

Article

Assessment of Cytokine-Induced Neutrophil Chemoattractants as Biomarkers for Prediction of Pulmonary Toxicity of Nanomaterials

Taisuke Tomonaga ^{1,*}, Hiroto Izumi ¹, Takako Oyabu ¹, Byeong-Woo Lee ¹, Masaru Kubo ², Manabu Shimada ², Shingo Noguchi ³, Chinatsu Nishida ³, Kazuhiro Yatera ³ and Yasuo Morimoto ¹

- ¹ Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; h-izumi@med.uoeh-u.ac.jp (H.I.); toyabu@med.uoeh-u.ac.jp (T.O.); leebw401@med.uoeh-u.ac.jp (B.-W.L.); yasuom@med.uoeh-u.ac.jp (Y.M.)
- ² Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, 4-1 Kagamiyama 1-chome, Higashi-Hiroshima-shi, Hiroshima 739-8527, Japan; mkubo@hiroshima-u.ac.jp (M.K.); smd@hiroshima-u.ac.jp (M.S.)
- ³ Department of Respiratory Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan; sn0920@med.uoeh-u.ac.jp (S.N.); cnishi@med.uoeh-u.ac.jp (C.N.); yatera@med.uoeh-u.ac.jp (K.Y.)
- * Correspondence: t-tomonaga@med.uoeh-u.ac.jp; Tel.: +81-93-691-7466

Figure S1. Relationship between CINCs and inflammation scores: (A) CINC-1 in intratracheal instillation, (B) CINC-2 in intratracheal instillation, (C) CINC-1 in inhalation exposure and (D) CINC-2 in inhalation exposure versus inflammation scores in the histopathological findings of the lung at each observation time. CINC-1 and CINC-2 had positive correlation with inflammation scores of histopathological findings after both of intratracheal instillation and inhalation exposure. Values of q are Spearman's rank correlation coefficient for all the data.

Samples	Toxicity	Exposure route	Characterization	Animal (Rat)	Negative control	Dose/ Concentration	Lung inflammation	Reference
NG	High	IT/IH	Size 19 nm, BET 57 m ² /g	Male	Distilled water/	0.2 mg/rat, 1.0 mg /rat	+/±	[19]
NIO			Secondary particle diameter (DLS) 59.7 nm	Fischer344	Clean air	$0.32 \pm 0.07 \text{ mg/m}^3$, $1.65 \pm 0.20 \text{ mg/m}^3$		
CaOr	High	IT/IH	Size 7.8 nm, BET 101 m ² /g	Male	Distilled water/	0.2 mg/rat, 1.0 mg/rat	+/+	[21]
CeO ₂			Secondary particle diameter (DLS) 10.0 nm	Fischer344	Clean air	$2.09 \pm 0.29 \text{ mg/m}^3$, $10.2 \pm 1.38 \text{ mg/m}^3$		
$T: O_{2}(D(0))$	Low	IT	Size 14 nm, BET 104 m ² /g	Male	Distilled water	0.2	±	[20]
1102(190)			Secondary particle diameter (DLS) 22.7 nm	Wistar	Distilled water	0.2 mg/rat, 1.0 mg/rat		
TiO ₂ (Dutila)	Low	IT/IH	Size 12 nm × 55 nm, BET 111 m ² /g	Male	Distilled water/	0.2 mg/rat, 1.0 mg/rat	±/	[19]
11O ₂ (Kutile)			Secondary particle diameter (DLS) 44.9 nm	Fischer344	Clean air	0.50 ± 0.26 mg/m ³ , 1.84 ± 0.74 mg/m ³		
7.0	Low	IT/IH	Size 35 nm, BET 31 m²/g	Male	Distilled water/	0.2 mg/rat, 1.0 mg/rat	. /.	[22]
ZIIO			Secondary particle diameter(DLS)33 nm	Fischer344	Clean air	ean air $2.11 \pm 0.45 \text{ mg/m}^3$, $10.4 \pm 1.39 \text{ mg/m}^3$		لححا
SiO	High	IT	Drimary particle size 1.6 um		Distilled water	10 mg/rat	+	[22]
5102			Frinary particle size 1.6 µm,	Fischer344		1.0 mg/rat		[23]
			IT: Intrati	racheal instilla	tion, IH: Inhalation e	exposure.		
Lung inflammation +: persistent inflammation +: transient inflammation $-$: no inflammation								

Table S1. Characterization of inhaled chemicals including NMs.

Table S2. Summaries of the neutrophil counts in BALF after intratracheal instillation and inhalation exposure of NMs.

