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Abstract: A broadband terahertz (THz) absorber, based on a graphene metasurface, which consists
of a layer of ring-porous patterned structure array and a metallic mirror separated by an ultrathin
SiO2 dielectric layer, is proposed and studied by numerical simulation. The simulated results show
that the absorptivity of the absorber reaches 90% in the range of 0.91–1.86 THz, and the normalized
bandwidth of the absorptivity is 68.6% under normal incidence. In the simulation, the effects of the
geometric parameters of the structure on the absorption band have been investigated. The results
show that the absorber is insensitive to the incident polarization angle for both transverse electric
(TE) and transverse magnetic (TM) under normal incidence. In addition, the absorber is not sensitive
to oblique incidence of the light source under TE polarization conditions, and has an approximately
stable absorption bandwidth at the incident angle from 0◦ to 50◦. The absorption band can be
adjusted by changing the bias voltage of the graphene Fermi level without varying the nanostructure.
Furthermore, we propose that a two-layer graphene structure with the same geometric parameters
is separated by a dielectric layer of appropriate thickness. The simulated results show that the
absorptivity of the two-layer absorber reaches 90% in the range of 0.83-2.04 THz and the normalized
bandwidth of the absorptivity is 84.3% under normal incidence. Because of its excellent characteristics
based on graphene metamaterial absorbers, it has an important application value in the field of
subwavelength photonic devices.

Keywords: terahertz; graphene; broadband absorber; metasurface

1. Introduction

The area between the far infrared and the ultra-microwave is terahertz (THz), whose frequency
ranges from 0.1 to 10 THz. THz waves have important application significance. It can be used in
imaging, drug inspection, biological detection, and intracellular protein composition analysis [1–4].
In recent years, terahertz absorbers have generated much research interest due to their unique
properties and potential applications [5]. Since being proposed by Landy et al. [6], metamaterial
absorbers have greatly attracted the interest of researchers, and many types have been reported.
The most typical metamaterial absorber consists of a metal/dielectric/metal three-layer sandwiched
microstructure [7–10]. To obtain a wide absorption, multi-layer graphene/metal coupled metamaterial
absorbers have been proposed [11–14]. However, these structured absorbers cannot be adjusted after
manufacturing, and their structures are complex and difficult to manufacture [15]. Because the surface
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conductivity can be controlled by the external load voltage, graphene has obvious advantages over
traditional precious metals, such as gold and silver, which has made graphene-based absorbers a
research hotspot in the field of plasma photonic device design. Compared to a traditional metal
absorber, the graphene metamaterial absorber has simple structure and tunability [16,17]. The design
of dual-band or multi-band absorbers obtained from the basic resonance overlap of conventional
single-band absorbers has also received much attention [18–20]. The complicated structure and narrow
absorption bandwidth limits their applications [21–23]. The absorption bandwith can be enlarged with
the mutual coupling of multilayer graphene/metal [24–26], and several graphene-based absorbers with
simple structures have also been proposed [27–30]. Although the fractional bandwidth of absorbers
with metal structures or multi-layer graphene structures can be further improved, most of them have
disadvantages such as difficulty in tuning the absorption band and sensitivity to polarization angles
and incident angles. Therefore, it is very beneficial to study the novel graphene-type terahertz absorber
with a wide absorption band, as well as polarization insensitivity, multi-angle incidence, and tunability.

