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Abstract: An optical nanoantenna consisting of a Au-dielectric core-shell nanocube dimer with
switchable directionality was designed and described. Our theoretical model and numerical simulation
showed that switching between forward and backward directions can be achieved with balanced
gain and loss, using a single element by changing the coefficient κ in the core, which can be defined
by the relative phase of the polarizability. The optical response indicated a remarkable dependence
on the coefficient κ in the core as well as frequency. The location of the electric field enhancement
was specified by the different coefficient κ and, furthermore, the chained optical nanoantenna and
coupled electric dipole emitted to the optical nanoantenna played significant roles in unidirectional
scattering. This simple method to calculate the feasibility of unidirectional and switchable scattering
provides an effective strategy to explore the functionalities of nanophotonic devices.
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1. Introduction

Metallic nanostructures featuring a multitude of localized and propagating surface plasmon
resonances have attracted significant interest due to their ability to concentrate and manipulate light
at the subwavelength scale [1,2]. Their extraordinary properties have been widely exploited in a
broad range of optical applications, including solar cells [3,4], ultrasensitive sensors [5], photovoltaic
devices [6,7], and so on. However, relatively high intrinsic ohmic loss and local heating in the metallic
nanostructures have impeded wider acceptance [8,9] and therefore, there has been increasing interest
in new materials such as semiconductor crystals and dye molecules in order to produce plasmonic
nanostructures with low dissipative losses [10,11].

Metallic nanostructures with engineered optical properties constitute a new platform to tailor
light–matter interactions on active materials [12]. Optical nanostructures with hybrid active–passive
geometries rely on the balance between gain and loss [13,14] and active–passive nanostructures shed
light on important non-Hermitian quantum mechanics. In the optics community, novel applications
based on effects such as coherent perfect absorption [15], non-linear switching [16], and asymmetric
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transmission [17] have been proposed. Although many papers have focused on guided wave
systems and lattices, the scattering arrangements in two- and three-dimensional geometries attainable
with active–passive nanostructures have been less explored [18–22]. Large flexibility is particularly
attractive with respect to the design and optimization of coupling between different materials and
hence, it is important to investigate the unique and unidirectional optical properties of active–passive
nanostructures and the scattering response of electromagnetic waves.

In this article, an optical nanoantenna, consisting of a core-shell nanocube dimer and encapsulated
with an outer Au shell doped with active and passive nanocubes, was designed for balanced gain
and loss and evaluated by the finite element method (FEM). Gold nanoparticles (AuNPs) provide an
excellent platform for biological and material applications due to their unique physical and chemical
properties. AuNPs are chemically inert and oxidation-free and also show high biocompatibility,
when compared with silver, aluminum or other nanomaterials [23–25]. The dielectric core, by controlling
the imaginary part of the refractive index κ in loss and gain parts, can be made either from dye molecules,
semiconductor nanoparticles with sizes of a few nanometers, or from rare earth ions [26–28]. The effects
of the imaginary part of the refractive index κ in the core and frequency were studied to confirm
and understand the unidirectional line shape and tunability of the system. The far-field radiation
patterns of scattered light can be switched from primarily forward scattering to backward scattering by
simply varying the coefficient κ in the core, making them interesting components of optical devices
used to actively control light at the nanoscale. The core-shell nanocube dimer with balanced gain and
loss can act as a directional nanoantenna, both in transmitter and receiver modes [29]. Furthermore,
the unidirectional scattering properties of the core-shell nanocube dimer with balanced gain and
loss arranged in a chain were determined and directional emission from the electric dipole emitter
was demonstrated.

