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Abstract: We present an on-chip tunable infrared (IR) metamaterial emitter for gas sensing applications.
The proposed emitter exhibits high electrical-thermal-optical efficiency, which can be realized by the
integration of microelectromechanical system (MEMS) microheaters and IR metamaterials. According
to the blackbody radiation law, high-efficiency IR radiation can be generated by driving a Direct Current
(DC) bias voltage on a microheater. The MEMS microheater has a Peano-shaped microstructure,
which exhibits great heating uniformity and high energy conversion efficiency. The implantation of a
top metamaterial layer can narrow the bandwidth of the radiation spectrum from the microheater to
perform wavelength-selective and narrow-band IR emission. A linear relationship between emission
wavelengths and deformation ratios provides an effective approach to meet the requirement at
different IR wavelengths by tailoring the suitable metamaterial pattern. The maximum radiated
power of the proposed IR emitter is 85.0 µW. Furthermore, a tunable emission is achieved at a
wavelength around 2.44 µm with a full-width at half-maximum of 0.38 µm, which is suitable for
high-sensitivity gas sensing applications. This work provides a strategy for electro-thermal-optical
devices to be used as sensors, emitters, and switches in the IR wavelength range.
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1. Introduction

Gas sensors play a vital role in industry and also have civil applications, including as semiconductor
sensors [1–3], catalysis sensors [4], synergistic surface reaction sensors [5], and so on. Along with
the development of the Internet of Things (IOT), gas sensors with high sensitivity and selectivity
have been desired for monitoring air quality in real time. Recent advances in optical gas sensors
provide a path for both miniaturized and high-response speed [6–8]. Many studies have reported
optical gas sensors using infrared (IR) absorption [9], ultraviolet (UV) absorption [10], and light
scattering [11]. For gas sensing applications, IR emitters exhibit electrical-thermal characteristics by
using a microelectromechanical system (MEMS) microheater, owing to its low thermal mass [12].
It utilizes conventional blackbody thermal emission in the IR wavelength range, which provides a
broad-band IR emission spectrum. The thermal radiation of the microheater can be driven in a short
time based on Joule heating. However, a drawback is the low thermal emission efficiency of the
microheater owing to the non-uniform temperature distribution. Furthermore, the optical performance
of such emitters is strongly limited by the specific operating wavelength, and it cannot be used in
practical gas sensing applications.

To overcome the above-mentioned drawbacks, metamaterial is an alternative candidate for
selection of a certain emission wavelength. Metamaterial has drawn a great deal of attention due
to its unique optical properties, which enable it to control electromagnetic waves on subwavelength
scales. The permittivity and permeability of metamaterials can be tailored by properly engineering the
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geometrical dimensions and material compositions of their subwavelength periodic patterns. They are
widely studied to realize thermal emitters and are perfect absorbers for energy harvesting, medical
imaging, and high-sensitivity sensing applications [13–30]. By tailoring the geometrical dimensions,
metamaterials can be designed to span broad operating wavelengths, including visible [31–33],
IR [34–39], terahertz [40–44], and microwave light [45,46]. To provide metamaterials with more
flexibility, there are many techniques proposed for tuning mechanisms using MEMS technology [47–54]:
liquid crystal [55], photo-excited [56], phase-change materials [57,58], thermal annealing [59], and so
on. One important tuning method for metamaterial emitters is the integration of microheaters and
metamaterials owing to their high efficiency. Radiation intensity can be tuned through the quantity of
heating energy generated from the microheater.

In this study, we propose an on-chip tunable metamaterial IR emitter for gas sensing applications.
The IR emitter is composed of a MEMS microheater and IR metamaterial. For optimization of the
microheater, two structural patterns of microheaters are discussed to realize consistent high performance
and heating energy conversion. The microheater is then covered with a dielectric layer to ensure
electrical insulation of the device. Since the electromagnetic waves generated by the microheater have
multiple polarization directions, the top metamaterial layer is tailored to be polarization independent,
which can ensure uniformity of the radiation power. By properly tailoring the metamaterial patterns,
it can be tuned to different wavelengths in the IR spectrum. This provides a strategy to detect various
kinds of gases due to the tunable IR emitter, which can be selected at the specific absorption spectrum
from the analyte. Integration of the microheater and the metamaterial achieves a tunable narrow-band
emitter, which is suitable for high-sensitivity gas sensing applications.