Neutrophil counts in BALF (×1000 cells/mL±SD)									
	Dose/Concentration		3 days	1 week	1 month	3 months	6 months		
Intratracheal instilla	ation								
Negative control			2.88 ± 1.58	0.22 ± 0.49	0.20 ± 0.45	0.08 ± 0.17	0.69 ± 1.53		
NiO	Low	0.2 mg/rat	$21.1 \pm 8.74^*$	$78.93 \pm 18.40^{**}$	52.38 ± 12.34**	13.03 ± 12.13	1.27 ± 1.97		
NiO	High	1.0 mg/rat	$153.5 \pm 44.6^{**}$	$158.51 \pm 56.43^{**}$	$161.69 \pm 67.27^*$	$279.80 \pm 125.57^*$	$59.80 \pm 15.28^{**}$		
Negative control			0.22 ± 0.25	0.20 ± 0.22	0.26 ± 0.47	0.25 ± 0.35	1.13 ± 1.19		
TiO ₂ (P90)	Low	0.2 mg/rat	0.80 ± 0.55	0.31 ± 0.21	0.65 ± 0.46	0.53 ± 0.50	2.36 ± 3.82		
TiO ₂ (P90)	High	1.0 mg/rat	$54.50 \pm 31.86^*$	20.35 ± 13.61	2.89 ± 1.97	0.32 ± 0.35	0.49 ± 0.42		
Negative control			1.73 ± 10.6	0.80 ± 0.73	4.74 ± 2.08	0.57 ± 0.80	0.28 ± 0.39		
TiO ₂ (Rutile)	Low	0.2mg/rat	11.95 ± 4.94	1.61 ± 1.29	1.81 ± 1.13	11.07 ± 22.57	1.62 ± 2.88		
TiO ₂ (Rutile)	High	1.0mg/rat	$174.7 \pm 121.8^*$	$110.33 \pm 39.14^{**}$	5.27 ± 0.98	105.21 ± 229.82	0.35 ± 0.51		
Negative control	_	-	6.50 ± 5.17	1.76 ± 0.96	0.90 ± 1.32	0.45 ± 0.49	1.37 ± 2.26		

CeO ₂	Low	0.2mg/rat	$111.66 \pm 48.09^*$	$119.52 \pm 79.79^*$	$27.17 \pm 15.26^*$	$10.93 \pm 3.25^{**}$	1.91 ± 1.39
CeO ₂	High	1.0mg/rat	$170.52 \pm 35.04^{**}$	234.21 ± 55.62**	74.65 ± 6.72**	56.73 ± 15.54**	$11.07 \pm 1.88^{**}$
Negative control			2.35 ± 0.41	0.47 ± 0.36	1.08 ± 0.32	1.12 ± 0.81	3.55 ± 1.92
ZnO	Low	0.2mg/rat	$191.38 \pm 42.19^{**}$	$7.032 \pm 1.61^{**}$	1.02 ± 0.94	3.21 ± 2.23	3.10 ± 1.32
ZnO	High	1.0mg/rat	395.82 ± 78.47**	11.44 ± 8.65	0.98 ± 1.28	1.73 ± 1.66	4.20 ± 3.36
Inhalation exposure							
Negative control			1.09 ± 2.43		14.23 ± 22.90	0.35 ± 0.77	
NiO	Low	$0.32 \pm 0.07 \text{ mg/m}^3$	1.39 ± 3.12		3.67 ± 2.84	1.30 ± 1.44	
NiO	High	1.65 ± 0.20 mg/m ³	84.10 ± 54.54		21.97 ± 12.84	1.29 ± 1.43	
Negative control			0 ± 0		0.09 ± 0.19	0 ± 0	
TiO ₂ (Rutile)	Low	$0.50 \pm 0.26 \text{ mg/m}^3$	0.15 ± 0.20		0 ± 0	0.48 ± 1.07	
TiO ₂ (Rutile)	High	1.84 ± 0.74 mg/m ³	0.12 ± 0.27		0.18 ± 0.19	0 ± 0	
Negative control			0.55 ± 0.54		1.65 ± 0.64	1.94 ± 1.10	
CeO ₂	Low	2.09 ± 0.29 mg/m ³	$38.22 \pm 6.21^{**}$		$19.70 \pm 7.38^*$	$11.13 \pm 2.77^{**}$	
CeO ₂	High	10.2 ± 1.38 mg/m ³	$96.74 \pm 40.54^*$		114.92 ± 72.26	$49.18 \pm 16.35^{**}$	
Negative control			2.24 ± 1.95		0.56 ± 0.62	1.77 ± 0.66	
ZnO	Low	2.11 ± 0.45 mg/m ³	1.91 ± 0.63		0 ± 0	2.50 ± 0.49	
ZnO	High	10.4 ± 1.39 mg/m ³	$126.06 \pm 45.21^{**}$		0.99 ± 2.17	2.24 ± 0.81	
Significant differences compared with each control ($p<0.05$, $p<0.01$).							

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).