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Abstract: In this paper the effects of 5 MeV proton irradiation on nitrided SiO2/4H-SiC
metal–oxide–semiconductor (MOS) capacitors are studied in detail and the related mechanisms
are revealed. The density of interface states (Dit) is increased with the irradiation doses, and the
annealing response suggests that the worse of Dit is mainly caused by displacement effect of proton
irradiation. However, the X-rays photoelectron spectroscopy (XPS) measurement shows that the
quantity proportion of breaking of Si≡N induced by displacement is only 8%, which means that
the numbers of near interface electron traps (NIETs) and near interface hole traps (NIHTs) are not
significantly changed by the displacement effect. The measurements of bidirectional high frequency
(HF) C-V characteristics and positive bias stress stability show that the number of un-trapped NIETs
and oxide electron traps decreased with increasing irradiation doses because they are filled by
electrons resulted from the ionization effect of proton irradiation, benefiting to the field effective
mobility (µFE) and threshold voltage stability of metal–oxide–semiconductor field-effect transistors
(MOSFETs). The obviously negative shift of flat-band voltage (VFB) resulted from the dominant NIHTs
induced by nitrogen passivation capture more holes produced by ionization effect, which has been
revealed by the experimental samples with different nitrogen content under same irradiation dose.

Keywords: SiO2/4H-SiC MOS capacitors; proton irradiation; ionization effect; displacement effect;
interface traps; near interface traps; flat-band voltage

1. Introduction

Because of the excellent electrical and thermal properties, silicon carbide (SiC) is a promising
wide-bandgap semiconductor material with application in the power, high temperature, and space
electronic fields [1,2]. With the improvement of the µFE caused by the nitrogen passivation of SiC/SiO2

interface, high voltage power metal–oxide–semiconductor field-effect transistor (MOSFET) switches
have been available in the commercial market since 2011. SiC-based power devices are expected to be
used in aerospace domain for substantially saving weight and enhancing performance. But the different
types of irradiations in space environment will change the device electrical characteristics or even lead
to the permanent failures of devices. The SiC devices are hopeful to exhibit high radiation hardness due
to its high displacement threshold energy and the wide bandgap. Therefore, more research interests
are turned to the irradiation effect of the nitrided MOS capacitors and power MOSFETs. The previous
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studies focused on the total dose radiation response of γ-ray and X-ray, which are only considered as
ionization effect [3–10]. The negative shift of VFB and threshold voltage (VTH) is the major problem due
to the positive charges generated in the gate oxide during irradiation, but the mechanisms of formation
of positive charges are required to be further studied. In addition, the effect of ionization irradiation on
near interface traps which can significantly influence the µFE of MOSFET has not been investigated.

Also, the displacement effect of irradiation on the devices is rarely reported, which can create
defects to affect the electrical properties of the devices. Proton irradiation is one of the main particles in
space environment, and will make both the ionization effect and displacement effect. So it is required to
study the effects of proton irradiation on nitrided MOS capacitor and MOSFET for space applications.
The previous report of proton irradiation based on the lateral MOSFETs only concentrated on the
proton irradiation effects on the µFE and VTH, in which µFE is improved and VTH is decreased with
increasing doses, but the relative mechanisms are still unclear [11].

Therefore, in this paper the effects of 5 MeV proton irradiation on nitrided SiO2/4H-SiC MOS
capacitors are studied in detail and the related mechanisms are revealed. With the analysis of the XPS
measurement and annealing response of the samples, the ionization effect and displacement effect of
proton irradiation on interface traps and near interface traps are clarified, and the mechanisms of the
variation of the µFE are understood. By the experiments of the samples with different nitrogen content
under same irradiation dose, the nitrogen passivation induced the shift of VFB under irradiation is
revealed. Finally, the gate oxide integrity, free carrier concentration (nD) in epilayer and positive bias
stress stability of VFB are also discussed, which are important for the power MOSFET.