In this paper, we propose a polarization-independent and wide-angle absorber based on a graphene
metasurface at terahertz frequencies, which consists of a graphene array structure with ring-porous
patterns, a dielectric layer and a metal layer to achieve a high-bandwidth absorption. The metal layer
is used as the bottom-most layer and the dielectric layer is used as an intermediate layer. The patterned
graphene array is periodically arranged on the dielectric layer silicon dioxide. The simulated results
show that more than 90% of the broadband terahertz absorption in the range of 0.91 to 1.86 THz can
be achieved. By optimizing the parameters of the absorber, a fractional bandwidth of 68.6% can be
achieved under normal incidence and graphene Fermi level of 0.7 eV. Due to the axial symmetry
structure, the absorber has insensitive polarization characteristics for the transverse electric (TE) and
transverse magnetic (TM) polarized terahertz waves under normal incidence. For the TE polarization,
the absorber has a relatively stable absorption bandwidth in the incident angle range from 0◦ to 50◦.
Finally, we study the tunability of the absorption band of the structure. By changing the graphene
Fermi energy from 0.7 eV to 0.2 eV, the absorption rate of the absorber can be adjusted. Furthermore,
a double sandwich graphene structure has also been studied, and the simulated result indicates that a
wider absorption bandwidth (from 0.91 THz to 1.21 THz) and big fractional bandwidth (from 68.6%
to 84.3%) can be achieved. This study provides new inspiration for the design of graphene-based
tunable wideband absorbers that can be used in terahertz optoelectronic devices such as photodetectors
and biosensors.

2. Design of Structure

The structure of the absorber is shown in Figure 1a, and the planar structure of one unit is
shown in Figure 1b. The absorber comprises a three-layer structure with a single-layer patterned
graphene-dielectric silica-metal reflective plate. The top layer is a graphene sheet with a ring-porous
pattern arranged periodically, where R, r, and p denote the length of the outer and inner radius of
the graphene ring and the radius of the small circle around the ring, respectively. The center of the
small circle is at the center of the graphene ring. L refers to the width and length of a periodic unit
along the x and y direction, which are both 15 µm. The middle dielectric layer comprises 28 µm-thick
non-destructive SiO2 with a dielectric constant ε = 3.9 [31]. In the simulations, a layer of gold with a
thickness of 0.5 µm and a conductivity of 4.09 × 107 S/m was used as the bottom metal layer, which is
thick enough to meet the typical skin depth in the THz range. Therefore, wave transmission was
completely suppressed [32].
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Figure 1. (a) Schematic diagram of an absorber composed of toroidal porous graphene, medium, and 

Au. (b) Unit cell of the absorber, in which the values of R, r, and p are 6.5 μm, 2.05 μm, and 1.3 μm, 

respectively. (c) Double-layer graphene metasurface structure, in which the value of d1 and d2 are 12 

μm and 16 μm, respectively. 
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Figure 1. (a) Schematic diagram of an absorber composed of toroidal porous graphene, medium, and
Au. (b) Unit cell of the absorber, in which the values of R, r, and p are 6.5 µm, 2.05 µm, and 1.3 µm,
respectively. (c) Double-layer graphene metasurface structure, in which the value of d1 and d2 are 12
µm and 16 µm, respectively.

Graphene is a two-dimensional honeycomb planar material with carbon atoms. Graphene
supports surface plasmon resonance (SPR) in the infrared and terahertz bands [33]. Because of its high
carrier mobility and graphene doped in a broadband region or with a regular structure pattern, it can
effectively enhance light absorption [34]. One of the most important characteristics of graphene is that
its Fermi level can be freely adjusted by applying an electrostatic bias without changing the geometrical
structure to reconstruct new structures [35]. In the simulation, the graphene layer we describe is
characterized by an effective surface conduction model. It is known that the surface conductivity of
graphene is described by the Kubo formula [36], which considers both the intra-band transitions and
the inter-band transitions as follows:
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where T, kB, and h̄ are the absolute temperature of the environment, Boltzmann constant, and reduced
Planck’s constant, respectively, and ω is the angular frequency, Ef is the Fermi energy level, and τ is
the electron-phonon relaxation time. The first term in Equation (1) is derived from the intra-band
transitions, and the second term is derived from the inter-band transitions. For the THz frequency
domain (hω << 2Ef) at room temperature, according to the Pauli exclusion principle, the inter-band
transitions in the graphene are negligibly small; therefore, Equation (1) can be safely simplified to the
Drude model [37]:

σgra =
e2E f

πh̄2
i

(ω+ i/τ)
(2)

