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Abstract: Manganese dioxide (MnO2) nanosheets have shown exciting potential in nanomedicine
because of their ultrathin thickness, large surface area, high near-infrared (NIR) absorbance and good
biocompatibility. However, the effect of MnO2 nanosheets on bacteria is still unclear. In this study,
MnO2 nanosheets were shown for the first time to possess highly efficient antibacterial activity by using
Salmonella as a model pathogen. The growth curve and surface plate assay uncovered that 125 µg/mL
MnO2 nanosheets could kill 99.2% of Salmonella, which was further verified by fluorescence-based
live/dead staining measurement. Mechanism analysis indicated that MnO2 nanosheet treatment
could dramatically induce reactive oxygen species production, increase ATPase activity and cause
the leakage of electrolytes and protein contents, leading to bacterial death. These results uncover
the previously undefined role of MnO2 nanosheets and provide novel strategies for developing
antimicrobial agents.
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1. Introduction

Bacterial infections have become one of the world’s largest public health problems; hundreds
of thousands of people are reported to suffer from bacterial infections every year [1,2]. To solve this
problem, antibacterial drugs are widely used and the abuse of traditional antibiotics leads to antibiotic
resistance, making such infections extremely difficult to treat. Currently, nanomaterials have attracted
increasing attention as new antibacterial agents owing to their high specific surface area and excellent
physicochemical properties [3–7]. Up to now, nanomaterials that have been reported to possess a
certain degree of antibacterial activity are mainly divided into two categories—(i) two dimensional (2D)
materials (GO, rGO, MoS2, WS2) [8,9] as well as (ii) metal nanoparticles and metal oxide nanoparticles
(AgNPs, ZnO, AuNRs, TiO2) [10–12]. Among them, 2D materials with a nanoscale thickness are
considered as the most promising antibacterial materials.

Ultrathin MnO2 nanosheets, an attractive novel type of 2D material, have attracted widespread
attention in energy storage, biological analysis, cell imaging and drug delivery thanks to their large
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surface area, high near-infrared (NIR) absorbance and good biocompatibility [13–20]. Two-dimensional
MnO2 nanosheets exhibit unique photothermal conversion ability due to their inherently thinness,
making them excellent photothermal conversion materials for highly effective photothermal therapy
(PTT) anti-tumor [21]. MnO2 nanosheets possess a strong and broad optical absorption spectrum,
which provides an high-efficiency wide-spectrum fluorescence quencher for the design of fluorescence
opening probes to monitor transmission potency [22]. Additionally, MnO2 nanosheets can be reduced
to Mn2+ by intracellular glutathione, providing activated magnetic resonance and fluorescence signals
to monitor delivery efficiency [23,24]. More importantly, manganese is a crucial element in human
body and its metabolism does not trigger a serious immune response. Despite these advances in
nanomedical applications of MnO2-based materials, little is known about the potential impact of MnO2

nanosheets on bacteria so far.
The objectives of the current study were to investigate for the first time the anti-Salmonella activity

of MnO2 nanosheets in vitro and explored the interaction mechanism of MnO2 nanosheets with it.
Salmonella, a major cause of food-borne disease outbreaks, remains a serious problem in the poultry
industry and the public health sector and it is important to develop new methods and new drug
formulations to combat Salmonella. We synthesized MnO2 nanosheets by ultrasonic treatment at
room temperature and studied their antibacterial ability by using Salmonella as a model pathogen.
Our results suggest that MnO2 nanosheets have highly effective antibacterial activity and may be used
as a substitute or supplement for antibiotics to control foodborne pathogens.

2. Materials and Methods

2.1. Reagents and Materials

Manganese chloride tetrahydrate (MnCl2·4H2O) and tetramethylammonium hydroxide were
purchased from Shanghai Reagent Chemical Co. (Shanghai, China). Hydrogen peroxide (H2O2,
30 wt%) and other chemicals of analytical grade were obtained from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Dulbecco’s modified Eagle’s medium (DMEM), trypsin, fetal bovine
serum (FBS), MTT and penicillin streptomycin were obtained from GIBCO Invitrogen Corp (Waltham,
MA, USA); 2′,7′-dichlorofluorescin diacetate (DCFH-DA) from Sigma-Aldrich (St. Louis, MO, USA);
propidium iodide (PI), 4′-6-diamidino-2-phenylindole (DAPI) and Coomassie brilliant blue G-250 kit
products from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China).