2. Experiments

2.1. Test Devices

The MOS capacitors under test were fabricated on a 4H-SiC epilayer with thickness of 5 µm and
nitrogen-doped concentration of 1.77 × 1016 cm−3, grown on a 4◦ off-axis N+ type 4H-SiC substrate
with thickness of 350 µm. Following the RCA cleaning, an HF dip, water rinsing, and thermal oxidation
were carried out in a dry O2 environment at a temperature of 1300 ◦C. Afterwards, post oxidation
NO annealing was performed under the condition of 1175 ◦C for 2 h. The thickness of the gate oxide
is about 35 nm measured by spectroscopy ellipsometry (SE). Finally, nickel was evaporated for the
backside ohmic contact and aluminum was sputtered on the oxide surface to form the gate electrode.
The diameter of the gate electrode is 50 µm. In order to analyze the mechanisms of the shift of VFB

under proton irradiation, the samples were fabricated with changing annealing temperature and time,
which are respectively 1100 ◦C with 1 h and 2 h, and 1250 ◦C with 1 h and 2 h. Schematic diagram of the
nitrided SiO2/4H-SiC MOS capacitor is shown in Figure 1. The current to voltage (I-V) characteristics
and HF (100 kHz) capacitance-voltage (C-V) measurements were measured on a CASCADE probe
station using a Keysight B1505A semiconductor parameter analyzer at room temperature prior to
the irradiation.

Nanomaterials 2020, 10, x FOR PEER REVIEW 2 of 17 

 

MOSFETs. The previous studies focused on the total dose radiation response of γ-ray and X-ray, 
which are only considered as ionization effect [3–10]. The negative shift of VFB and threshold voltage 
(VTH) is the major problem due to the positive charges generated in the gate oxide during irradiation, 
but the mechanisms of formation of positive charges are required to be further studied. In addition, 
the effect of ionization irradiation on near interface traps which can significantly influence the μFE of 
MOSFET has not been investigated. 

Also, the displacement effect of irradiation on the devices is rarely reported, which can create 
defects to affect the electrical properties of the devices. Proton irradiation is one of the main particles 
in space environment, and will make both the ionization effect and displacement effect. So it is 
required to study the effects of proton irradiation on nitrided MOS capacitor and MOSFET for space 
applications. The previous report of proton irradiation based on the lateral MOSFETs only 
concentrated on the proton irradiation effects on the μFE and VTH, in which μFE is improved and VTH 
is decreased with increasing doses, but the relative mechanisms are still unclear [11]. 

Therefore, in this paper the effects of 5 MeV proton irradiation on nitrided SiO2/4H-SiC MOS 
capacitors are studied in detail and the related mechanisms are revealed. With the analysis of the XPS 
measurement and annealing response of the samples, the ionization effect and displacement effect of 
proton irradiation on interface traps and near interface traps are clarified, and the mechanisms of the 
variation of the μFE are understood. By the experiments of the samples with different nitrogen content 
under same irradiation dose, the nitrogen passivation induced the shift of VFB under irradiation is 
revealed. Finally, the gate oxide integrity, free carrier concentration (nD) in epilayer and positive bias 
stress stability of VFB are also discussed, which are important for the power MOSFET. 

2. Experiments 

2.1. Test Devices 

The MOS capacitors under test were fabricated on a 4H-SiC epilayer with thickness of 5 μm and 
nitrogen-doped concentration of 1.77 × 1016 cm−3, grown on a 4° off-axis N+ type 4H-SiC substrate with 
thickness of 350 μm. Following the RCA cleaning, an HF dip, water rinsing, and thermal oxidation 
were carried out in a dry O2 environment at a temperature of 1300 °C. Afterwards, post oxidation NO 
annealing was performed under the condition of 1175 °C for 2 h. The thickness of the gate oxide is 
about 35 nm measured by spectroscopy ellipsometry (SE). Finally, nickel was evaporated for the 
backside ohmic contact and aluminum was sputtered on the oxide surface to form the gate electrode. 
The diameter of the gate electrode is 50 μm. In order to analyze the mechanisms of the shift of VFB 
under proton irradiation, the samples were fabricated with changing annealing temperature and 
time, which are respectively 1100 °C with 1 h and 2 h, and 1250 °C with 1 h and 2 h. Schematic diagram 
of the nitrided SiO2/4H-SiC MOS capacitor is shown in Figure 1. The current to voltage (I-V) 
characteristics and HF (100 kHz) capacitance-voltage (C-V) measurements were measured on a 
CASCADE probe station using a Keysight B1505A semiconductor parameter analyzer at room 
temperature prior to the irradiation. 

 
Figure 1. Schematic diagram of the nitrided SiO2/4H-SiC metal–oxide–semiconductor (MOS) 
capacitors. 

Figure 1. Schematic diagram of the nitrided SiO2/4H-SiC metal–oxide–semiconductor (MOS) capacitors.



