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Abstract: MnO2 nanostructures were fabricated by plasma assisted-chemical vapor deposition
(PA-CVD) using a fluorinated diketonate diamine manganese complex, acting as single-source
precursor for both Mn and F. The syntheses were performed from Ar/O2 plasmas on MgAl2O4(100),
YAlO3(010), and Y3Al5O12(100) single crystals at a growth temperature of 300 ◦C, in order to investigate
the substrate influence on material chemico-physical properties. A detailed characterization through
complementary analytical techniques highlighted the formation of highly pure and oriented F-doped
systems, comprising the sole β-MnO2 polymorph and exhibiting an inherent oxygen deficiency.
Optical absorption spectroscopy revealed the presence of an appreciable Vis-light harvesting, of
interest in view of possible photocatalytic applications in pollutant degradation and hydrogen
production. The used substrates directly affected the system structural features, as well as the resulting
magnetic characteristics. In particular, magnetic force microscopy (MFM) measurements, sensitive to
the out-of-plane magnetization component, highlighted the formation of spin domains and long-range
magnetic ordering in the developed materials, with features dependent on the system morphology.
These results open the door to future engineering of the present nanostructures as possible magnetic
media for integration in data storage devices.

Keywords: MnO2 nanostructures; plasma assisted-chemical vapor deposition; single crystal
substrates; photocatalysis; magnetic materials

1. Introduction

Manganese oxides have attracted considerable interest thanks to their diversity of oxidation states
and crystal structures, yielding broadly tunable characteristics as a function of the adopted preparation
conditions [1–11]. In particular, a remarkable attention has been focused on manganese dioxide,
thanks to its low-cost, natural abundance, environmental friendliness, and versatile chemico-physical
properties [12–15]. MnO2 exhibits at least six different structurally related crystalline modifications (α, β,
γ, δ, ε, and λ) [1,2,4,7,10,16–19]. All these polymorphs are semiconductors with low resistivity [2,20,21],
and have emerged as attractive candidates for several end-uses, including electrodes in Li- and Na-ion
batteries and supercapacitors, thermoelectric materials, chemical sensors, photo- and electrocatalysts
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for pollutant degradation and hydrogen production, and magnetic devices useful for information
storage [5,8,11–15,18,21–33]. Among MnO2 polymorphs, the most stable and abundant, i.e., rutile-type
β-MnO2 (pyrolusite) [16,34,35], is composed of MnO6 octahedra linked by corner-shared oxygens into
tunnel-containing frameworks [4,9,23,36]. Amid the various applications, the interest in β-MnO2 has
been promoted by its screw-type magnetic structure with an important spin-lattice coupling, as well as
by the large room temperature magnetoresistance and ferromagnetism. Altogether, these features are
of considerable importance from both a fundamental and a technological point of view, since they can
give rise to applications in recording devices and contribute to new studies on electronic-magnetic
interactions in the target systems [16,24,25,35,37].

Whereas bulk manganese oxide crystals and, especially, powdered materials with different
morphologies have been widely investigated [3,12,16,17,27,29,35,37,38], the fabrication and tailoring
of supported thin films and nanostructures, that may yield significant changes in the system behavior,
deserves further attention [6,14,15,22]. In this regard, one of the valuable means to modulate MnO2