2. Theory

We considered the optical nanoantenna composed of a core-shell nanocube dimer as shown in
Figure 1. It is composed of an inner dielectric core coated with an outer cubic Au nanobox in Figure 1a.
A model system was considered in which the coefficient κ was introduced to the core medium to
describe the phenomenological response of the incident light to the gain and loss of the materials.
The dielectric core has a refractive index n ± iκ, with one corresponding to loss media (+κ) in the
left cube and the other corresponding to gain media (−κ) in the right cube. We considered n = 1.44,
corresponding to the refractive index of SiO2, in the frequency range of interest. The coefficient κ was
always the same for both cores to satisfy the balanced gain and loss condition. The optical constant of
gold was obtained from Palik’s handbook [30]. The x-z plane graph is shown in Figure 1b. The metal
and dielectric edge lengths, d and l, were set as 50 nm and 40 nm, respectively. The face-to-face distance
was = 20 nm. In the simulation, the nanostructure was assumed to be freestanding in air (the dielectric
constant εd = 1), and a plane wave impinged onto the hybrid core-shell nanocube dimer along the
x direction with Ez polarization. The scattering properties were investigated by the finite element
method with COMSOL Multiphysics [31]. Following geometrical model definition, the nanostructure
was meshed. Tetrahedral meshing was used in the frequency-domain simulations with automatic
mesh refinement to study the scattering pattern. The simulation domain was finely meshed with a
minimum mesh of 1 nm and maximum mesh of 5 nm over the volume of the core-shell nanocube dimer.
In all the simulations, the core-shell nanocube dimer was surrounded by a spherical shell of perfectly
matched layer (PML) and the maximum meshing size was chosen to be a sixth of the wavelength, and a
total mesh number of 44.270 was used over the whole system. The average element quality was 0.75
such that the convergence of the results and the accuracy of the computed quantities were ensured.
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Figure 1. Schematic of the core-shell nanocube dimer with balanced gain and loss. (a) three-
dimensional diagram (b) x-z plane graph. 
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section for both forward and backward scattering. As expected, when κ = 0, there were two plasmon 
peaks at 460THzυ1 =  and 0THz45υ2 =  and the Cext values were about 0.05 μm2and 0.008 μm2. The 
result of the extinction cross section was in good agreement with numerical calculations by the 
Discrete Dipole Approximation (DDA) and Finite difference time domain (FDTD) simulations. It is 
noted that there only existed a small deviation of frequency for the optical cross section between 
different numerical results. The low quality factor of plasmonic peaks can be primarily ascribed to 
strong dissipation of conduction electrons in the Au nanobox. Additionally, Cabs was about three 
times that of Csca, indicating intense absorption by the core-shell nanocube dimer at the coefficient κ 
= 0 in Figure 2a. As the coefficient κ was increased to 0.397, scattering of nanocube dimer at 

0THz45υ2 =  increased to about 0.79 μm2 and Cabs became −0.53 μm2 in Figure 2b. The negative Cabs 
can be interpreted, as that scattered radiation was compensated by the energy amplification from the 
gain materials. Cext also increased remarkably due to the compromise between the scattering loss and 
amplification gain. As κ was increased to the critical value of 0.398, a significant resonance peak was 
observed at 0THz45υ2 =  as shown in Figure 2c. Csca increased to a 2.5 μm2 which is about 250 times 
that of the passive core-shell nanocube dimer and Cabs decreased to a minimum of about −2.5 μm2; in 
this case, the gain overcame the loss and Cabs reached the minimum value. The relatively sharp peak 
compensated for Csca to yield zero extinction. This verifies the dynamic balance between light 
amplification and dissipation in the nanostructure and indicates the lasing threshold [32,33]. 
  

Figure 1. Schematic of the core-shell nanocube dimer with balanced gain and loss. (a) three-dimensional
diagram (b) x-z plane graph.

