired with cathodes that are coated with
protective layers of LiNbO3, Li3PO4, Li2ZrO3 or other metal oxides. Moreover, the surface protection of
the cathodes involves additional costs, and therefore, a cost-effective novel approach for the large-scale
manufacturing of ASSBs is needed. Sulfide electrolytes present a few other shortcomings, including
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short cycle life, low stability, narrow electrochemical voltage window, suboptimal electrode/electrolyte
interface, and low stability in air.

Among all oxide-based electrolytes, garnet-based oxides, Ta-, Ga-, and Al-doped Li7La3Zr2O12,
and NASICON-type LATP and LAGP have been studied in depth for ASSBs, owing to their good
conductivity. Only few studies have been conducted on ASSBs with Ta-doped LLZO electrolytes, owing
to their better stability when paired with Li metal anodes. Most oxide-based electrolytes use 15–25
wt.% inorganic superionic conductors (LATP, LAGP, LLTO) in polymer composites with combination
of ionic liquid electrolytes. However, the progress in this field has been rather slow, mainly owing
to the high cell resistance, which was attributed to the high-temperature sintering process required
for better particle-to-particle contact between composite cathodes and electrolyte layers. Most of the
best-reported garnet-based electrolyte used high content of Ta dopant (0.5–0.6 mol%) for large-scale
application, which can be further reduced below 0.25 mol%. LATP, LAGP, and LLTO contain Ti and
Ge, which undergo electrochemical reactions with Li metal, and thus, further improving the surface
protection of the electrolytes is needed for large-scale applications and to reduce the cost associated
with the use of Ge.

The most common shortcoming of ASSBs with sulfide and oxide electrolyte is their low
electrochemical cycling performance at high charge–discharge rates, which is attributed to the
poorly conducting decomposition products and small contact areas or space-charge between electrode
and electrolyte layers. In addition, the roles of the microstructure adhesion and mechanical and
surface interfacial properties of both Li metal and solid electrolytes should be further elucidated.
Furthermore, the reactivities of Li metal, solid electrolytes, and cathodes should be further investigated.
Currently, it is difficult to access the electrolyte/electrode interface using conventional post-mortem
techniques without creating artifacts, and thus, further advances should be made on developing in situ
analysis techniques. Moreover, the search for highly stable conductive electrolytes should continue.
Lastly, an important aspect related to the fabrication of ASBB would be the cooperation between
scientists and engineers, which could facilitate the fabrication of large-area cells and address the current
transportation technology challenges.
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478. Kežionis, A.; Kazakevičius, E.; Kazlauskas, S.; Žalga, A. Metal-like temperature dependent conductivity in
fast Li+ ionic conductor lithium lanthanum titanate. Solid State Ion. 2019, 342, 115060. [CrossRef]

479. Ban, C.W.; Choi, G.M. The effect of sintering on the grain boundary conductivity of lithium lanthanum
titanates. Solid State Ion. 2001, 140, 285–292. [CrossRef]

480. Liu, K.; Zhang, R.; Sun, J.; Wu, M.; Zhao, T. Polyoxyethylene (PEO)|PEO-perovskite|PEO composite electrolyte
for all-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2019, 11, 46930–46937. [CrossRef]

481. Salami, T.J.; Imanieh, S.H.; Lawrence, J.G.; Martin, I.R. Amorphous glass-perovskite composite as solid
electrolyte for lithium-ion battery. Mater. Lett. 2019, 254, 294–296. [CrossRef]

482. Zhao, Y.; Lai, Y.; Zhang, Y.; Ding, B.; Yu, J.; Yan, J. Self-assembled conductive metal-oxide nanofiber interface
for stable Li-metal anode. ACS Appl. Mater. Interfaces 2019, 11, 44124–44132. [CrossRef]

483. Avila, V.; Yoon, B.; Ingraci Neto, R.R.; Silva, R.S.; Ghose, S.; Raj, R.; Jesus, L.M. Reactive flash sintering of the
complex oxide Li0.5La0.5TiO3 starting from an amorphous precursor powder. Scr. Mater. 2020, 176, 78–82.
[CrossRef]

484. Bi, J.; Mu, D.; Wu, B.; Fu, J.; Yang, H.; Mu, G.; Zhang, L.; Wu, F. A hybrid solid electrolyte
Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid
state lithium-ion batteries. J. Mater. Chem. A 2020, 8, 706–713. [CrossRef]

485. Jiang, Y.; Huang, Y.; Hu, Z.; Zhou, Y.; Zhu, J.; Zhu, X. Effects of B-site ion (Nb5+) substitution on the
microstructure and ionic conductivity of Li0.5La0.5TiO3 solid electrolytes. Ferroelectrics 2020, 554, 89–96.
[CrossRef]

486. Jiang, Z.; Wang, S.; Chen, X.; Yang, W.; Yao, X.; Hu, X.; Han, Q.; Wang, H. Tape-casting Li0.34La0.56TiO3 ceramic
electrolyte films permit high energy sensitivity of lithium-metal batteries. Adv. Mater. 2020, 32, 1902221.