nanosystem properties involves its controlled anionic doping, far less explored than the conventional
cationic one. In particular, fluorine doping can be a useful tool to enhance the surface reactivity and tune
both electrical and optical characteristics, a key issue for eventual photocatalytic, energy storage, and gas
sensing applications [34,39–42]. In addition, the obtained system characteristics are directly affected by
the electronic structure and properties of surfaces and interfaces, as well as on the nature of the used
deposition substrate, which may influence the nucleation kinetics and the subsequent structural
and morphological evolution [3,21]. So far, the preparation of MnO2 thin films/nanosystems has been
performed on polycrystalline substrates by various techniques. These include reactive sputtering on
Si [22], pulsed laser deposition on stainless steel [30], thermal evaporation on glass and quartz [9],
hydrothermal routes on Si, carbon cloth, and Ni foams [14,33,43], electrodeposition on stainless steel,
glass, carbon fibers, and Ni sheets [7,8,10,11], chemical bath deposition on stainless steel [13,30], spray
pyrolysis on glass and steel [15], atomic layer deposition on Si [6,31,32], and chemical vapor deposition
(CVD) on Si and glass [23,34,44]. Nevertheless, the use of single crystal substrates can not only stabilize
specific polymorphs, but also affect morphology, structure, and crystal quality [21,41,42,45]. To date,
different studies have reported on the atomic layer deposition (ALD) of α-MnO2 on NaCl(100), KCl(100),
and KBr(100) and of ε-MnO2 on Al2O3(001) [1,21]. In addition, λ-MnO2 films have been grown on
MgO(001) by plasma assisted-molecular beam epitaxy (PA-MBE) [26,27]. Films of the most stable
β-MnO2 polymorph have been obtained by ALD on Al2O3(012), SiO2(001), and MgO(100) [1,2,21]
by PA-MBE on Si(100), MgO(001), TiO2(110), and LaAlO3(001) [4,20,24,25,28], and by pulsed laser
deposition (PLD) on Si(100) [5]. Nevertheless, various of these processes involved relatively harsh
conditions either in terms of reaction atmosphere (e.g., use of ozone [1,2,6,21,31,32]) or of the used
power/temperature [4,5,24,25,27,28,30]. In view of possible practical applications, the availability
and implementation of milder and flexible preparative procedures enabling a good control over
material structure, morphology, and functional properties represent an important requirement [45].

In this study, F-doped β-MnO2 nanostructures are deposited on MgAl2O4(100), YAlO3(010),
and Y3Al5O12(100) single crystals, investigating the substrate influence on the resulting material
chemico-physical properties. To the best of our knowledge, none of these substrates has ever been
utilized so far for the growth of MnO2 thin films/nanostructures. For the first time, the target
nanosystems are prepared by means of plasma assisted-CVD (PA-CVD), exploiting the inherent advantages
and versatility of this technique for the tailored fabrication of supported materials under relatively
soft operating conditions [34,45]. Mn(hfa)2TMEDA (Hhfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione;
TMEDA = N,N,N′,N′-tetramethylethylenediamine) [44,46], a fluorinated molecular compound, was
used as a single-source precursor for both Mn and F. The obtained nanomaterials were analyzed by
a multi-technique approach, involving X-ray photoelectron spectroscopy (XPS), secondary ion mass
spectrometry (SIMS), field emission-scanning electron microscopy (FE-SEM), X-ray diffraction (XRD),
and optical absorption measurements. In addition, the system surface morphology and magnetic
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characteristics were investigated by the combined use of atomic force microscopy (AFM) and magnetic
force microscopy (MFM), a valuable analytical tool for the local investigation of magnetic properties [47–50].

2. Experimental Procedure

2.1. Synthesis

MnO2 depositions were performed using a custom-built, two-electrode plasmochemical
instrumentation equipped with a radio frequency (RF) generator (ν = 13.56 MHz). In each experiment,
one of the target single crystals (MgAl2O4(100), YAlO3 (010), and Y3Al5O12(100), CRYSTAL GmbH®,
Berlin, 10 × 10 × 1 mm3, one-side polished) was fixed on the grounded electrode and used as
growth substrate without any pre-treatment. The Mn(hfa)2TMEDA precursor powders (0.20 g for
each deposition), synthesized according to the literature [44,46], were placed in an external glass
vessel heated at 70 ◦C and transported into the deposition zone by an Ar flow (rate = 60 standard
cubic centimeters per minute (sccm)). In order to avoid detrimental condensation phenomena, with
consequent mass losses, the gas lines connecting the precursor reservoir and the reaction chamber
were maintained at 130 ◦C throughout each experiment. Two separate auxiliary gas lines were used
to introduce Ar (15 sccm) and O2 (5 sccm) directly into the reactor. Basing on previous experiments,
the RF-power, total pressure, and interelectrode distance were kept constant at 20 W, 1.0 mbar, and 6
cm. Depositions were performed, for each of the three substrates, at a fixed growth temperature
of 300 ◦C and for a duration of 90 min. Repeated growth experiments under the same conditions
enabled to ascertain the full reproducibility of material chemico-physical characteristics. The use of
higher growth temperatures was avoided in order to prevent MnO2 transformation into Mn2O3 or
Mn3O4 [22,28,30,36]. For the same reason, the obtained samples were analyzed as-prepared, without
any ex-situ thermal treatment.