2.2. Preparation of MnO2 Nanosheets

The manganese dioxide nanosheet was synthesized as previously reported [23]. Briefly, 20 mL of
a mixed aqueous solution containing 0.6 M tetramethylammonium hydroxide and 3wt% H2O2 was
injected to 10 mL 0.3 M MnCl2 solution within 15 s under vigorous agitation. When mixed, the solution
immediately turned dark brown, indicating that Mn2+ was oxidized to Mn4+. The obtained dark brown
suspension was stirred vigorously overnight at room temperature and then the bulk manganese dioxide
was centrifuged at 2000 rpm for 10 min, washed with deionized water and methanol, dried at 60 ◦C
and placed at room temperature for subsequent use. To synthesize the MnO2 nanosheet, 20 mg bulk
manganese dioxide was dispersed in 10 mL of deionized water, sonicated for 10 h, followed by
centrifugation at 2000 rpm for 10 min, the supernatant was collected for later use. Finally, inductively
coupled plasma mass spectrometry (ICP-MS 7500cx, Agilent, Santa Clara, CA, USA) was used to
determine the concentration of prepared MnO2 nanosheets.

2.3. Antibacterial Assays

The plate count method and growth curves were used to test the activity of MnO2 nanosheets
against Salmonella. Briefly, 10 µL of Salmonella was injected to 10 mL lysogeny broth (LB) liquid
medium and then cultured in a 37 ◦C incubator until 0.6–0.8 optical density (OD). After centrifugation
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at 6000 rpm for 5 min, the bacterial cells were harvested and washed with phosphate buffer saline
(PBS), followed by discarding the supernatant and resuspending the cells in PBS buffer.

Next, 100 µL (106 CFU/mL bacteria) was incubated at 4 ◦C for 1 h with MnO2 nanosheets at
different concentrations (500, 250, 125, 62.5, 31.3 µg/mL). Each group was divided into two tubes,
one test tube was used for plate test and the other was used for growth curves test. After dilution and
uniformly plating in LB solid medium, the treated bacteria were cultured at 37 ◦C for 12 h. Meanwhile,
the bacteria exposed with PBS were used as control. The antibacterial activity of MnO2 nanosheets was
evaluated by the survival rate or the colony-forming units (CFUs). The survival rate was calculated by
the equation—survival rate (%) = CFU(experimental group)/CFU(control group) × 100% [11].

The other tube mixtures were transferred into 10 mL LB broth. The Salmonella samples were
then incubated at 37 ◦C in an incubator with constant agitation at 200 rpm. Equal of samples were
taken every 1 h and the OD value (OD600) at 600 nm wavelength was measured with an ultraviolet
spectrophotometer to plot the growth curve of Salmonella.

2.4. Live/Dead Staining Assay

The reliability of the above test was confirmed by fluorescence microscopic analysis of the cell
survival rate after exposure to MnO2 nanosheets using a Live/Dead bacterial viability kit. We stained the
bacterial suspension with 40,6-diamidino-2-phenylindole (DAPI) and PI fluorescent dye, respectively,
because DAPI can rapidly penetrate the unruptured membrane of living cells and bind to DNA in
the nucleus, whereas PI can solely penetrate the ruptured membrane and bind to double stranded
DNA. In the logarithmic phase, the Salmonella cells were cultured in LB medium in the presence or
absence of 125 µg/mL MnO2 nanosheets. After collection by centrifugation, the cells were stained
first with propidium iodide (PI, 10 µg/mL) for 10 min and then with 4′-6-diamidino-2-phenylindole
(DAPI, 5.0 µg/mL) for 5 min in the dark. After washing with PBS, the cells were observed with a
fluorescence microscope.

2.5. Morphological Analysis of Bacterial Cells

The morphologies of Salmonella cells untreated and treated with MnO2 nanosheets were
observed by scanning electron microscope (SEM) and transmission electron microscopy (TEM).
Briefly, after exposure to MnO2 nanosheets for 2 h, the Salmonella cells (107 CFU/mL) were centrifuged
(6000 rpm, 5 min), washed with PBS and then fixed with 2.5% glutaraldehyde at room temperature for
4 h. Next, the cells were washed with PBS buffer, followed by successive dehydration for 15 min with
ethanol at different concentrations (30, 50, 70, 90 and 100%) and then freeze-drying. Finally, the samples
were characterized separately by SEM and TEM.