2. Designs and Methods

Figure 1a shows the schematic drawing of the proposed on-chip tunable IR emitter. The proposed
IR emitter was composed of a MEMS Peano-shaped microheater covered with a SiO2 dielectric layer
on a Si substrate and a top metamaterial layer. Such MEMS Peano-shaped microheaters and periodic
metamaterials were fabricated with gold (Au) materials at a thickness of 200-nm. The Peano-shaped
microheater was covered with a SiO2 dielectric layer, and the metamaterial was fabricated on top to
maintain electrical insulation and high energy conversion efficiency. The whole emission area of the
device was 120 × 120 µm2. According to the conventional Joule effect, heat energy will be generated
from the microheater by driving a DC bias voltage on the device. The Peano-shaped microheater was
designed with a concentrated heater pattern and highly conductive metal lines, which collected all
flowing electric energy and then converted it into thermal energy. The microheater achieved high
electrothermal conversion efficiency and had a rapidly increasing surface temperature. Such thermal
radiation power produces a broadband electromagnetic spectrum. By integrating the top metamaterial,
a radiated IR light was wavelength-selected and ultimately emitted, as illustrated in Figure 1a. For the
metamaterials in the proposed design, the effective permittivity and the effective permeability are
expressed by the following equations [60]:

εe f f = ne f f /ze f f (1)

µe f f = ne f f ze f f (2)

where neff is the metamaterial effective refraction index, and zeff is the metamaterial effective impedance
index. The effective refraction index and the effective impedance can be calculated as follows:

ne f f =
1
kd

cos−1(
1− r2 + t2

2t
) (3)

ze f f =

√√
(1 + r)2

− t2

(1− r)2
− t2

(4)
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where r is the reflection coefficient, t is the transmission coefficient, d is the metamaterial thickness, and k
is the incident wavevector. The corresponding parameters of the metamaterial are shown in Figure 1b–e.
While the effective refraction index was indeed positive in the resonant range, the proposed design
exhibited high transmission in this range to realize a frequency-selective application. The optical
properties of the designed metamaterials were studied through finite difference time domain-based
(FDTD) simulations. In the numerical simulations, the incident electromagnetic wave propagated
along the z-axis, which was perpendicular to the x–y plane. Periodic boundary conditions were defined
in the x- and y-axis directions, and perfectly matched layer (PML) boundary conditions were adopted
in the z-axis direction.
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Figure 1. (a) Schematic drawing of tunable IR (infrared) emitter. The calculated (b) effective
permittivity, (c) effective permeability, (d) effective refraction index, and (e) effective impedance
index of the metamaterial.

3. Results and Discussion

Figure 2a,b shows the design of a traditional winding microheater and the proposed
Peano-shaped microheater to enable comparison with the electrothermal characteristics. The pattern
of the Peano-shaped microheater is a famous space-filling curve in mathematical fractal theory.
For microheater design, heating uniformity is a key factor to evaluate heating performance. High
heating uniformity provides high reliability of the device and prolongs its lifetime. It also results in less
thermal dissipation in real-world applications, which can greatly reduce energy consumption. Herein,
both microheater designs exhibited great heating uniformity, as shown in the surface temperature
distributions in Figure 2c,d. By driving a DC bias voltage, most of the heating power was concentrated
in the central area of the device. The effective heating area was greater than 75% (120 × 120 µm2),
keeping a 90% maximum surface temperature, which makes such microheaters suitable for use as
on-chip IR light-emitting sources with high efficiency.
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Figure 2. Schematic drawings of (a) winding microheater and (b) Peano-shaped microheater. (c,d)
Surface temperature distributions of winding microheater and Peano-shaped microheater, respectively.
Geometrical dimensions are kept as d1 = d2 = 6.0 µm and l1 = l2 = 120 µm.

Figure 3a shows the surface temperature distributions of the microheater with metal linewidths of
d1 and d2. It can be clearly observed that such microheater designs exhibited great heating uniformity
when the metal linewidth increased. It can also generate higher maximum temperature distribution on
the surface. To further optimize the Peano-shaped microheater with high electrical-thermal efficiency,
the Peano-shaped microheater was designed to facilitate comparison of six effective pattern densities
(Deff, the ratio of effective heating material to the whole area of microheater) according to mathematical
fractal theory. The material selected was Au, and the Deff values were 16%, 20%, 32%, 38%, 42%, and 49%,
respectively. Figure 3b shows the experimental results for Au-based Peano-shaped microheaters
under different driving voltages. The inserted images show top views of optical microscopes for
six Peano-shaped microheaters. It can be observed that a higher Deff can realize higher surface
temperature. Electrical-thermal efficiency increased along with the increments of Deff. The maximum
heating temperature can reach 660 K under a driving voltage of 5 V for Deff = 49%. The fundamental
electrothermal behavior is the process of energy conversion to thermal power. In the ideal situation,
without considering thermal dissipation, thermal emission can be explained by Planck’s law (also
known as the blackbody radiation law). According to the blackbody radiation law, emission wavelength
is only related to temperature. Emission wavelength has a broad bandwidth, and emissivity is varied
by the corresponding wavelength. Blackbody radiation can be expressed by