2.2. Characterization

XPS analyses were performed using a Perkin–Elmer (Chanhassen, MN, USA) Φ 5600ci spectrometer,
using a non-monochromatized Al Kα X-ray excitation source (hν = 1486.6 eV), at working pressures
lower than 10−8 mbar. Binding energy (BE) values were corrected for charging by assigning a value of
284.8 eV to the adventitious C1s signal. Atomic percentages (at.%) were calculated by signal integration
using standard Φ V5.4A sensitivity factors. Peak fitting was performed through a least-squares
procedure using the XPSPEAK program [51], with Gaussian–Lorentzian sum functions. Ar+ sputtering
was performed at 3.5 kV (Ar partial pressure = 5 × 10−8 mbar).

SIMS analyses were carried out at pressures lower than 1 × 10−9 mbar by means of a Cameca
(Gennevilliers, CEDEX, France) IMS 4f spectrometer, using a Cs+ primary ion beam (14.5 keV, 20 nA,
stability 0.1%) and negative secondary ion detection. The profiles were recorded adopting an electron
gun for charge compensation, rastering over a 175 × 175 µm2 area and detecting secondary ions
from a 8 × 8 µm2 sub-region in order to avoid crater effects. Signals were collected in beam blanking
mode and high mass resolution configuration. Sputtering times were converted into depth using
the nanodeposit thickness values measured by FE-SEM measurements.

Plane-view and cross-sectional FE-SEM analyses were carried out on a Zeiss (Oberkochen,
Germany) SUPRA 40VP apparatus, at a primary beam acceleration voltage of 5.0 kV. Nanoaggregate
dimensions and deposit thickness values were obtaining through the ImageJ® software [52] by
averaging over various independent measurements.

XRD patterns were collected by means of a Bruker (Billerica, MA, USA) D8 Advance diffractometer
equipped with a Göbel mirror, using a Cu Kα X-ray source (40 kV, 40 mA). The average crystallite sizes
D were calculated from the recorded patterns using the Scherrer formula [15,18,53]:

D = 0.9 [λ/(FWHM × cosθ)] (1)
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where λ = 0.15418 nm for the Cu Kα X-ray source, whereas FWHM and 2θ are the peak full width
at half maximum and angular position, respectively. In this work, the calculation was performed on
the (101) β-MnO2 reflection [54], from which dislocation density (δ) and microstrain (ε) values were
estimated through the following equations [19,34]:

δ = 1/D2 (2)

ε = FWHM/(4 × tgθ) (3)

Optical absorption spectra were recorded in transmittance mode at normal incidence on a Cary 50
(Agilent, Santa Clara, CA, USA) spectrophotometer, subtracting the substrate contribution in each case.
Estimation of band gap (EG) values was performed through the Tauc procedure [7–9,30,46,48]:

(αhν)n = A(hν − EG) (4)

where α is the absorption coefficient, hν is the photon energy, A is a constant, and n is a coefficient
dependent on the nature of the occurring electronic transitions (n = 2 for direct and allowed electronic
transitions [15,18,23]). EG values were obtained by extrapolating the experimental curves to intersect
the horizontal energy axis at α = 0.

AFM and MFM analyses were performed using a NT-MDT (Moscow, Russia) SPM Solver
P47H–PRO apparatus, operating in tapping mode and in air at atmospheric pressure. Root-mean-square
(RMS) surface roughness values were obtained from 3 × 3 µm2 micrographs by the NT-MDT software,
after plane fitting. MFM analyses were carried out using commercial cantilever tips (average
height = 15 µm) coated with a CoCr magnetic layer, pre-magnetized by means of an external field.
The magnetic force was measured by monitoring phase shifts in cantilever oscillations determined by
tip-specimen magnetic interactions. The possible influence of electrostatic interactions was reduced by
sample discharging prior to each analysis.