2.6. Leakage of Intracellular Components

The integrity of the bacterial cell membrane can be reflected by the leakage of intracellular
compounds. The extracellular protein concentration of the bacterial suspension was determined by
using the Coomassie Brilliant Blue G-250 kit (Beijing Solarbio Science & Technology Co., Ltd. Beijing,
China). Briefly, Salmonella cells (107 PFU/mL) in logarithmic phase were unexposed or exposed with
125 µg/mL MnO2 nanosheets for 2 h at 4 ◦C, followed by centrifugation at 10,000 r/min for 5 min to
collect the supernatant. Next, the treated bacterial solution (50 µL) was supplemented with 200 µL of
the protein working solution in each well of the 96-well plate and then cultured at 37 ◦C for 5 min.
Finally, the protein leakage was evaluated by measuring the absorbance at 562 nm using an Enzyme
Linked Immunosorbent Assay (ELISA) microplate reader (Waltham, MA, USA).

2.7. Measurement of Electrolyte Leakage

Electrolyte leakage assay was carried out as reported by Steel et al. [25]. Briefly, Salmonella cells
in logarithmic phase were unexposed or exposed with MnO2 nanosheets at different concentrations



Nanomaterials 2020, 10, 1545 4 of 14

for 2 h at 4 ◦C, followed by centrifugation at 6000 r/min for 5 min to collect the supernatant. Finally,
the electrical conductivity of the suspension was measured using a conductivity meter.

2.8. Reactive Oxygen Species (ROS) Assay

The intracellular ROS level was investigated by fluorescence imaging. Briefly, Salmonella cells
in logarithmic phase were unexposed or exposed with 125 µg/mL MnO2 nanosheets for 2 h at 4 ◦C,
followed by rinsing with PBS and resuspending the cells in PBS solution. After adding one hundred
microliter of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA, 10 µM), the cell suspension was
cultured for another 1 h in darkness, followed by washing the excess dye with PBS and observing the
samples with a fluorescent microscope.

2.9. Analysis of Bacterial Total ATPase Activity

After exposure to MnO2 nanosheets and three washes in PBS, the Salmonella cells were resuspended
in PBS buffer. The pure Salmonella not treated by the MnO2 nanosheets were used as blank control
group. Next, the bacterial suspension was placed in constant cell disruption systems for bacterial
fragmentation and then treated according to the instructions of the ATPase Kit (ATPase kit for cells;
Jiancheng Biotechnology Co., Nanjing, China). Finally, the activity of ATPase was calculated by
measuring the absorption value at 636 nm.

2.10. Cytotoxicity Assay

The cytotoxicity of the MnO2 nanosheets was evaluated via 3-[4,5-dimethylthiazol-2-thiazolyl]-
2,5-diphenyl tetrazolium bromide (MTT) assay [26]. Briefly, at 90–100% confluence, Vero cells were
treated with various concentrations of MnO2 nanosheets (500, 250, 125, 62.5, 31.3 µg/mL) for 12 and
24 h, followed by supplementation with 20 µL MTT reagent (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2-Htetrazolium bromide) in each well and incubation for another 4 h. After removing the supernatant,
the formazan crystals were dispersed in 150 µL/well dimethysulfoxide. Vero cells treated with the
Dulbecco’s modified Eagle’s medium (DMEM) (2% foetal bovine serum (FBS)) were used as control.
Finally, the absorbance was determined at 570 nm with an Enzyme Linked Immunosorbent Assay
(ELISA) microplate reader and the cell survival rate was calculated.

2.11. Statistical Analysis

The experimental data were analyzed using an independent t-test or one-way ANOVA test.
Data are shown as the mean ± SE. The Student’s t test was used to calculate the statistical significance
between the control group and the experimental group. * and ** indicate values at p < 0.05 and
p < 0.01, respectively.

