CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts

Marco Calizzi ^{1,2}, Robin Mutschler ^{1,2}, Nicola Patelli ^{3,*}, Andrea Migliori ⁴, Kun Zhao ^{1,2}, Luca Pasquini ³, and Andreas Züttel ^{1,2}

- ¹ Laboratory of Materials for Renewable Energy, Institute of Chemical Sciences and Engineering, École polytechnique fédérale de Lausanne, Valais/Wallis, Energypolis, Sion, Switzerland
- ² EMPA Materials Science & Technology, Dübendorf, Switzerland
- ³ Department of Physics and Astronomy, Alma Mater Studiorum Università di Bologna, Bologna, Italy
- ⁴ Unit of Bologna, Institute of Microelectronics and Microsystems, National Research Council, Bologna, Italy
- * Correspondence: <u>nicola.patelli@unibo.it</u>

Mass spectrometry

Table S1. Reference table for the assignments of mass spectrometer peaks.

Molecule	Major peak of molecule [m/z] (100% relative intensity)	Reference peak for molecule[m/z]	Relative intensity reference peak [%]	Minor contributions to peak. Relative intensity to the molecules major peak (greater than 5%)		
CH4	16	15	89	MeOH (12%), EtOH (7%)		
C2H4	28	26	53	C2H6 (23%), C3H6 (10%), C3H8 (9%), C4H8 (8%), EtOH (10%)		
C2H6	28	30	26	MeOH (6%), EtOH (8%)		
C ₃ H ₆	41	39	73	C3H8 (18%), C4H8 (34%), C4H10 (17%), C5H10 (14%), C5H10 (27%), C5H12 (19%),		
C3H8	29	29	100	C2H6 (22%), C4H8 (13%), C5H10 (21%), C5H12 (14%), MeOH (45%), EtOH (30%)		
C4H8	41	56	39	None		
C4H10	43	43	100	C3H8 (18%), C5H12 (100%)		
C5H10	42	70	39	None		
C5H12	43	57	20	None		
CO ₂	44	44	100	C3H8 (27%)		
СО	28	28	100	C2H4 (100%), C2H6 (100%), C3H8 (59%), C4H8 (27%), CO2 (10%)		
H ₂ O	18	18	100	None		
MeOH	31	32	74	None		
EtOH	31	45	51	None		

Activation energy determination

Table S2. Activation temperature (T_a) of selected m/z mass spectrometer peaks, which are assigned to C₁-C₅ hydrocarbon products, the corresponding temperature of the maximum activity Tmax, the starting and ending temperature of the kinetically determined reaction range (T1 kin and T2 kin) and activation energy (E_a). %Tmax is an indicator that tells if the reaction is solely limited by the reaction kinetics; it gives the ratio of T2 kin compared to Tmax. R² is assigned to the Arrhenius plots (inverse T1 kin to T2 kin vs. the natural logarithm of the normalized MS signal) on which the activation energy is determined.

m/z	ass. comp.	Т _а [K]	Tmax [K]	T1 kin [K]	T2 kin [K]	Width kin [K]	% Tmax	Max signal	E _a [kJ/mol]	R ²
15	CH4	444	570	444	525	81	64%	9.47E-10	70	0.999
26	C ₂ H ₄	480	600	461	570	109	75%	7.39E-11	80	0.997
29	C ₃ H ₈	470	590	529	578	49	90%	1.66E-10	64	0.998
30	C ₂ H ₆	480	590	489	570	81	82%	5.26E-11	67	0.999
39	C ₃ H ₆	480	600	546	583	37	86%	7.32E-11	101	0.998
56	C4H8	460	600	534	591	57	94%	1.98E-11	89	0.997
57	C5H12	460	590	534	583	49	95%	7.28E-12	41	0.987
70	C5H10	460	595	534	587	53	94%	6.14E-12	67	0.982

Sample 30Fe70Co.

Sample 50Fe50Co.

m/z	ass.	T _a	Tmax	T1	T2	Width	% Tmax	Max signal	Ea	R ²
	comp.	[K]	[K]	kin	kin	kin [K]			[kJ/mol]	
				[K]	[K]					
15	CH4	500	615	499	581	82	70%	3.41E-10	75	0.992
26	C ₂ H ₄	530	620	540	581	41	57%	5.04E-11	138	0.988
29	C ₃ H ₈	520	620	565	590	25	70%	1.14E-10	83	0.995
30	C ₂ H ₆	530	620	573	590	17	67%	2.54E-11	105	0.99
39	C ₃ H ₆	530	615	540	581	41	60%	5.24E-11	160	0.984
56	C ₄ H ₈	560	610	557	581	24	42%	1.49E-11	165	0.992
57	C5H12	550	585	561	573	12	66%	6.20E-12	141	0.979
70	C5H10	560	610	557	577	20	34%	5.28E-12	135	0.992

Sample 76Fe24Co.

m/z	ass.	T _a	Tmax	T1	T2	Width	% Tmax	Max signal	Ea	R ²
	comp.	[K]	[K]	kin	kin	kin [K]			[kJ/mol]	
				[K]	[K]					
15	CH4	560	645	566	599	33	46%	5.09E-10	137	0.998
26	C ₂ H ₄	560	640	557	591	34	39%	5.95E-11	241	0.991
29	C3H8	560	630	574	603	29	61%	1.44E-10	109	0.996
30	C2H6	560	635	566	603	37	57%	4.36E-11	161	0.996
39	C ₃ H ₆	560	630	557	578	21	26%	4.82E-11	277	0.996
56	C4H8	560	620	557	578	21	30%	1.39E-11	228	0.992
57	C5H12	560	600	557	578	21	45%	8.23E-12	198	0.99
70	C5H10	560	605	562	574	12	31%	5.03E-12	226	0.988

Catalytic properties: product by product comparison

Figure S1. Catalytic properties of Fe, Co and Fe-Co NPs in a flow reactor with 4:1 H₂:CO₂ ratio, 1 bar and 10 mln min⁻¹, measured by mass spectroscopy. (a) CO₂ conversion (b) CO yield, (c) CH₄ yield (d) conversion curves of the summed up C2-C5 mass spectrometer normalized signals for m/z=26,29,30,39,56,57,70.

Figure S2. Activation energies of C_2 - C_5 products formation as a function of the Fe content in the alloy precursor. The colours corresponding to the different products are listed in the legend, with the m/z ratio of the MS reference peak increasing from top to bottom.

Figure S3. (a) XRD of the Fe-Co samples after the CO₂ hydrogenation experiments, background corrected; (b) a detail of the main FeCo *bcc* peak shifted to higher angular positions with increasing Co content.