It can be seen from Equation (2) that due to the existence of the carrier density, the carrier density
can be changed by voltage or chemical doping, thereby adjusting the surface conductance σgra of
graphene through the Fermi level. The relationship between the Fermi level and the carrier density
can be described by E f = h̄VF

√
πn [38]. The Fermi velocity of graphene VF is 1 × 106 m/s, and n

represents the carrier density of graphene. We set the values of the Fermi level and relaxation time of
graphene as Ef = 0.7 eV and τ = 1 ps, respectively. The ambient temperature at room temperature was
fixed at 300 K. In this work, we used the finite-difference time-domain (FDTD) numerical simulation
method to analyze the three-dimensional absorber structure in the frequency domain. Plane wave
occurred perpendicularly along the z-axis. We used periodic boundary conditions in the x and y
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directions and perfectly matched layer (PML) boundary conditions in the z direction. During the
simulation, the simulation time and grid accuracy were set to 40,000 fs and 5, respectively. The size of
the simulation area was 15 µm × 15 µm, and the grid size in graphene was ∆x = ∆y = 0.15 µm, ∆z =

0.05 µm. In the calculation, a suitable non-uniform grid can be used to meet the conditions for good
convergence results.

3. Results and Discussion

3.1. Single-Layer Graphene Metasurface Structure

Using the FDTD solutions, we studied a unit cell of a graphene-based THz absorber and obtained
its electromagnetic response. The system model uses a plane wave as the light source. To investigate
the absorption performance, the reflection and transmission spectrum of the absorber were captured.
According to Kirchhoff’s current law, the relationship between the absorptivity A, the transmittance
Ttra, and the reflectance R is A = 1 – Ttra − R. A high absorption can be achieved by minimizing R and
Ttra simultaneously. The transmission is almost equal to zero (Ttra ≈ 0) in the total reflection geometry,
so the absorption efficiency of the proposed absorber can be briefly expressed by A = 1 − R.

To study the absorption characteristics of the periodically annular porous patterned graphene
structure proposed, we first simulated the spectral distribution under TE polarization and TM
polarization conditions. Figure 2 shows the absorption spectra under TE and TM polarization
conditions when the Fermi level of graphene is Ef = 0.7 eV with normal plane-wave incidence.
As expected, due to the symmetry of the structure, the absorber exhibited the same absorption
characteristics under TE and TM polarization states. The simulated results show that nearly perfect
absorption with a maximum absorption of 99.6% at 1.70 THz can be achieved. There are clearly two
absorption peaks, with an absorption rate of 98.0% and 99.6% at 1.02 THz and 1.70 THz, respectively.
The 90% absorbance bandwidth from 0.91 THz to 1.86 THz is 0.95 THz. Fractional bandwidth, which is
the absolute bandwidth relative to the center frequency, is approximately 68.6%.
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Figure 2. Transverse electric (TE) mode and transverse magnetic (TM) mode reflection (R),
transmission (T), and absorption (A) spectra.

The mechanism of the absorber is explained using Fabry–Perot interference theory. The structure
of the absorber can be generally equivalent to a Fabry–Perot resonator, which is mainly composed of a
partial reflector and a total reflector [39]. The graphene metasurface on the top of the absorber can be
seen as a partial reflector, and the bottom metal plate of it can be regarded as a total reflector. Figure 3
shows the optical coupling in such a resonator. When a plane wave is incident perpendicularly along
the x-axis polarization direction, the amplitude of the incident electromagnetic wave is represented by
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Einc and the amplitude of the reflected electromagnetic wave is represented by Eref. We can obtain the
reflection coefficient of the metasurface absorber R as [40]:

R =
Ere f

Einc
=

r12 + (t12t21 − r12r21)r23ei2βd

1− r21r23ei2βd
(3)

where r12 and r21 are the ratios of the reflected wave’s complex electric field amplitudes. Likewise,
the transmission coefficients t12 and t21 are the ratios of the transmitted wave’s complex electric field
amplitudes. The reflection coefficient of the bottom metal total reflection plate is r23 = −1, β = 2πn2/λ0

is the propagation constant, and n2 is the refractive index of the dielectric layer. According to the
formula A = 1 − R, when R is equal to 0, the absorption rate A reaches the maximum value.
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Then, to further explore the absorption characteristics of the absorber, under the conditions
of Fermi level Ef = 0.7 eV and plane-wave perpendicular incidence, we obtained the electric field
amplitude (|E|) distribution of f = 0.21 THz, f = 1.02 THz, and f = 1.72 THz in TE and TM polarization
modes, separately. Figure 4 shows the electric field amplitude distribution of the unit cell structure
under two polarization conditions. Figure 4a–c show the TE electric field amplitude distributions of the
unit cells on the xy plane at 0.21 THz, 1.02 THz, and 1.72 THz, respectively. Figure 4d–f show the TM
electric field amplitude distributions of the unit cells on the xy plane at 0.21 THz, 1.02 THz, and 1.72 THz,
respectively. For comparative analysis, we obtained the electric field amplitude distribution of the unit
cell structure at 0.21 THz, 1.02 THz, and 1.72 THz. A strong electric field limit was found at 1.02 THz
and 1.72 THz, and at 0.21 THz, corresponding to 2% absorbance; the electric field almost disappears.
Due to the strong localized surface plasmon resonance of the patterned graphene structure, most of
the electric field was limited to the edge of the ring-shaped graphene, and part of the electric field
was distributed inside the ring for both polarizations. This phenomenon is caused by strong electric
dipole resonance, which can effectively capture the energy of light, and it shows that strong electric
field confinement will lead to higher absorption [41]. Because the proposed absorber has symmetry,
the electric field amplitude distribution of TE polarization is the same as that of TM polarization electric
field after 90◦ rotation, which corresponds to the same absorption spectrum of TE and TM polarization.

Next, we investigated the influence of the geometric parameters of the absorber and the graphene
Fermi level on the absorption spectrum. According to the influence of the geometric parameters of the
structure on the absorption spectrum, the geometric parameters with the best absorption performance
are obtained after optimization. When the geometric parameters of the structure have been adjusted,
the variation of the absorption band has the same trend, due to the symmetry of the absorber. Figure 5a
shows the influence of the geometric value of the inner circle radius r of the graphene ring on the
absorption rate when other parameters of the absorber structure are kept at the optimal value under the
normal incidence of the plane wave. When we only changed the value of the inner circle radius of the
graphene ring (the inner circle radius r changed from 1.65 µm to 2.45 µm) and other parameters were
unchanged (p = 1.3 µm, R = 6.5 µm, Ef = 0.7 eV), the first absorption peak showed a slight decrease,
and the absorption wave had traces of blue shift. When r was gradually reduced, the bandwidth of the
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absorption wave slowly increases, but when r was less than 2.05 µm, the absorption rate of the middle
part of the absorption band was reduced to below 90%.

 

Figure 4. Simulated electric field amplitude (|E|) distributions of the proposed absorber, in TE 

polarization on xy plane at (a) 0.21 THz, (b) 1.02 THz, (c) 1.72 THz; in TM polarization on xy plane at 