3. Results and Discussion

The surface chemical states of the developed materials were characterized by XPS. For all
the analyzed systems, only manganese, oxygen, fluorine, and carbon peaks were present in the survey
scans (see Figure S1a). The disappearance of C signals upon Ar+ sputtering for 10 min highlighted
the good system purity. In all cases, the presence of pure MnO2 was testified by the Mn2p signal shape
and position (BE(Mn2p3/2) = 642.4 eV, spin-orbit separation = 11.6 eV; see Figure 1a) [4,10,14,28,44],
as well as by the Mn3s multiplet splitting separation (Figure S1b). In fact, when the 3s electron is
photoejected from a paramagnetic center like manganese, the exchange coupling between the 3s
hole created after photoemission and the 3d electrons results in a signal splitting, whose magnitude
is a fingerprint of the metal oxidation state [3,6,8,44]. In the present case, the obtained separation
value was 4.7 eV, in good agreement with literature values for MnO2 [2,11,23,34], confirming thus
the absence of other manganese oxides in the analyzed nanomaterials. The latter conclusion was
further corroborated by the energy difference between the Mn2p3/2 and O1s lattice components
(112.7 eV; see below) [23,32,34]. In fact, two components contributed to the O1s signal (Figure 1b
and Figure S2a–c), a major one at 529.6 eV (I), attributed to lattice Mn–O–Mn moieties, and a second
one at higher BE (II), centered at 531.5 eV, due to the presence of hydroxyl groups/oxygen chemisorbed
on surface O defects [13,39,42,43]. The occurrence of the latter, already reported in previous literature
studies on various manganese dioxide polymorphs [8,16,25,37], is in line with optical absorption results
(see below). The surface F1s signal (Figure 1c,d, Figures S1c and S2d–f) was deconvoluted by means of
two different bands, located at 684.6 eV (III) and 688.5 eV (IV). Component (III) was ascribed to lattice
fluorine incorporated in manganese dioxide network, i.e., to Mn-F bonds, whereas the higher BE band
(IV) located at BE = 688.5 eV was due to CFx groups from precursor residuals [34,39,41,44]. Whereas
band (III) was present even in the inner deposit region, band (IV) was reduced to noise level after 10
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min of Ar+ erosion, indicating that, as already observed for carbon signals, contaminating species were
limited to the system surface.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 13 

 

 
Figure 1. Core level Mn2p (a), O1s (b), and F1s (c) signals, and lattice fluorine content (d), for 
manganese dioxide systems deposited on different substrates. 

Important information on the in-depth composition was gained by SIMS profiling (Figure 2a-c), 
that revealed a good material purity (mean C content lower than 10 ppm). The results highlighted an 
even F distribution throughout the investigated thickness, confirming a successful fluorine 
incorporation into manganese dioxide network. This phenomenon was traced back to the production 
of F• radicals deriving from precursor fragmentation in the used plasmas [34,39,40]. The almost 
parallel trends of manganese and oxygen signals indicated a homogeneous composition, in line with 
the presence of pure manganese(IV) oxide. The broadened deposit/substrate interface was related to 
the nano-organization of the developed systems, as revealed by FE-SEM analyses (Figure 3a-f). The 
recorded micrographs evidenced in fact a very open morphology, characterized by the presence of 
interconnected and anisotropic dendritic structures (mean width ≈ 80 nm) uniformly protruding from 
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Figure 1. Core level Mn2p (a), O1s (b), and F1s (c) signals, and lattice fluorine content (d), for manganese
dioxide systems deposited on different substrates.