487. Lakshmi, D.; Nalini, B.; Jayapandi, S.; Selvin, P.C. Augmented conductivity in Li3xLa2/3−xTiO3 nanoparticles:
All-solid-state Li-ion battery applications. J. Mater. Sci. Mater. Electron. 2020, 31, 1343–1354. [CrossRef]

488. Ling, M.; Jiang, Y.; Huang, Y.; Zhou, Y.; Zhu, X. Enhancement of ionic conductivity in Li0.5La0.5TiO3 with Ag
nanoparticles. J. Mater. Sci. 2020, 55, 3750–3759. [CrossRef]

489. Lu, D.L.; Zhao, R.R.; Wu, J.L.; Ma, J.M.; Huang, M.L.; Yao, Y.B.; Tao, T.; Liang, B.; Zhai, J.W.; Lu, S.G.
Investigations on the properties of Li3xLa2/3-xTiO3 based all-solid-state supercapacitor: Relationships
between the capacitance, ionic conductivity, and temperature. J. Eur. Ceram. Soc. 2020, 40, 2396–2403.
[CrossRef]

490. Sasano, S.; Ishikawa, R.; Kawahara, K.; Kimura, T.; Ikuhara, Y.H.; Shibata, N.; Ikuhara, Y. Grain boundary
Li-ion conductivity in (Li0.33La0.56)TiO3 polycrystal. Appl. Phys. Lett. 2020, 116, 043901. [CrossRef]

491. Wang, M.J.; Wolfenstine, J.B.; Sakamoto, J. Mixed electronic and ionic conduction properties of lithium
lanthanum titanate. Adv. Funct. Mater. 2020, 30, 1909140. [CrossRef]

492. Zhu, L.; Zhu, P.; Yao, S.; Shen, X.; Tu, F. High-performance solid PEO/PPC/LLTO-nanowires polymer
composite electrolyte for solid-state lithium battery. Int. J. Energy Res. 2019, 43, 4854–4866. [CrossRef]

493. Lai, Y.; Zhao, Y.; Cai, W.; Song, J.; Jia, Y.; Ding, B.; Yan, J. Constructing ionic gradient and lithiophilic
interphase for high-rate Li-metal anode. Small 2019, 15, 1905171. [CrossRef]

494. Xu, P.; Rheinheimer, W.; Shuvo, S.N.; Qi, Z.; Levit, O.; Wang, H.; Ein-Eli, Y.; Stanciu, L.A. Origin
of high interfacial resistances in solid-state batteries: Interdiffusion and amorphous film formation in
Li0.33La0.57TiO3/LiMn2O4 half cells. ChemElectroChem 2019, 6, 4576–4585. [CrossRef]

495. Li, B.; Su, Q.; Yu, L.; Wang, D.; Ding, S.; Zhang, M.; Du, G.; Xu, B. Li0.35La0.55TiO3 nanofibers
enhanced poly(vinylidene fluoride)-based composite polymer electrolytes for all-solid-state batteries. ACS
Appl. Mater. Interfaces 2019, 11, 42206–42213. [CrossRef] [PubMed]

496. Jin, Y.; McGinn, P.J. Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J. Power Sources
2011, 196, 8683–8687. [CrossRef]

http://dx.doi.org/10.1016/j.ssi.2015.06.001
http://dx.doi.org/10.1016/j.ceramint.2019.11.097
http://dx.doi.org/10.1039/C8NJ01113C
http://dx.doi.org/10.1016/j.ssi.2019.115060
http://dx.doi.org/10.1016/S0167-2738(01)00821-9
http://dx.doi.org/10.1021/acsami.9b16936
http://dx.doi.org/10.1016/j.matlet.2019.07.084
http://dx.doi.org/10.1021/acsami.9b13884
http://dx.doi.org/10.1016/j.scriptamat.2019.09.037
http://dx.doi.org/10.1039/C9TA08601C
http://dx.doi.org/10.1080/00150193.2019.1684768
http://dx.doi.org/10.1007/s10854-019-02648-4
http://dx.doi.org/10.1007/s10853-019-04180-6
http://dx.doi.org/10.1016/j.jeurceramsoc.2020.02.006
http://dx.doi.org/10.1063/1.5141396
http://dx.doi.org/10.1002/adfm.201909140
http://dx.doi.org/10.1002/er.4638
http://dx.doi.org/10.1002/smll.201905171
http://dx.doi.org/10.1002/celc.201901068
http://dx.doi.org/10.1021/acsami.9b14824
http://www.ncbi.nlm.nih.gov/pubmed/31625713
http://dx.doi.org/10.1016/j.jpowsour.2011.05.065