3. Results and Discussion

3.1. Characterization of MnO2 Nanosheets

MnO2 nanosheets were fabricated via ultrasonicating bulk MnO2 as previously reported [23].
The surface morphology and optical properties of the MnO2 nanosheets were characterized via
transmission electron microscopy (TEM), UV-vis adsorption spectrum and X-ray diffraction (XRD).
The obtained MnO2 nanosheets had a broad adsorption in the range of 250–700 nm, with the strongest
absorption peak at 364 nm, corresponding to the d-d band transition between the low energy (3d t2g)
and high energy (3d eg) of manganese ions, which is caused by the ligand field of MnO6 octahedron in
MnO2 lattices [27] (Figure 1B). In the TEM image, the typical 2D MnO2 nanosheets were shown to be
successfully prepared (Figure 1A). In the XRD pattern (Figure 1D), there are two strong peaks at 36.7◦

and 65.7◦ 2θ [28], corresponding to analytical crystal diffraction planes of 100 and 110, indicating that
the MnO2 was two-dimensional with six sides. Other diffraction peaks (001, 002, 003) reflected the



Nanomaterials 2020, 10, 1545 5 of 14

preferred orientation of the crystal, further confirming that the manganese dioxide prepared has a
polycrystalline sheet structure.
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Figure 1. (A) Transmission electron microscopy (TEM) image, (B) UV-vis spectrum, (C) Fourier transform
infrared (FTIR) spectra and (D) X-ray diffraction (XRD) patterns of MnO2 nanosheets.

The characteristics of the obtained MnO2 nanosheets were further investigated by analyzing their
surface functional groups and valence status with Fourier transform infrared (FTIR) spectroscopy and
X-ray photoelectron spectroscopy (XPS). In Figure 1C, the characteristic peak at 506 cm−1 represented
the symmetric stretching vibration Mn–O bond [27]. The band at 3388 cm−1 of MnO2 nanosheets was
ascribed to the physically absorbed H2O and the stretching vibrations of O–H (N–H). The high-intensity
peak at 1624 cm−1 was ascribed to the stretching vibration of C=O and the peaks at 1481, 1406, 948 and
761 cm−1 were caused by the bending vibration of C–H. The FTIR results suggested the presence of a
large number of hydrophilic groups on the surface of MnO2 nanosheets.

The full range XPS analysis of the MnO2 nanosheets displayed five evident peaks at 642.1,
521.1, 402.1, 287.1 and 198.1 eV, corresponding to Mn 2p, O 1s, N 1s, C 1s and Cl 2p, respectively
(Figure 2A) [29,30]. The Mn 2p peaks at 653.7 and 642.3 eV were assigned to Mn2p1/2 and Mn2p3/2
(Figure 2B) [31]. The C 1s peak at 286.4 and 284.7 eV might indicate that carbon is mostly in the form of
C–N–C and C–C (Figure 2D). The XPS spectrum of N 1s confirmed the presence of N-H (402.6 eV)
bonds (Figure 2C). The XPS results were consistent with the FTIR results.
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Figure 2. X-ray photoelectron spectroscopy (XPS) spectra of MnO2 nanosheets—(A) survey spectrum,
(B) Mn 2p spectrum, (C) N 1s spectrum and (D) C 1s spectrum.

3.2. Antibacterial Activity of MnO2 Nanosheets

The antibacterial activity of the MnO2 nanosheets was quantitatively explored by analyzing
the growth curves and survival rates of bacteria treated with MnO2 nanosheets using the plate
count method and Salmonella as a model microorganism. In Figure 3B, the agar plate exposed to
different concentrations of MnO2 nanosheets (31.3–500 µg/mL) showed only a few or no colonies in a
dose-dependent manner versus the control (A, 0 µg/mL). Figure 3A shows the corresponding statistics
(survival rate) for the antibacterial effect of each treatment. The death rate was >1% for the treatment
of 62.5 µg/mL MnO2 nanosheets and reached over 99.9% for the treatment of 250 µg/mL. Therefore,
the number of colonies on the plate and the survival rates of bacteria proved that MnO2 nanosheets do
have excellent antibacterial activity against Salmonella replication.
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Figure 3. In vitro antibacterial activity test. (A) Cell survival rate of Salmonella cells treated or untreated
with MnO2 nanosheets (31.5–500 µg/mL). (B) Photographs of the agar plates of Salmonella treated or
untreated with MnO2 nanosheets, with a–f corresponding to the concentrations of MnO2 nanosheets in
Figure 3A (a–f: 0, 31.3, 62.5, 125, 250, 500 µg/mL). ** p < 0.01.