ρλdλ =
8πhc
λ5

1
exp(hc/λkT) − 1

dλ (5)

where ρλ is the emission power per unit volume, λ is the emission wavelength, h is the Planck constant,
c is the velocity of light in vacuum, k is the Boltzmann constant, and T is temperature. The heat
flux flowed mainly outward on the upper and lower surfaces. Thus, half of the radiated power was
ideally generated though the upper surface to be the radiation source of the proposed IR emitter.
Relationship between maximum surface temperatures and applying DC bias voltages for both the
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winding microheater and the Peano-shaped microheater are plotted in Figure 3c. Since high-efficiency
thermal conduction among metals can improve radiated power, it is also worth discussing the effect of
microheaters made from different metals. The thermal conductivities of Al and Au are 238 W/(m·K)
and 317 W/(m·K), respectively. By applying a bias voltage, the surface temperature increased gradually
from a room temperature of 293 K. The areas of both microheater patterns were kept the same at
120 × 120 µm2. The maximum surface heating temperature of the Al-based winding microheater was
571 K, and it was 598 K for the Al-based Peano-shaped microheater. The maximum surface temperature
of a Au-based Peano-shaped microheater can reach 660 K, while that of a Au-based winding microheater
can only reach 625 K under the same driving voltage of 5 V. This shows that the radiation efficiencies
of both microheaters were better when Au materials were used, as the Peano-shaped microheater
generated a more complex magnetic field to induce electromagnetic heating. The maximum applied DC
bias was set as 5 V to avoid breakdown of the device. Therefore, a higher surface heating temperature
can be achieved by using a Au-based Peano-shaped microheater, which can generate higher radiated
power. Au-based Peano-shaped microheaters are very suitable for use in tunable IR emitter design.
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Figure 3. (a) Surface temperature distributions of microheaters with metal linewidths of d1 and d2.
(b) Temperature as a function of driving voltage for six Peano-shaped microheater designs with different
pattern density. (c) Relationships between applied DC bias voltage and maximum surface temperature
for winding microheaters and Peano-shaped microheaters. Corresponding materials are selected as Al
and Au.

The relationships between the applied DC bias voltages and effective radiated powers were
calculated and plotted in Figure 4. The total radiated power was below 20 µW when applying DC
bias voltage from 0 to 3 V. By increasing the DC bias voltage to 4 V, the maximum radiated power
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was 48.6 µW. When the driving DC bias voltage was 5 V, the corresponding radiated power increased
to 111.1 µW, and the emitted wavelength blue-shifted to the wavelength of 5.25 µm. The inset in
Figure 4 shows the thermal radiation image measured by a thermal radiometer (Sentris thermal
imaging microscope, OPTOTHERM Co. Ltd., Sewickley, PA, USA). It can be clearly observed
that the temperature distribution of the Peano microheater was uniform. Moreover, the full-width
at half-maximum (FWHM) of the radiated power spectrum was 5.4 µm. It is a broadband and
omnidirectional IR radiation spectrum.
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Figure 4. Blackbody radiated power of a Peano-shaped microheater under different applied DC bias
voltage. Inset is IR thermal radiation measured with a thermal radiometer.