Nanomaterials 2020, 10, 1332 3 of 16

2.2. High Energy Proton Irradiation

Unbiased devices were irradiated with 5 MeV protons using the EN2 × 6 serial electrostatic
accelerator (High Voltage Engineering Europa B.V., Amersfoort, Netherlands). The vertical irradiation
to surface of the samples was performed in vacuum atmosphere at room temperature with the proton
fluences of 5 × 1012 p/cm2, 2 × 1013 p/cm2, 5 × 1013 p/cm2, 1 × 1014 p/cm2, and 5 × 1014 p/cm2 under
the same proton fluence rate of 1.39 × 1010 p/(cm2

·s), respectively. The proton energy was chosen
from the energy range of protons in space environment, which is similar to the previous research on
the irradiation effects of protons on 4H-SiC epilayers and MOSFETs [11,12]. The maximum incident
depth is approximately 149 µm located in the substrate, which is determined by the Monte Carlo
simulations using the SRIM software, as shown in Figure 2 [13]. According to the SRIM simulation of
the ionization energy loss and the number of target vacancies versus the depth, the ionization effect
and displacement effect of proton irradiation occur along the path of the injected protons during the
proton irradiation. In order to analyze the mechanisms of the shift of VFB under proton irradiation, the
samples with different nitrogen contents were irradiated with the same dose of 2 × 1013 p/cm2. The I-V
characteristics and C-V characteristics of these devices were re-measured at room temperature 24 h
after each proton irradiation. The measurements of positive bias stress stability of VFB were applied by
positive bias stress of 3 MV/cm for the stress time in the range of 0–600 s, followed by HF (100 kHz)
C-V measurements.
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2.3. XPS Measurement and Annealing Experiment

XPS measurements were performed using a Thermo Scientific XPS (ESCALAB 250Xi) system,
equipped with an Al Kα radiation source (1486.6 eV) for the excitation of photoelectrons. Argon ion
sputtering was carried out in the same ultrahigh-vacuum chamber to remove the SiO2 layer gradually.
The isochronal annealing experiments were performed in air ambient without gate bias at temperatures
from 50 ◦C to 150 ◦C with each step of 50 ◦C [14]. The samples were held in 1 h, and then sequentially
processed for total 3 h at the respective temperatures before cooling back down to room temperature
for C-V characteristics measurements.
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3. Results and Discussion

3.1. Gate Oxide Integrity

The HF C-V characteristics of the samples irradiated by proton doses are shown in Figure 3,
in which the gate voltage was swept from depletion to accumulation. It can be seen that the samples
were failed in the C-V characteristics when the irradiation dose is up to 1 × 1014 p/cm2. To evaluate the
irradiation effect on the gate oxide integrity, the forward I-V characteristics were measured at room
temperature by sweeping the gate voltage up to 35 V. The forward current versus electric field (I-E)
of the samples with different doses of proton irradiation is shown in Figure 4, which is transformed
from the measured I-V characteristics. It can be observed that the leakage current of the samples
irradiated by the dose up to 5 × 1013 p/cm2 remains very little value as the electric field is smaller
than 6 MV/cm, resulted from the direct tunneling of the oxide layer, and rapidly increases because of
Fowler-Nordheim (F-N) tunneling, complied with F-N rule as the electric field higher than 6 MV/cm.
But the leakage current of the samples irradiated by the dose over 5 × 1013 p/cm2 is increased obviously
with the increasing irradiated doses in the low electric field and not complied with F-N rule in the high
electric field, which could be owing to the damage of the barrier between SiO2 and 4H-SiC caused by
the defects in the oxide layer generated by the displacement effect of proton irradiation, and this is also
the reason lost C-V characteristic for the samples after irradiation dose of 1 × 1014 p/cm2. Therefore,
this could lead to the failure of the MOSFET due to losing gate control.
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3.2. Free Carrier Concentration

The nD in the epilayer versus proton fluence is extracted by HF C-V characteristics of the samples,
as shown in Figure 5. It can be seen that the nD is reduced with increasing irradiation dose. The previous
experiment showed that the displacement effect of the proton irradiation introduces several electron
traps and their energy levels are located at 0.18 eV, 0.2 eV, 0.4 eV, 0.72 eV, 0.76 eV, and 1.09 eV below the
conduction-band edge, respectively [12], which measured on the 6.5 MeV proton-irradiated 4H-SiC
epilayer using deep-level transient spectroscopy (DLTS), which is almost of similar energy and range
of doses as our experiment. The concentrations of the defects are linearly related to irradiation dose.
These electron traps capture free carrier, resulting in the nD reduced as carrier removal effect. This effect
could significantly influence the ON-state resistance of the power MOSFET, finally leading to the
failure of the device by worsening of the resistivity of lightly doped drift region and the pinching off of
JFET region.

Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 17 

 

3.2. Free Carrier Concentration 

The nD in the epilayer versus proton fluence is extracted by HF C-V characteristics of the 
samples, as shown in Figure 5. It can be seen that the nD is reduced with increasing irradiation dose. 
The previous experiment showed that the displacement effect of the proton irradiation introduces 
several electron traps and their energy levels are located at 0.18 eV, 0.2 eV, 0.4 eV, 0.72 eV, 0.76 eV, 
and 1.09 eV below the conduction-band edge, respectively [12], which measured on the 6.5 MeV 
proton-irradiated 4H-SiC epilayer using deep-level transient spectroscopy (DLTS), which is almost 
of similar energy and range of doses as our experiment. The concentrations of the defects are linearly 
related to irradiation dose. These electron traps capture free carrier, resulting in the nD reduced as 
carrier removal effect. This effect could significantly influence the ON-state resistance of the power 
MOSFET, finally leading to the failure of the device by worsening of the resistivity of lightly doped 
drift region and the pinching off of JFET region. 

 

Figure 5. The free carrier concentration of the epilayer versus proton fluence. 

3.3. Near Interface Traps 

The normalized bidirectional HF C-V characteristics of the samples irradiated by proton doses 
are shown in Figure 6. In the measurements, the gate voltage was swept from depletion to 
accumulation, and then swept back to depletion. The hysteresis voltage (∆V) is related to the un-
trapped NIETs which could trap electrons at the accumulation condition [15]. The areal density of 
un-trapped NIETs can be calculated by (Cox/qS)∙∆V, where Cox is oxide capacitance, q is electronic 
charge, S is area of oxide capacitance, as shown in Table 1. It can be observed that the number of un-
trapped NIETs is decreased with the increasing irradiation dose. However, the number of un-trapped 
NIETs is affected by the number and the trapping state (trapped or un-trapped state) of the NIETs. 
The former can be influenced by the displacement effect of proton irradiation and the latter can be 
affected by the ionization effect of proton irradiation. 

Figure 5. The free carrier concentration of the epilayer versus proton fluence.

3.3. Near Interface Traps

The normalized bidirectional HF C-V characteristics of the samples irradiated by proton doses are
shown in Figure 6. In the measurements, the gate voltage was swept from depletion to accumulation,
and then swept back to depletion. The hysteresis voltage (∆V) is related to the un-trapped NIETs
which could trap electrons at the accumulation condition [15]. The areal density of un-trapped NIETs
can be calculated by (Cox/qS)·∆V, where Cox is oxide capacitance, q is electronic charge, S is area of
oxide capacitance, as shown in Table 1. It can be observed that the number of un-trapped NIETs is
decreased with the increasing irradiation dose. However, the number of un-trapped NIETs is affected
by the number and the trapping state (trapped or un-trapped state) of the NIETs. The former can
be influenced by the displacement effect of proton irradiation and the latter can be affected by the
ionization effect of proton irradiation.
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Table 1. Extracted hysteresis voltage and the areal density of un-trapped NIETs of the samples irradiated
by proton doses.

Irradiation Dose (p/cm2) Hysteresis Voltage (V) Areal Density of un-Trapped
NIETs (cm−2)