Additionally, to verify whether MnO2 nanosheets had broad-spectrum antibacterial activity,
we also studied its inhibitory effect on Staphylococcus aureus (Gram-positive) by the surface plate assay.
The results were shown in Figure S1, a significant dose-dependent inhibitory effect was observed after
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exposure of different concentrations of MnO2 nanosheets. When the concentration of MnO2 nanosheet
was 125 µg/mL, the survival rate of Staphylococcus aureus was only 6.26%. The high concentration
of 250 µg/mL MnO2 nanosheets have a higher inhibitory effect on Staphylococcus aureus and the
inhibition rate was up to 99.95%. These results indicated that MnO2 nanosheets also have antibacterial
activity against Gram-positive bacteria.

The bacterial inhibitory effect of MnO2 nanosheets was further studied by measuring the
growth kinetics of Salmonella cells in liquid medium. According to the cell suspension turbidity,
the bacterial growth was tracked by testing the optical density (OD) at 600 nm. Apparently, increased
concentrations of MnO2 nanosheets resulted in decreased bacterial survival versus the control (0µg/mL),
indicating a concentration-dependent suppression of the MnO2 nanosheets on the growth of Salmonella
cells (Figure 4).
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Figure 4. Growth curves of Salmonella cells in lysogeny broth (LB) with various concentrations of
MnO2 nanosheets at 4 ◦C.

To further determine the authenticity of the CFU method, the live/dead bacterial staining method
was used to further verify the above results. The results are shown in Figure 5, the untreated groups
(A and B) showed weak red fluorescence and strong blue fluorescence, while a large number of
Salmonella cells were seen to die from cell membrane rupture in the group (D) treated with 125 µg/mL
MnO2 nanosheets and stained with PI. The results revealed that MnO2 nanosheets can destroy the
bacterial membrane structure, which is not only consistent with the CFU results but also indicates the
damage to the cell membrane.
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3.3. Cytotoxicity

Good cell compatibility is an important factor for MnO2 nanosheets as a potential antibacterial
agent. The effect of MnO2 nanosheets on Vero cell viability was investigated by MTT assay. As shown
in Figure 6, after incubation separately for 12 and 24 h, the viability of Vero cells was more than 90% in
the treatments of 31.3–250 µg/mL MnO2 nanosheets relative to the control. At 125 µg/mL of MnO2

nanosheets, the cell viability was close to 94%. Additionally, at a high concentration of 500 µg/mL,
MnO2 nanosheets showed almost no toxicity to cells after incubation for 24 h with a cell viability of
approximately 81%. Fan et al. reported that the 60 µg/mL MnO2 nanosheets had low cytotoxicity to
the tested cell lines [21]. Shi and co-workers found that after 24 h of incubation with 200 µg/mL MnO2

composites, hc-4T1 cells still showed more than 90% viability [32]. Our cytotoxicity results for MnO2

nanosheets on Vero cell lines were consistent with these reported results. Thus, the 125 µg/mL MnO2

nanosheet was used in the following mechanism research experiments.
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nanosheets separately for 12 and 24 h. Statistical significance was decided with a * p < 0.05.

3.4. Mechanism for Antibacterial Activity of MnO2 Nanosheets

Currently, nanoscale materials have become a new type of antibacterial agents due to their high
specific surface area and unique chemical and physical properties. Many papers have mentioned that
the bactericidal activity of nanomaterials is mainly attributed to physical damage (e.g., destruction
of lipid molecules) and chemical damage (e.g., oxidative stress) [33–40]. In this study, a three-step
approach was proposed to define the synergy of antibacterial activity—(1) Direct contact of MnO2

nanosheets with the bacterial membrane due to their special sheet-like structure; (2) Generation of
reactive oxygen species; (3) Membrane damage, leakage of electrolytes and intracellular contents and
decrease of ATPase activity, which contribute to bacterial death.