Nanomaterials 2020, 10, 1606 79 of 80

497. Barai, P.; Ngo, A.T.; Narayanan, B.; Higa, K.; Curtiss, L.A.; Srinivasan, V. The role of local inhomogeneities
on dendrite growth in LLZO-based solid electrolytes. J. Electrochem. Soc. 2020, 167, 100537. [CrossRef]

498. West, A.R.; Glasser, F.P. Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds.
J. Solid State Chem. 1972, 4, 20–28. [CrossRef]

499. Dubey, B.L.; West, A.R. Crystal chemistry of Li4XO4 phases: X = Si, Ge, Ti. J. Inorg. Nucl. Chem.
1973, 35, 3713–3717. [CrossRef]

500. Hong, H.Y.P. Crystal structure and ionic conductivity of Li14Zn(GeO4) 4 and other new Li+ superionic
conductors. Mater. Res. Bull. 1978, 13, 117–124. [CrossRef]

501. Ivanov-Shitz, A.K.; Kireev, V.V. Growth and ionic conductivity of Li3+xP1-xGexO4 (x = 0.34) single crystals.
Crystallogr. Rep. 2003, 48, 112–115. [CrossRef]

502. Deng, Y.; Eames, C.; Fleutot, B.; David, R.; Chotard, J.N.; Suard, E.; Masquelier, C.; Islam, M.S. Enhancing
the lithium ion conductivity in lithium superionic conductor (LISICON) solid electrolytes through a mixed
polyanion effect. ACS Appl. Mater. Interfaces 2017, 9, 7050–7058. [CrossRef]

503. Zhao, G.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R. Enhancing fast lithium ion conduction in
Li4GeO4-Li3PO4 solid electrolytes. ACS Appl. Energy Mater. 2019, 2, 6608–6615. [CrossRef]

504. Levasseur, A.; Kbala, M.; Hagenmuller, P.; Couturier, G.; Danto, Y. Elaboration and characterization of
lithium conducting thin film glasses. Solid State Ion. 1983, 9, 1439–1444. [CrossRef]

505. Kanehori, K.; Matsumoto, K.; Miyauchi, K.; Kudo, T. Thin film solid electrolyte and its application to
secondary lithium cell. Solid State Ion. 1983, 9, 1445–1448. [CrossRef]

506. Levasseur, A.; Kbala, M.; Rabardel, L.; Hagenmuller, P. Elaboration and Characterization of Lithium Conducting
Thin Film Glasses and Use in Microbatteries; Intern. Soc. of Electrochemistry: Graz, Austria, 1984; pp. 17–19.

507. Samaras, I.; Guesdon, J.P.; Tsakiri, M.; Julien, C.; Balkanski, M. Behaviour of indium selenide thin films
intercalated with lithium. Solid State Ion. 1988, 28, 1506–1509. [CrossRef]

508. Jourdaine, L.; Souquet, J.L.; Delord, V.; Ribes, M. Lithium solid state glass-based microgenerators.
Solid State Ion. 1988, 28, 1490–1494. [CrossRef]

509. Levasseur, A.; Menetrier, M.; Dormoy, R.; Meunier, G. Solid state microbatteries. Mater. Sci. Eng. B
1989, 3, 5–12. [CrossRef]

510. Julien, C.; Massot, M.; Dzwonkowski, P.; Emery, J.Y.; Balkanski, M. Infrared spectroscopy characterization of
thin films used in solid state micro-batteries. Infrared Phys. 1989, 29, 769–774. [CrossRef]

511. Julien, C.; Samaras, I.; Tsakiri, M.; Dzwonkowski, P.; Balkanski, M. Lithium insertion in InSe films and
applications in microbatteries. Mater. Sci. Eng. B 1989, 3, 25–29. [CrossRef]

512. Julien, C. Technological applications of solid state ionics. Mater. Sci. Eng. B 1990, 6, 9–28. [CrossRef]
513. Julien, C.; Balkanski, M. Thin-film growth and structure for solid-state batteries. Appl. Surf. Sci. 1991, 48, 1–11.