(d) 0.21 THz, (e) 1.02 THz, (f) 1.72 THz. 
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absorption at different Fermi levels Ef from 0.2 eV to 0.7 eV of graphene.
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The influence of the value of the small circle radius p on the absorption spectrum is shown in
Figure 5b. Because the symmetry of the structure is unchanged, the waveform of the absorption
bandwidth has the same trend. The change of the absorption spectrum caused by the change of the
small circle radius p is similar to the parameter r. As R gradually decreases, the first absorption peak
slightly decreases. The absorption bandwidth gradually increases, and the second absorption peak
shifts slightly toward high frequencies. Figure 5c shows the change of the absorption spectrum when
the value of the radius R of the outer circle of the graphene ring is changed. When the change value of
the outer radius R gradually decreases, the first absorption peak shifts slightly toward blue, and the
second absorption peak tends to shift slowly toward red. Obviously, as the value of R decreased,
the band with an absorption rate of 90% gradually decreases. When R = 6.6 µm, the absorption rate of
part of the absorption broadband is less than 90%. Figure 5d shows a spectrum of the absorption rate
with the change of the Fermi level of the graphene under normal incidence for the TE polarization.
By increasing the Fermi level of graphene, the resonance intensity and local electric field of the plasmon
resonance are enhanced, so the absorption of the absorber can be tuned. As graphene’s Fermi level
Ef changes from 0.2 eV to 0.7 eV, the absorbance of the absorber can be adjusted from 55% to 100%.
In particular, at Fermi level Ef = 0.6 eV, the absorption spectrum has two absorption peaks at almost
100%, at 1.04 THz and 1.5 THz. At this time, the absorption characteristics of graphene begin to become
saturated. At Fermi level Ef = 0.7 eV, the absorption rate of the absorber decreases, but there is a wider
fractional absorption bandwidth. Graphene-based terahertz photoelectric devices such as absorbers,
sensors, and detectors have the characteristics of small size and excellent performance. These are
conducive to device integration and application.

Then, we studied the effect of the size of the periodic unit (L) and the relative permittivity (ε) of
the dielectric layer on the absorption performance of the absorber. The simulated results are shown
in Figure 6. Figure 6a shows that when the period L increases, the absorption bandwidth gradually
decreases, and the left absorption peak begins to decrease. The absorption rate of the absorber reaches
99% in the range of 1.44 Thz to 1.73 THz when L = 13 µm, which is equal to the radius of the outer ring
of the graphene ring. Figure 6b shows the effect of relative permittivity (ε) of the dielectric layer on
the absorber. As the relative permittivity gradually increases, the absorption bandwidth changes in
small shifts to lower frequencies. The relative permittivity of the dielectric layer has little effect on the
waveform of the absorption bandwidth of the absorber.

 

Figure 6. Results of simulating the periodic unit of the structure and relative permittivity of the 

dielectric layer. (a) Influence of the size of the periodic unit (L) of the structure on the absorption 

performance. (b) Effect of the relative dielectric constant of the dielectric layer (ε) on absorption 

performance. 

Finally, we studied the dependence of the absorber on the incident angle of the light source and 

the behavior of the polarized incident angle. The graphene ring was designed in an axis-symmetrical 

pattern, so that the absorber structure could eliminate polarization sensitivity. Figure 7a shows the 

dependence of the absorption spectrum on the polarization angle θ when the light source is obliquely 

incident under TE polarization conditions. It can be seen from the figure that the designed absorber 

has good absorption performance and relatively stable broadband absorption rate in a wide range of 

incident angles. It can be seen that the broadband absorption under TE polarization conditions at a 

light source incident angle θ = 50 still reaches more than 90% in the range of 1.01 THz to 1.84 THz. 

The absorber has advantages, such as a wide normalized bandwidth or polarization insensitivity and 

wide-angle incidence. Figure 7b shows the absorption spectrum when the polarization angle ψ 

changes from 0° to 90° at normal incidence. From the figure, when the polarization angle changes 

from 0° to 90° under normal incidence, the absorption broadband of the absorber does not change 

much with the polarization angle ψ. With the increase of the polarization angle ψ, the absorption 

broadband characteristics can be kept substantially unchanged, due to the axisymmetric 

characteristics of the absorber. In future practical applications, the terahertz broadband absorber 

must have wide-angle incidence and polarization insensitivity. 

 

Figure 7. (a) Relationship between the absorption spectrum and the angle of incidence θ under TE 

polarization. (b) Dependence of the absorption spectrum on the polarization angle ψ at normal 

incidence. 

  

Figure 6. Results of simulating the periodic unit of the structure and relative permittivity of the dielectric
layer. (a) Influence of the size of the periodic unit (L) of the structure on the absorption performance.
(b) Effect of the relative dielectric constant of the dielectric layer (ε) on absorption performance.