3.4.1. Salmonella Structure Observation by TEM and SEM after Incubation with MnO2 Nanosheets

Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) are usually
used to investigate the direct interactions between nanomaterials and biological cells [41]. In this study,
the structural changes in the treated Salmonella were first observed by SEM. In the absence of MnO2

nanosheets, Salmonella had a typical rod shape with intact cell walls (Figure 7C). After exposure to
MnO2 nanosheets, significant changes were detected in the morphology of Salmonella, with the cell
wall being wrinkled and damaged and obvious variations in the cell shape and size (Figure 7D).

TEM experiments were performed to test whether MnO2 nanosheets can destroy the integrity
of bacterial cell walls. In Figure 7A, the untreated Salmonella cells had a rod shape with an intact
morphology. However, the treated bacterial cell wall was seriously damaged, coupled with leakage
of contents and changes in cell length (Figure 7B). Cell elongation was reported as a typical bacterial
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response to stress, including exposure to bactericides [42,43]. Interestingly, in Figure 7B, the surface of
the bacteria is seen to be covered and wrapped with MnO2 nanosheets, forming temporary and localized
high-concentration aggregates near bacterial surface, resulting in the biological disconnection of cells
from the surrounding environment and cell death. A possible explanation is that MnO2 nanosheets
may directly cause physical damage to the bacterial membrane due to their special two-dimensional
lamellar structure. Previous studies have shown that carbon nanotubes (CNTs) can encapsulate human
intestinal bacteria and penetrate cell walls and cell membranes and the degree of damage is dependent
on the diameter of the CNTs [44]. O. Akhavan et al. mentioned that the graphene (oxide) suspension
can wrap E. coli in the aggregated flakes, causing the cells to be biologically separated from the
surrounding environment and unable to proliferate and then the bacteria are permanently inactivated
by near-infrared radiation [45]. Chen et al. reported that the effective antibacterial activity of GO is
related to the unique monolayer structure [9]. The above results indicate that the MnO2 nanosheets
possess strong antibacterial activity, which was well supported by the SEM results.
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with (D) 125 µg/mL MnO2 nanosheets. Scale bars: 10 µm.

3.4.2. Generation of ROS

Oxidative stress is considered as one of the important toxic mechanisms associated with the
exposure of nanoparticles, which can interfere with the function of DNA and enzymes, thereby
disrupting normal metabolism and killing bacteria [46]. The potential role of MnO2 nanosheets in
inducing oxidative stress was evaluated by using the oxidation-sensitive fluorescent probe DCFH-DA
to monitor ROS production in the presence of MnO2 nanosheets. This probe can passively diffuse
into the cell through the cell membrane. In Figure 8, the treatment of MnO2 nanosheets was seen
to display strong green fluorescent signals (Figure 8C) compared with the control Salmonella cells
(Figure 8B). Meanwhile, pure MnO2 nanosheets and probe DCFH-DA incubation were set up as a
negative control (Figure 8A). The absence of fluorescence indicated that the nanomaterial itself does
not oxidize DCFH-DA, inferring that MnO2 nanosheets induce the production of intracellular ROS in
bacteria, which might contribute to the antibacterial effect. ROS levels are reported to be related to
antibacterial activity due to their destructive effect on bacterial cell membranes [47].
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Figure 8. Reactive oxygen species (ROS) measurement of Salmonella cells. Fluorescence microscope
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images of untreated (B) and MnO2 nanosheets-treated (C) Salmonella cells after staining with DCFH-DA.
ESR images of DMPO−·OH (D) and DMPO−·O2

− (E) for MnO2 nanosheets.

Oxidative stress occurs when cells are exposed to enhanced levels of ROS, such as free radicals, ·O2
−,

·OH and H2O2 [48]. Then, the hydroxyl radical (·OH) and superoxide radical anion (·O2
−) generated by

MnO2 nanosheets without the presence of bacteria were detected using electron spin resonance (ESR)
spin-trap (DMPO) method. From the Figure 8D,E, it can be seen that MnO2 nanosheets generated typical
DMPO-·O2

− and DMPO-·OH signals but ·O2
− was the main species. Similar conclusions have also been

reported by other antibacterial nanomaterials. Wang et al. prepared positively charged bis-quaternary
ammonium salt (BQAS) and found that BQAS had a strong contact with bacterial cells and produced
temporary high concentration reactive oxygen species (mainly ·O2

−), which triggered oxidative stress
and membrane damage in bacteria and played a bactericidal role [48]. Curcumin-modified AgNPs
have been shown to have a strong antibacterial effect, mainly due to the increased production of
reactive oxygen species (mainly superoxide production) and bacterial death caused by membrane
damage [47].