3. Results and Discussion

In order to offer a better understanding of the optical properties, we show in Figure 2 the
calculated spectra of absorption (Cabs), scattering (Csca), and extinction (Cext) cross section of the
core-shell nanocube dimer with the different gain and loss coefficient κ. Csca is defined as the optical
cross section for both forward and backward scattering. As expected, when κ = 0, there were two
plasmon peaks at υ1 = 460 THz and υ2 = 540 THz and the Cext values were about 0.05 µm2and
0.008 µm2. The result of the extinction cross section was in good agreement with numerical calculations
by the Discrete Dipole Approximation (DDA) and Finite difference time domain (FDTD) simulations.
It is noted that there only existed a small deviation of frequency for the optical cross section between
different numerical results. The low quality factor of plasmonic peaks can be primarily ascribed to
strong dissipation of conduction electrons in the Au nanobox. Additionally, Cabs was about three times
that of Csca, indicating intense absorption by the core-shell nanocube dimer at the coefficient κ = 0 in
Figure 2a. As the coefficient κ was increased to 0.397, scattering of nanocube dimer at υ2 = 540 THz
increased to about 0.79 µm2 and Cabs became −0.53 µm2 in Figure 2b. The negative Cabs can be
interpreted, as that scattered radiation was compensated by the energy amplification from the gain
materials. Cext also increased remarkably due to the compromise between the scattering loss and
amplification gain. As κ was increased to the critical value of 0.398, a significant resonance peak was
observed at υ2 = 540 THz as shown in Figure 2c. Csca increased to a 2.5 µm2 which is about 250 times
that of the passive core-shell nanocube dimer and Cabs decreased to a minimum of about −2.5 µm2;
in this case, the gain overcame the loss and Cabs reached the minimum value. The relatively sharp
peak compensated for Csca to yield zero extinction. This verifies the dynamic balance between light
amplification and dissipation in the nanostructure and indicates the lasing threshold [32,33].

According to the discussion above, the core-shell nanocube dimer with balanced gain and loss
at υ2 = 540 THz was chosen to study unidirectional scattering. The far-field scattering patterns for
the coefficient κ in the core as a function of frequency around υ2 = 540 THz are shown in Figure 3a.
The far-field forward-to-backward directionality of the core-shell nanocube dimer with balanced gain
and loss in dB can be obtained by GFS/BSmax = 10 log10(SF/SB), where SF is the amplitude of the power
radiated in the forward (x > 0) and backward (x < 0) directions [34,35]. The direction of the scattered
wave changes as the coefficient κ in the core is varied. For example, by changing the frequency between
f10 = 435 THz and f1 = 570 THz, the directionality GFS/BSmax was altered. In particular, the bold
curve at the frequency of f7 = 480 THz exhibited pronounced directionality towards the opposite
direction. The coefficient κ = 0.36 in the forward direction was about 14 dB stronger than in the
backward direction and that of κ = 0.78 was directed toward the backward direction and about 5 dB
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stronger than in the forward direction. In general, the bold curve at the frequency of f7 = 480 THz
satisfied the largest change in directionality and a change in magnitude from negative to positive.
Figure 3b,c further shows that the scattering direction of the antenna at a fixed frequency can be
reversed by adjusting κ. This shows switchable and highly directional radiation for different coefficient
κ values in the core originating from constructive and destructive interference in the backward and
forward radiation [36]. This was set as the default frequency in our calculation and the directionality
can be tuned by the frequency. To clarify the influence of the geometry on the far-field scattering
patterns for the coefficient κ in the core, a systematic investigation was performed by varying three
parameters d, l, a. The corresponding models were optimized, and the calculated spectra show the
different scattering effects for the directions (see Supplementary Figure S1). The directionality GFS/BSmax

reached the maximum and a high directivity of scattering could be achieved when d, l, a were 50 nm,
40 nm, and 20 nm, respectively. Therefore, the directionality GFS/BSmax is described based on geometric
parameter optimization to realize superior directionality towards the opposite direction.
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Figure 2. Calculated optical cross-section spectra of the core-shell nanocube dimer with a different
coefficient κ in the core. (a) κ = 0 (b) κ = 0.397 (c) κ = 0.398.
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To benchmark our numerical calculation, we calculated the power difference ∆P with an analytic
dipole model for the far-field directionality of the core-shell nanocube dimer with balanced gain and
loss [37]. The two emitting dipoles with moments defined as p1 and p2, were positioned on the -x axis
and +x axis, respectively. Their y-coordinates were x1 = −(d + a)/2 and x2 = (d + a)/2, respectively
(see Figure 4a). In the far-field limit (r
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Figure 4. (a) Schematic of the coupled dipole mode and (b) Spherical coordinates for the core-shell
nanocube dimer with balanced gain and loss.