[CrossRef]
514. Meunier, G.; Dormoy, R.; Levasseur, A. New amorphous titanium oxysulfides obtained in the form of thin

films. Thin Solid Film. 1991, 205, 213–217. [CrossRef]
515. Wachs, A.L.; Bates, J.B.; Dudney, N.J.; Luck, C.F. Plasma diagnostic studies of the influence of process

variables upon the atomic and molecular species ejected from (1-x)Li4SiO4·xLi3PO4 targets during radio
frequency magnetron sputtering. J. Vac. Sci. Technol. A Vac. Surf. Film. 1991, 9, 492–495. [CrossRef]

516. Shokoohi, F.K.; Tarascon, J.M.; Wilkens, B.J. Fabrication of thin-film LiMn2O4 cathodes for rechargeable
microbatteries. Appl. Phys. Lett. 1991, 59, 1260–1262. [CrossRef]

517. Amatucci, G.G.; Safari, A.; Shokoohi, F.K.; Wilkens, B.J. Lithium scandium phosphate-based electrolytes for
solid state lithium rechargeable microbatteries. Solid State Ion. 1993, 60, 357–365. [CrossRef]

518. Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Zuhr, R.A.; Choudhury, A.; Luck, C.F.; Robertson, J.D. Fabrication
and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power
Sources 1993, 43, 103–110. [CrossRef]

519. Jones, S.D.; Akridge, J.R. Development and performance of a rechargeable thin-film solid-state microbattery.
J. Power Sources 1995, 54, 63–67. [CrossRef]

520. Bates, J.B.; Dudney, N.J.; Neudecker, B.; Ueda, A.; Evans, C.D. Thin-film lithium and lithium-ion batteries.
Solid State Ion. 2000, 135, 33–45. [CrossRef]

521. Fenech, M.; Sharma, N. Pulsed laser deposition-based thin film microbatteries. Chem. Asian J.
2020, 15, 1829–1847. [CrossRef] [PubMed]

http://dx.doi.org/10.1149/1945-7111/ab9b08
http://dx.doi.org/10.1016/0022-4596(72)90127-2
http://dx.doi.org/10.1016/0022-1902(73)80060-0
http://dx.doi.org/10.1016/0025-5408(78)90075-2
http://dx.doi.org/10.1134/1.1541752
http://dx.doi.org/10.1021/acsami.6b14402
http://dx.doi.org/10.1021/acsaem.9b01152
http://dx.doi.org/10.1016/0167-2738(83)90191-1
http://dx.doi.org/10.1016/0167-2738(83)90192-3
http://dx.doi.org/10.1016/0167-2738(88)90412-2
http://dx.doi.org/10.1016/0167-2738(88)90410-9
http://dx.doi.org/10.1016/0921-5107(89)90171-2
http://dx.doi.org/10.1016/0020-0891(89)90123-1
http://dx.doi.org/10.1016/0921-5107(89)90174-8
http://dx.doi.org/10.1016/0921-5107(90)90109-O
http://dx.doi.org/10.1016/0169-4332(91)90300-9
http://dx.doi.org/10.1016/0040-6090(91)90302-E
http://dx.doi.org/10.1116/1.577394
http://dx.doi.org/10.1063/1.105470
http://dx.doi.org/10.1016/0167-2738(93)90015-U
http://dx.doi.org/10.1016/0378-7753(93)80106-Y
http://dx.doi.org/10.1016/0378-7753(94)02041-Z
http://dx.doi.org/10.1016/S0167-2738(00)00327-1
http://dx.doi.org/10.1002/asia.202000384
http://www.ncbi.nlm.nih.gov/pubmed/32338830


Nanomaterials 2020, 10, 1606 80 of 80

522. Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Zuhr, R.A.; Choudhury, A.; Luck, C.F.; Robertson, J.D. Electrical
properties of amorphous lithium electrolyte thin films. Solid State Ion. 1992, 53, 647–654. [CrossRef]

523. Yu, X.; Bates, J.B.; Jellison, G.E., Jr.; Hart, F.X. A stable thin-film lithium electrolyte: Lithium phosphorus
oxynitride. J. Electrochem. Soc. 1997, 144, 524–532. [CrossRef]

524. Hamon, Y.; Douard, A.; Sabary, F.; Marcel, C.; Vinatier, P.; Pecquenard, B.; Levasseur, A. Influence of sputtering
conditions on ionic conductivity of LiPON thin films. Solid State Ion. 2006, 177, 257–261. [CrossRef]

525. Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure
of LIPON thin films to better understand the role of nitrogen on their performance. Solid State Ion.
2011, 186, 29–36. [CrossRef]

526. Fleutot, B.; Pecquenard, B.; Martinez, H.; Levasseur, A. Thorough study of the local structure of LIPON thin
films to better understand the influence of a solder-reflow type thermal treatment on their performances.
Solid State Ion. 2012, 206, 72–77. [CrossRef]

527. Fleutot, B.; Pecquenard, B.; Martinez, H.; Levasseur, A. Lithium borophosphate thin film electrolyte as an
alternative to LiPON for solder-reflow processed lithium-ion microbatteries. Solid State Ion. 2013, 249, 49–55.
[CrossRef]

528. Joo, K.H.; Vinatier, P.; Pecquenard, B.; Levasseur, A.; Sohn, H.J. Thin film lithium ion conducting LiBSO solid
electrolyte. Solid State Ion. 2003, 160, 51–59. [CrossRef]

529. Schwenzel, J.; Thangadurai, V.; Weppner, W. Investigation of thin film all-solid-state lithium ion battery
materials. Ionics 2003, 9, 348–356. [CrossRef]

530. Famprikis, T.; Galipaud, J.; Clemens, O.; Pecquenard, B.; Le Cras, F. Composition dependence of ionic
conductivity in LiSiPO(N) thin-film electrolytes for solid-state batteries. ACS Appl. Energy Mater.
2019, 2, 4782–4791. [CrossRef]

531. Clancy, T.M.; Rohan, J.F. Simulations of 3D nanoscale architectures and electrolyte characteristics for Li-ion
microbatteries. J. Energy Storage 2019, 23, 1–8. [CrossRef]

532. Hellstrom, E.E.; Van Gool, W. Li ion conduction in Li2ZrO3, Li4ZrO4, and LiScO2. Solid State Ion. 1981, 2, 59–64.
[CrossRef]

533. Rao, R.P.; Reddy, M.V.; Adams, S.; Chowdari, B.V.R. Preparation and mobile ion transport studies of Ta and
Nb doped Li6Zr2O7 Li-fast ion conductors. Mater. Sci. Eng. B 2012, 177, 100–105. [CrossRef]

534. Liao, Y.; Singh, P.; Park, K.S.; Li, W.; Goodenough, J.B. Li6Zr2O7 interstitial lithium-ion solid electrolyte.
Electrochim. Acta 2013, 102, 446–450. [CrossRef]

535. Liu, Y.; Hua, X. Preparation of Li6Zr2O7 nanofibers with high Li-ion conductivity by electrospinning. Int. J.
Appl. Ceram. Technol. 2016, 13, 579–583. [CrossRef]

536. Zhang, Y.; Chen, K.; Shen, Y.; Lin, Y.; Nan, C.W. Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid
electrolyte by Al doping. Ceram. Int. 2017, 43, S598–S602. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0167-2738(92)90442-R
http://dx.doi.org/10.1149/1.1837443
http://dx.doi.org/10.1016/j.ssi.2005.10.021
http://dx.doi.org/10.1016/j.ssi.2011.01.006
http://dx.doi.org/10.1016/j.ssi.2011.11.009
http://dx.doi.org/10.1016/j.ssi.2013.07.009
http://dx.doi.org/10.1016/S0167-2738(03)00163-2
http://dx.doi.org/10.1007/BF02376585
http://dx.doi.org/10.1021/acsaem.9b00415
http://dx.doi.org/10.1016/j.est.2019.02.002
http://dx.doi.org/10.1016/0167-2738(81)90021-7
http://dx.doi.org/10.1016/j.mseb.2011.09.015
http://dx.doi.org/10.1016/j.electacta.2013.04.029
http://dx.doi.org/10.1111/ijac.12529
http://dx.doi.org/10.1016/j.ceramint.2017.05.198
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Ionic Conduction in the Solid State 
	Ionic Conduction 
	Ionic Transport Models 
	Impedance Spectroscopy 

	Sulfide Solid Electrolytes 
	Argyrodite Electrolytes 
	Lithium Phosphorus Sulfide Electrolyte 
	Li7P3S11 
	Li7P2S8I 
	Li11-xM2-xP1+xS12 (M = Ge, Sn, Si) (LGPS)-Type Structures 

	Oxide Solid Electrolytes 
	Garnet-Type Electrolytes 
	Li-Analogues of NASICON 
	Perovskite-Type Structure Electrolytes 
	Li Superionic Conductor-Type Structure Oxide Electrolytes 
	Amorphous Thin Film Electrolytes 
	Other Electrolytes 

	Conclusions 
	References