3.4.3. Perturbation of Membrane Integrity by MnO2 Nanosheets

Loss of Electrolytes. Direct contact between pathogens and MnO2 nanosheets indicated that the
pathogens are wrapped by the MnO2 nanosheets, suggesting that MnO2 nanosheets may interfere
with the plasma membrane integrity of the pathogens. To test this hypothesis, we investigated the
conductivity of the bacterial solutions with or without various concentrations of MnO2 nanosheets.
When the bacterial cell membrane structure is destroyed, the nutrients inside the bacteria will leak,
including electrolytes, leading to the increase of conductivity in the bacterial solution environment.
Therefore, monitoring the change of conductivity in the bacterial solution can predict whether the cell
membrane structure is intact. In Figure 9A, the conductivity of the solution was shown to increase
gradually with the increase of concentration in the MnO2 nanosheet-treated groups (31.3–250 µg/mL)
versus the control group (0 µg/mL), demonstrating that MnO2 nanosheets could indeed disrupt the
phospholipids of Salmonella membranes.
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Figure 9. Measurement of total electrolytes of Salmonella after exposure to different concentrations of
MnO2 nanosheets (A). Measurement of total ATPase activity (B) and protein contents (C) of Salmonella
after exposure to 125 µg/mL MnO2 nanosheets. Statistical significance was decided with a * p < 0.05
and ** p < 0.01.

Decrease of ATPase Activity. The disrupted cell membrane of Salmonella was checked by
examining its ATPase activity after exposure to MnO2 nanosheets. Total ATPase is a key enzyme
present on the bacterial cell membrane, which is closely related to the bacterial metabolism. The results
showed a decrease in the ATPase activity of Salmonella after exposure to 125 µg/mL MnO2 nanosheets
(Figure 9B), further confirming that the structure of Salmonella is destroyed by MnO2 nanoparticles.

Loss of Protein Contents. Injuries were characterized by electrolyte leakage and increased protein
content. Membrane damage has a great impact on the changes of membrane potential and membrane
related energy conversion systems. The above conclusion was further confirmed by testing the
leakage of protein contents. In Figure 9C, the level of protein contents was shown to be 5.0-fold
higher in the bacterial solution treated with 125 µg/mL MnO2 nanosheets than in the untreated
control. Zheng et al. designed the La@GO nanocomposites, which can achieve the destruction of
antibiotic-resistant bacteria due to a unique extracellular multi-target invasion and killing mechanism,
including lipid dephosphorylation, lipid peroxidation and peptidoglycan destruction [37].

All the above results demonstrated that the antibacterial activity of MnO2 nanosheets is attributed
to the formation of ROS and the damage to the bacterial cell membrane, leading to bacterial
death (Scheme 1).
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4. Conclusions

In this study, the MnO2 nanosheet was successfully synthesized using a simple ultrasonic method
and characterized systemically by UV-vis, XRD, FTIR, XPS and TEM. The manganese dioxide was shown
to be in a lamellar distribution. This is probably the first paper to characterize the superior antibacterial
activity of MnO2 nanosheets against Salmonella. When exposed to 125 µg/mL MnO2 nanosheets,
99.2% of Salmonella could be killed. Potential antibacterial mechanism studies showed that MnO2
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nanosheets could adsorb and encapsulate bacteria, forming provisional and local high-concentration
aggregates on the surface of bacteria, leading to the production of more reactive oxygen species,
the increase of ATPase activity, the leakage of electrolytes and protein contents and ultimately bacterial
death. These results supply experimental evidence for further improving MnO2 nanosheets as a
potential antibacterial agent. Further research should focus on the evaluation of the pharmacokinetics
and cytotoxicity of MnO2 nanosheets using appropriate animal models.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1545/s1,
Figure S1: In vitro antibacterial activity test. Cell survival rate of Staphylococcus aureus cells treated or untreated
with MnO2 nanosheets.
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