Important information on the in-depth composition was gained by SIMS profiling (Figure 2a–c),
that revealed a good material purity (mean C content lower than 10 ppm). The results highlighted
an even F distribution throughout the investigated thickness, confirming a successful fluorine
incorporation into manganese dioxide network. This phenomenon was traced back to the production
of F• radicals deriving from precursor fragmentation in the used plasmas [34,39,40]. The almost
parallel trends of manganese and oxygen signals indicated a homogeneous composition, in line with
the presence of pure manganese(IV) oxide. The broadened deposit/substrate interface was related
to the nano-organization of the developed systems, as revealed by FE-SEM analyses (Figure 3a–f).
The recorded micrographs evidenced in fact a very open morphology, characterized by the presence
of interconnected and anisotropic dendritic structures (mean width ≈ 80 nm) uniformly protruding
from the underlying substrate surface. Such features might be beneficial for possible end-uses
in photocatalysis [7,19,23,34,39,44], with particular regard to wastewater purification from organic
pollutants and to water splitting for hydrogen production. The average length of the observed dendrites
was directly affected by the used deposition substrate (220 nm, MgAl2O4(100); 200 nm, YAlO3(010);
270 nm, Y3Al5O12(010)). The observed nanoaggregates originated, in turn, from the assembly of
smaller nanograins, whose dimensions, for each sample, were very close to those of the corresponding
crystallites calculated by XRD analyses (see below and Figure S3). The mean deposit thickness
values were estimated to be 230, 330, and 550 nm for nanomaterials supported on MgAl2O4(100),
YAlO3(010), and Y3Al5O12(100). The obtainment of these different values suggested a remarkable
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substrate influence on precursor decomposition and nanosystem growth, all the other conditions being
constant (see the Experimental section).Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 13 
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The system structure was investigated by XRD (Figure 4a). All the recorded patterns were
characterized by a single reflection located at 2θ = 37.3◦, related to the (101) crystallographic planes of
tetragonal β-MnO2 (pyrolusite; space group = P42/mnm; a = b = 4.40 Å and c = 2.87 Å [1,4,16,21,35,37]).
The presence of the sole (101) reflection irrespective of the used substrate suggested the occurrence of
a (101) preferential orientation and/or of anisotropic crystallite growth [23,34,44]. The relatively
weak and broad diffraction peaks, as often observed in the case of supported MnO2

films/nanosystems [9,10,13,14,22,33], suggested the formation of defective nanocrystallites, whose
average dimensions were comprised between 25 and 35 nm (Figure S3).

The calculated dislocation density (δ) and microstrain (ε) values for the present materials
(Figure 4b,c) were smaller than those reported for Si-supported MnO2 nanosystems [34]. In line with
previous studies [19,42,55], the higher δ and ε values for the specimen supported on Y3Al5O12(100)
corresponded to lower crystallite size dimensions (see Figure S3). This result was ascribed to
the different lattice mismatch between MnO2 and the used substrates, highlighting the influence of
the latter on the structural characteristics of the obtained systems and suggesting a lower content of
dislocations and defects for materials supported on YAlO3.
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Subsequently, attention was dedicated to the analysis of the system optical properties.
All the recorded optical absorption spectra (Figure 5a) were characterized by a prominent absorption
for wavelengths lower than 700 nm, corresponding to interband electronic transitions [8,23].
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The broadened absorption towards the near-IR region was consistent with the presence of oxygen
vacancies, as indicated by XPS analyses (see above). As a matter of fact, the occurrence of oxygen
defects in the target nanomaterials can favorably influence the system functional behavior for
(photo)catalytic end-uses [23,34]. In particular, the present Vis-light harvesting might be beneficial for
eventual photocatalytic applications for environmental protection and energy production, as already
mentioned [40,42,48]. Irrespective of the substrate nature, Tauc plot analysis (see Figure 5b) yielded
a mean energy gap value of EG = (2.0 ± 0.1) eV, which was blue-shifted with respect to that reported
for various MnO2 polymorphs [7,9,23]. The occurrence of this phenomenon could be mainly traced
back to oxygen replacement by lattice fluorine [23,41], and the almost identical band gap values were
in line with the very similar fluorine contents for the present samples (see Figure 1d).
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Figure 5. (a) Optical absorption spectra of MnO2 nanomaterials grown on different substrates
and (b) corresponding Tauc plots.