Finally, we studied the dependence of the absorber on the incident angle of the light source and
the behavior of the polarized incident angle. The graphene ring was designed in an axis-symmetrical
pattern, so that the absorber structure could eliminate polarization sensitivity. Figure 7a shows the
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dependence of the absorption spectrum on the polarization angle θ when the light source is obliquely
incident under TE polarization conditions. It can be seen from the figure that the designed absorber
has good absorption performance and relatively stable broadband absorption rate in a wide range of
incident angles. It can be seen that the broadband absorption under TE polarization conditions at a
light source incident angle θ = 50◦ still reaches more than 90% in the range of 1.01 THz to 1.84 THz.
The absorber has advantages, such as a wide normalized bandwidth or polarization insensitivity and
wide-angle incidence. Figure 7b shows the absorption spectrum when the polarization angle ψ changes
from 0◦ to 90◦ at normal incidence. From the figure, when the polarization angle changes from 0◦ to
90◦ under normal incidence, the absorption broadband of the absorber does not change much with
the polarization angle ψ. With the increase of the polarization angle ψ, the absorption broadband
characteristics can be kept substantially unchanged, due to the axisymmetric characteristics of the
absorber. In future practical applications, the terahertz broadband absorber must have wide-angle
incidence and polarization insensitivity.
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Figure 7. (a) Relationship between the absorption spectrum and the angle of incidence θ under TE
polarization. (b) Dependence of the absorption spectrum on the polarization angleψ at normal incidence.

3.2. Double-Layer Graphene Metasurface Structure

An absorber with better absorption performance can be obtained by applying a multilayer stack
structure. Here, the double-layer graphene metasurface is isolated by silica, and a model diagram
of it is shown in Figure 1c. Double-layer graphene metasurface is divided by SiO2 with thickness
d1 = 12 µm, the value of d2 is set to 16 µm, and the value of the graphene Fermi level Ef is set to
0.6 eV. Other geometric parameters (R = 6.5 µm, r = 2.05 µm, p = 1.3 µm) are consistent with the
single-layer graphene absorber. Figure 8a shows the absorption spectrum of a double-layer graphene
structure at normal incidence. The results show that 90% of the absorption bandwidth reaches 1.21 THz
from 0.83 THz to 2.04 THz. The fractional bandwidth (the absolute bandwidth relative to the center
frequency) is approximately 84.3%. Compared with the single-layer graphene absorber, the absorption
bandwidth is extended by 0.21 THz, and the fractional bandwidth is increased by 15.7%. We studied
the relationship between the interval thickness d1 and the absorption spectrum, and only changed it
from 8 µm to 16 µm. Figure 8b shows the relationship between different interlayer thicknesses and
absorption spectra: The absorption rate of the middle of the absorption band is less than 90% when d1
does not exceed 12 µm. The bandwidth will decrease when d1 increases, whereas the absorption rate
of the middle of the absorption band will increase. Thus, there is an optimal d1 for the absorption rate
and bandwidth. This is because the strength of the resonance coupling on the surface of the upper
and lower layers of graphene depends, to a large extent, on the distance between them. Increasing
or decreasing the coupling distance will reduce the near-field coupling to some extent, thus showing
changes in absorption performance.
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4. Conclusions

In this paper, we have proposed an active tunable, wide-angle, and polarization-insensitive
broadband terahertz absorber, based on a ring-porous patterned graphene metasurface. The simulated
results show that the best characteristics can be achieved by optimizing the geometric parameters of
the absorber. They also show that the bandwidth of the absorber is over 0.95 THz (with a fractional
bandwidth of 68.6%), for 90% absorbance under normal incidence. It is verified by simulation that the
symmetrical structure of the absorber has the characteristics of wide-angle incidence and polarization
independence. By changing the Fermi level of graphene, the absorption rate of the absorber can be
flexibly adjusted. The absorber after coupling two layers of graphene structure obtains a fractional
bandwidth of 84.3%. We think the absorber has potential applications in the fields of sensing, detection,
and other optoelectronic devices, such as those used as an absorber in a Q-switched laser.
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