The electric and magnetic fields excited by the core-shell nanocube dimer in the far-field are
represented as p1 (j = 1) and p2 (j = 2). Therefore, the electric field vector E j and magnetic vector H j
produced in the far-field can be written as follows:

E j(r,θ,ϕ) = b2

4πε0
eib|r−x j |[(er × p j) × er]

= b2

4πrε0
eibre−bx j sin(θ) cos(ϕ)p j sin(θ)(−eθ)

(2)

H j(r,θ,ϕ) =
bω

4πrε0
eibre−ibx jsin(θ)cos(ϕ)p j sin(θ)(−eϕ) (3)

where er, eθ and eϕ are the unit vectors of the spherical basis (Figure 4b). b is the propagation constant
in the background medium (1/m). ε0 is the dielectric constant of vacuum 8.85 × 10−12(F/m). r is
the distance from the system structure to the observation point r = 1 m. The frequency was set as
f = 480 THz, which was obtained by Figure 3. Scattering by the core-shell nanocube dimer in the
far-field can be obtained by the time-averaged Poynting vector of the sum of these fields [38]:

P(r,θ,ϕ) = 1
2 Re[(E1 + E2)

∗
× (H1 + H2)]

= ω3b
32π2ε0c2r2 (p1

∗eibre−ibx1 sin(θ) cos(ϕ) + p2
∗eibre−ibx2 sin(θ) cos(ϕ))

×(p1eibre−ibx1 sin(θ) cos(ϕ) + p2eibre−ibx2 sin(θ) cos(ϕ)) × sin2(θ)er

= ω3b
32π2ε0c2r2 [

∣∣∣p1
∣∣∣2 + ∣∣∣p2

∣∣∣2] + 2Re(p1p2
∗eib(d+a) sin(θ) cos(ϕ)) sin2(θ)er

(4)

To study unidirectional scattering in the far-field, the sum of the Poynting vector in one direction
and in the opposite direction was calculated:

∆P(r,θ,ϕ) = P(r,θ,ϕ) + P(r,π− θ,ϕ+ π)

= ω3b
16π2ε0c2r2 Re

{
2ip1p2

∗ sin[b(d + a) sin(θ) cos(ϕ)]
}

sin2(θ)er
(5)
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To elucidate the physical mechanism for the far-field directionality, the power difference ∆P was
described as follows:

∆P = P1 − P2 (6)

To estimate how much light was scattered by the core-shell nanocube dimer with balanced
gain and loss, we defined P1 as the far field power emitted along the +x axis and P2 the far-field
power emitted along the -x axis. As can be seen in Equation (6), a significant enhancement in the
forward (backward) direction was achieved in conjunction with suppression in the backward (forward)
direction. The power difference ∆P spectrum as a function of the face-to-face distance of the core-shell
nanocube dimer is calculated in Figure 5a. It can be seen that the power difference ∆P is very sensitive
to the variation of the face-to-face distance of core-shell nanocube dimer. Moreover, the maximum
power difference ∆P was approximately 0.95 at a = 20 nm, and ∆P changed dramatically in the range of
a = 15–25 nm as κ increased from 0.2 to 1. Therefore, the optimized parameter of face-to-face distance a
= 20 nm was set to calculate the power difference ∆P.
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Figure 5. (a) Power difference ∆P spectrum with face-to-face distance of the core-shell nanocube
dimer (b) Power difference ∆P spectrum with different face-to-face distance obtained by the analytic
expression and finite element method (FEM) (c) Power difference ∆P spectrum with different κ obtained
by the analytic expression and FEM (d) Phase difference between the electric dipoles (EDs), (e) Far-field
distributions at κ = 0.268, and (f) Far-field distributions at κ = 0.84.
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The electric dipole moment can be written as p1 =
∣∣∣p1

∣∣∣eiφ1 and p2 =
∣∣∣p2

∣∣∣eiφ2 , where φ1 and φ2 are
the phases of the electric dipole moment p1 and p2. Assuming that the relative phase is φ = φ1 −φ2:

∆P(r,θ,ϕ) = ω3b
16π2ε0c2r2×

Re
{
2
∣∣∣p1

∣∣∣∣∣∣p2
∣∣∣ sin(φ) sin[b(d + a) sin(θ) cos(ϕ)]

}
sin2(θ)er

(7)

According to Equation (7), when φ = tπ(t ∈ N), ∆P = 0 for any dipolar amplitudes
∣∣∣p1

∣∣∣ and
∣∣∣p2

∣∣∣.
For θ = π/2 and ϕ = 0 is the position of the electric dipoles along the x axis, we have:

∆P =
ω3b

16π2ε0c2r2 Re
{
2
∣∣∣p1

∣∣∣∣∣∣p2
∣∣∣ sin(φ) sin[b(d + a)]

}
x (8)

Equation (8) provides the general guideline to calculate the power difference ∆P
∣∣∣p1

∣∣∣, ∣∣∣p2
∣∣∣ and φ

are varied with face-to face distance a and κ, which means the magnitude and phase of the electric
dipole moment change when a and κ change. As shown in Figure 5a, the peak of the ∆P spectrum
shifts to a shorter wavelength when the coefficient κ is increased. The face-to face distance dependence
of the power difference ∆P for k = 0.2 as shown in Figure 5b, is in agreement with the simulation
results. The power difference spectrum of the core-shell nanocube dimer was derived by the FEM
as a function of coefficient κ in the core as shown in Figure 5c which revealed a peak and valley at
k = 0.268 and k = 0.84 similar to a sine wave.

As shown in Figure 5c, the dissimilarity was obtained at about 0.072 by using a very simple
Kolmogorov–Smirnov test to quantify the difference between the analytic expression and FEM,
the results (circles) superimposed onto the FEM calculation (solid line) indicate excellent agreement
between the theory and the simulation. The relative phase of the two electric dipoles were approximately
in the opposite phase for k = 0.268, ∆φ = π/2 and k = 0.84, ∆φ = −π/2 (Figure 5d). In this case,
directional scattering could be achieved and the far-field scattering pattern of particles was concentrated
in the direction of the incident wave. Moreover, as shown in Figure 5e the radiated far-field was
directed towards the forward direction for k = 0.268. In contrast, as shown in Figure 5f the radiated
far-field was directed towards the backward direction. The far-field distributions can be explained
with the two-dipole model provided by Figure 5c. When k = 0.268, and thus ∆P > 0, this means that
forward scattering is significantly enhanced while the backward scattering is considerably suppressed.
One can see that ∆P < 0 when k = 0.84, the suppression of forward scattering and enhancement of the
backward scattering was observed. Therefore, emission of the local light source can be directed and
switched between two opposite directions based on the coefficient κ of the core-shell nanocube dimer
with balanced gain and loss. We propose to use these nanoantennas with balanced gain and loss as
optical emitters or receivers, whose application would be useful in the direct optical links of future
nanophotonic radio frequency (RF) circuits [39].

To obtain more information about the optical properties of the core-shell nanocube dimer,
the electric field distribution and current density at κ = 0.268 and κ = 0.84 are presented in Figure 6.
The near-field distributions were determined by electric dipolar excitation of the core-shell nanocube
dimer. For the x-z plane, the electric field hotspot occurred naturally at the corner region and the inner
core (Figure 6a). The electric field magnitude on the two sides of the core-shell nanocube dimer for the
x-y plane was at κ = 0.268 and the field was dispersed on the entire surface of the gain part at κ = 0.84.
There was strong field localization and the electric field enhancement stimulated the optical response
in the nanoantenna. At the same time, a large portion of the electromagnetic energy was localized at
the outer cubic Au nanobox (Figure 6b) and the peak and valley at k = 0.268 and k = 0.84 were derived
from the interaction of the electric dipoles according to the current density distributions.
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for κ = 0.268 and κ = 0.84.

To improve the directionality, we show in Figure 7a the core-shell nanocube dimer with a linear
chain along the x axis. The spectral dependence of the directionality on the number of core-shell
nanocube dimers N (2× dimers) in the chain is observed from Figure 7b. As N was varied from 1 to 4,
the peak position of GFS/BSmax red-shifts and the peak increased in height to 31 dB at k = 0.45 for N = 4,
compared to 13.2 dB for the dimer (N = 2). It can be inferred that a larger number in the nanocube
dimer chain changes the scattering pattern of the nanoantenna. The scattering pattern of the chained
core-shell nanocube dimer with N = 1, 2, 3, and 4 were numerically calculated and are presented in
Figure 7c. Interestingly, the chained core-shell nanocube dimer performs as a lens that concentrates the
radiation into a narrow beam and therefore this makes an efficient unidirectional nanoantenna.
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Apart from plane wave excitation, the results from the electric dipole excitation of the core-shell
nanocube dimer can be used as a rule of thumb to gauge unidirectional scattering of the nanoantenna.
In this regard, not only is the directionality important, but also the Purcell factor is essential to the
accurate interpretation for some fundamental scattering properties. To determine the modification
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effect of dipole emission, we calculated the Purcell Factor (PF) defined as the emitted power normalized
to the radiated power [40–42]:

PF =
γ

γ0
=

P
P0

(9)

P0 =
ω4
|P0|

2

12πε0c3 (10)

where P and P0 are the power losses by the electric dipole with and without the resonator in vacuum.
As shown in Figure 8a, the x-axis oriented electric dipole emitter was axially displaced from the

center of the core-shell nanocube dimer by a distance d and the peak of the PF spectrum shifted to a
shorter wavelength when the distance d was increased. The PF of the electric dipole almost reached
1400 at the coefficient κ = 0.644 in the core for d = −9.5 nm. Therefore, the distance between the electric
dipole and nanoantenna is an effective parameter to manipulate the enhancement in the electric dipole
(ED) emission. In order to gain further insight into the directionality, we show in Figure 8b the 3D
plot of the far-field forward-to-backward directionality GFS/BSmax as a function of the coefficient κ for
different distances. GFS/BSmax increased as the distance from the center of the nanoantenna was reduced
from d = –10 to d = 0. Then GFS/BSmax decreased as the distance from the center of the nanoantenna
was increased from d = 0 to d = +10. GFS/BSmax at κ = 0.9 reached 35 dB for d = 0. The results clearly
demonstrate that the optical nanoantenna introduces remarkable emission enhancement in addition to
tunable radiation directionality.
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Figure 8. Electric dipole excitation: (a) Purcell factor and (b) Far-field forward-to-backward
directionality GFS/BSmax versus the coefficient κ for different distances.

4. Conclusions

Highly switchable directionality was observed from the optical nanoantenna comprising a
core-shell nanocube dimer with balanced gain and loss. By adopting the FEM and analytic expressions,
the scattering behavior of the nanoantenna was found to depend on the phase difference of the
emitting electric dipoles, and superior forward and backward radiation patterns can be achieved from
the proposed optical nanoantenna by varying the coefficient κ in the core. Moreover, the far-field
forward-to-backward directionality depends on the frequency, dielectric core, and emitting electric
dipole position. The directionality of light scattering can be enhanced by arranging the core-shell
nanocube dimer in a chain. The combination of nanostructures with balanced active and passive
elements studied here can be utilized as one of the basic building blocks to construct metamaterials with
directional optical responses. Additionally, the presence of the active and passive elements provides
the possibility of being tunable through the control of the coefficient κ and enhancing the overall optical
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response due to the decrease in the inherent material losses of the system. The Au nanocube can be
synthesized by means of a simple chemical approach. The dielectric core with balanced gain and loss
can be loaded into the truncated nanocubes [43]. In general, the coefficient κ is relevant to the emission
cross section σe and the concentration N in these systems, and the corresponding coefficient can be
written as κcore =

λ
4πNσe [10]. In practice, Er-doped silicon nanocrystals have achieved σe = 10−16 cm2,

the corresponding coefficient can be estimated at a wavelength of 1550 nm as Nσe = 3.0 × 104/cm
and κcore = 0.37 [44]. Moreover, the concentration of dye molecules when casting T5oCx films by
spin coating a chloroform solution on glass slides is 4.22 × 1019/cm3 and σe = 6.0 × 10−16 cm2 from
pump-probe measurements of 610 nm, and κcore= 0.123 [45]. In this way, we can outline a scheme to
provide objects which can be patterned or positioned on the nanoscale with these remarkable inverse
gain/loss properties. The possibility of switching between forward and backward unidirectional
scattering by varying the coefficient κ in the core of optical nanoantennas provides a powerful system
for the focusing and manipulation of light on the nanoscale.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/8/1440/
s1, Figure S1: Far-field forward-to-backward directionality GFS/BSmax with different (a) metal edge lengths d,
(b) dielectric edge lengths l, and (c) face-to-face distance a.
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