Finally, material surface topography and magnetic properties were investigated by the combined
use of AFM and MFM [56,57]. AFM micrographs in Figure 6, left column evidenced a uniform
interconnection of tiny aggregates for samples grown on MgAl2O4(100) and Y3Al5O12(100). In line
with FE-SEM and XRD results (see Figure 3a–f and Figure S3), the use of YAlO3(010) substrate resulted
in the formation of larger agglomerates and a more open morphology with a slightly higher RMS
roughness, corresponding to an increased surface area [23,34]. Nonetheless, a detailed analysis of AFM
images evidenced a grouping of the dendritic structures observed in FE-SEM ones, related to the tip
inability to spatially resolve the single structures [34].

As a matter of fact, MFM analyses probe the perpendicular component of the magnetic stray field
from the target systems [58]. As the magnetic tip scans over a multi-domain surface, the variations in
the local magnetic stray field can attract or repel the tip, resulting thus in the contrast of the output
image, which reflects the spatial distribution of magnetic domains [47,48,53]. As can be observed in
Figure 6, right column, the recorded micrographs revealed an even in-plane distribution of magnetic
domains. The reversing of MFM contrast from bright to dark can be associated to the switch from
repulsive to attractive surface-tip interactions, corresponding, in turn, to upward and downward
orientations of magnetic moments, respectively [42]. The lack of single-color large areas enabled to
discard the presence of magnetic impurities in appreciable amounts, confirming thus the obtainment
of pure MnO2 nanostructures with homogeneous characteristics.

A more detailed inspection of MFM micrographs revealed the occurrence of a multi-domain
configuration directly dependent on the growth substrate. For the Y3Al5O12(100)-supported sample,
the dimensions of magnetic domains (DMFM) and of the aggregates probed by AFM (DAFM) were
comparable (DMFM ≈ DAFM). In a different way, DMFM was higher (lower) than DAFM for deposits
supported on MgAl2O4(100) (YAlO3(010)). This result indicated that, in the former case, magnetic
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domains were formed by different aggregates with an analogous alignment [34], while in the latter
magnetic domains were separated by less abrupt walls.
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Taken together, the results yielded by MFM analysis highlight the stability of the system
magnetization down to the nanoscale, with tailored magnetic features and a long-range magnetic
ordering. These evidences candidate the target materials for use in data storage devices. Nevertheless,
the quantitative analysis of magnetic properties by the sole use of MFM is a difficult task, since
the obtained magnetic signals can be overlapped with additional forces acting on the tip, such as
electrostatic ones, resulting in the occurrence of topographic features in MFM images. Furthermore,
as mentioned above, MFM signals are highly sensitive only to the out-of-plane magnetic stray field,
preventing a straightforward prediction of a full 3D magnetic configuration [49]. Overall, these issues
highlight the importance of additional analyses by complementary techniques [50] for a more detailed
investigation of material magnetic properties and for further applicative research developments along
this direction.

4. Conclusions

In summary, highly pure and oriented manganese(IV) oxide nanostructures were grown on
MgAl2O4(100), YAlO3(010), and Y3Al5O12(100) single crystal substrates by PA-CVD. The obtained
systems, grown under milder operating conditions with respect to various literature works, were
characterized by the presence of single-phase, O-deficient β-MnO2 polymorph, the most stable
and abundant one belonging to the manganese dioxide family. The use of a fluorinated molecular
precursor, acting as a single-source for both Mn and F, enabled to obtain an in-situ doping of the prepared
systems, with an even fluorine incorporation throughout the deposit thickness. The target materials
yielded appreciable radiation absorption in the Vis spectral range, an important pre-requisite for their
possible use in photocatalytic applications, such as water splitting to yield hydrogen and organic
pollutant decomposition for wastewater purification. The combined use of XRD, FE-SEM, and AFM
techniques evidenced that structural and morphological characteristics were directly affected by
the used growth substrate. The latter also directly influenced the local variance of signals in MFM,
whose utilization revealed the obtainment of spin domains with a long-range magnetic ordering, of
possible interest for material application as magnetic media for integration in data storage devices.
In this regard, one of the most interesting perspectives for future developments of the present work
would concern a deeper investigation of the system magnetic properties as a function of fluorine
content by means of complementary techniques. In addition, the outcomes yielded by this study may
open up attractive perspectives for the translation of the proposed preparation route to thin films
and nanosystems with a memory function for recording devices, in which reading and writing of data
can be done by magneto-optical effect.
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