To narrow down the FWHM value of the IR radiation spectrum, we proposed two metamaterial
designs of Peano-shaped microheater surfaces encapsulated by insulated layers on the top. Figure 5a,b
shows the proposed circle-shaped and ring-shaped metamaterials. To investigate the influence of the
geometrical dimensions of the metamaterial on the emitted wavelength, the deformed metamaterial
period and outer circle diameter divided by the initial metamaterial parameter is defined as n, i.e.,
the metamaterial deformation ratio. The subscripts 1 and 2 indicate circle-shaped and ring-shaped
metamaterials, respectively. Figure 5c,d shows the transmission spectra of circle-shaped and
ring-shaped metamaterials with different n1 and n2 values, respectively. In Figure 5c, the transmission
spectrum gradually red-shifted from 2.16 µm to 4.29 µm when n1 increased from 1 to 2. The tuning
range was 2.13 µm. The corresponding transmission intensity was enhanced 10% (from 75% to 85%)
by increasing n1 from 1 to 2. These tuning transmission spectra are not perfect single-band resonances
in the IR wavelength range. It can be clearly observed that there were several lower-order resonances
at short IR wavelengths, which will result in interference with the IR emitter and will also reduce the
radiated power. In order to solve this problem, a ring-shaped metamaterial was designed as shown in
Figure 5d. The ring-shaped metamaterial exhibited resonance at the wavelength of 2.61 µm with a
transmission intensity of 76% for n2 = 1. By increasing the n2 value to 2, the resonance red-shifted
to the wavelength of 5.83 µm with a transmission intensity of 74%. The tuning range was 3.22 µm.
It was enhanced 1.09 µm compared with that of the circle-shaped metamaterial. It is worth mentioning
that the transmission intensity was kept stable by changing the n2 value. The variation was only
2%. The lower-order resonances were greatly reduced. The relationships between resonances and
deformation ratios are summarized in Figure 6a,b for circle-shaped and ring-shaped metamaterials,
respectively. To understand the physical mechanism of these tunable metamaterials, the electric (E)
and magnetic (H) field distributions of circle-shaped and ring-shaped metamaterials are illustrated in
the insets of Figure 6a,b, respectively. E- and H-field distributions were highly concentrated around
the Au patterns and interacted with incident electromagnetic waves to provide a strong resonance.
The relationships between resonances and deformation ratios were linear. This means that IR emitters
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can be designed at different IR wavelengths by modifying the metamaterial period. The correlation
coefficients were 0.9999 for both circle-shaped and ring-shaped metamaterials. These results provide
an effective approach to high-precision and wavelength-selective emission applications in the IR
wavelength range.
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Figure 6. Relationships between resonances and deformation ratios for (a) circle-shaped and (b)
ring-shaped metamaterials. The inserted images show the corresponding E- and H-field distributions.

According to the above results, the maximum radiated power of the Peano-shaped microheater
occurred at the wavelength of 5.25 µm by driving a DC bias voltage of 5 V. We further integrated the
Peano-shaped microheater with a ring-shaped metamaterial operating at a wavelength of 5.25 µm.
It was promising to provide maximum radiated power with a narrow-band spectrum. The calculated
deformation ratio was 1.542 (n2 = 1.542). The radiated powers of the tunable IR emitter with n2 = 1.542
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at different driving DC bias voltages are shown in Figure 7a. By increasing the DC bias voltage to
5 V with a step of 1 V, the radiated powers were 0.2, 0.4, 2.1, 10.0, 33.9, and 85.0 µW for driving 1,
2, 3, 4, and 5 V, respectively. The maximum radiated power was 85.0 µW and the FWHM of the
radiated spectrum was reduced to 0.65 µm. It was enhanced 8.3-fold compared to that without the
ring-shaped metamaterial. Therefore, the spectrum bandwidth could be greatly narrowed and resulted
in a high-efficiency, tunable IR emitter at the wavelength of 5.25 µm. Similarly, by modifying the n2

value to 0.920, the emission wavelength was 2.44 µm. The radiated powers of the tunable IR emitter
with n2 = 0.920 at different driving DC bias voltages are shown in Figure 7b. Emission wavelength
is matched to the absorption wavelength of CO2 gas at 2.369 µm. Such design is suitable for CO2

gas sensing applications. The FWHM of the radiated spectrum was only 0.38 µm. It was enhanced
14.2-fold compared to that without the ring-shaped metamaterial. This design opens an avenue into
the potential for use in high-sensitivity gas sensing applications.
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4. Conclusions

In conclusion, an on-chip tunable IR emitter is proposed by using a Peano-shaped microheater
and IR metamaterial for gas sensing applications. By applying a DC bias voltage, high heat energy is
generated via a Au-based Peano-microheater with high temperature uniformity. A surface temperature
of 655 K is realized owing to the high electrothermal conversion efficiency, which generates a
broadband spectrum. By properly tailoring the top metamaterial, a narrow-band IR emission is
achieved. The maximum radiated power of the proposed IR emitter reached 85.0 µW. The thermally
radiated emission was achieved at a wavelength of 2.44 µm, which greatly reduced the FWHM of
0.38 µm, and this matched the absorption wavelength of CO2 gas at 2.369 µm and can potentially be
used as a high-sensitivity gas sensor. Such emitters are promising for widespread applications such as
in high-efficiency IR emission and high-sensitivity gas sensing.
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