pre 0.20 1.2 × 1011

5 × 1012 0.08 4.7 × 1010

2 × 1013 0.07 4.2 × 1010

5 × 1013 0.06 3.6 × 1010

To analyze the displacement effect on NIETs, the XPS measurements of the samples without
irradiation and with the irradiation dose of 5 × 1013 p/cm2 (the maximum irradiation dose before
failure of the samples) were performed, in which argon ion sputtering was carried out to remove the
SiO2 layer gradually and each step of sputtering time is 10 s (about 0.8 nm in depths). The XPS spectra
of Si 2p core level taken from the different depths of the transition layers from SiO2 to SiC are shown in
Figures 7 and 8, respectively. From this process the XPS spectra at the near interface can be obtained
and compared. The results of deconvolution of the Si 2p core level XPS spectra at the near interface for
the samples are shown in Figures 9 and 10, respectively. Before the curve fitting, Shirley background
subtraction was performed and all spectra were charge compensated relative to the binding energy
of the C-C bond (284.6 eV). Then XPS spectra were resolved as sums of several components taking
each peak of a Gaussian distribution. Four main components are observed in the Si 2p spectra, which
are Si-C, Si≡N, Si-OX, and SiO2 located at 100.6 eV, 101.6 eV, 102.5 eV, and 103.4 eV binding energies,
respectively. The relative contents of the intermediate oxidation state of Si-OX and Si≡N in the Si 2p
core level spectra for the samples without irradiation and with irradiation dose of 5 × 1013 p/cm2

are shown in Figure 11, obtained by XPS analysis software (Thermo Avantage). It can be seen that
the content of Si-OX is increased slightly and Si≡N is decreased a little after irradiation. It can be
considered that the breaking of Si≡N made by displacement effect of proton irradiation leads to more
Si-OX, but the quantity is only 8%. Considering the NIET originates in Si-OX and the NIHT originates
in Si≡N [16–18], the number of both traps is not significantly changed by the displacement effect.
The trapping state of the NIETs can be markedly changed by trapping electrons during irradiation
generated by the ionization effect along the path of the injected proton. Therefore, the decrease of the
number of un-trapped NIETs after irradiation is mainly affected by the ionization effect of the proton
irradiation, which can be beneficial to the µFE of MOSFET [19–21].
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3.4. Flat-Band Voltage

The shift of VFB of the samples compared with the un-irradiation one versus proton fluence
extracted from the HF C-V characteristics of the irradiated samples (in Figure 3) is shown in Figure 12.
Before failure, the VFB of the samples decreases obviously with the increase of irradiation dose and the
shift of VFB is −3.49 V after the irradiation dose of 5 × 1013 p/cm−2, which means a significant increment
of the net positive charges nearby the SiO2/4H-SiC interface during irradiation. The schematic diagram
of main traps affecting VFB during irradiation nearby the SiO2/4H-SiC interface is shown in Figure 13.
As discussed from XPS spectra above, the number of NIETs and NIHTs are not significantly changed
by the displacement effect during proton irradiation. Therefore, the effect of proton irradiation on
VFB is mainly affected by the ionization effect of the proton irradiation, depending on the dominate
traps near the interface which could be the oxide hole traps formed by the oxygen vacancy or NIHT
induced by nitrogen passivation. So the samples with different nitrogen content varied by adjusting
the NO annealing time were performed under same irradiation dose of 2 × 1013 p/cm−2. The annealing
time is respectively 1 h and 2 h at temperatures of 1100 ◦C and 1250 ◦C. HF C-V characteristics of
the samples with different nitrogen content irradiated by same proton dose is shown in Figure 14.
Considering the different thickness of oxide (tox) of the samples, the extracted variation of the areal
density of effective dielectric charge (∆Nef) of the samples is shown in Table 2. It can be seen that the
∆Nef of the samples with annealing time of 2 h are obviously more than that with 1 h under both
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temperatures of 1100 ◦C and 1250 ◦C. It means that the ∆Nef is significantly related to the nitrogen
content. The nitrogen passivation not only reduces the numbers of the NIETs but also generates a large
number of the NIHTs, leading to the dominant hole traps nearby the SiO2/4H-SiC interface. When the
protons penetrate though the devices the ionization effect of proton irradiation creates electron-hole
pairs along the path of the injected proton. The dominant NIHTs capture more holes in this event,
resulting in the generation of net positive charges nearby the SiO2/4H-SiC interface. This is the reason
for the larger negative shift of VFB after proton irradiation. This serious problem must be addressed
because it could induce the MOSFETs to not turn off normally. Therefore, it is necessary for the nitrogen
content controlling to carefully choose annealing condition to balance the improvement of µFE induced
by the decrease of NIETs and the shift of VTH caused by the formation of NIHTs for the application of
MOSFETs in ionization irradiation environment.
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Table 2. Extracted the shift of VFB and the variation of areal density of effective dielectric charge of the
samples with different nitriding process irradiated by the same proton dose of 2 × 1013 p/cm−2.

Annealing Condition the Shift of VFB (V) Tox (nm) ∆Nef (cm−2)

1100 ◦C 1 h 0.3 48.0 1.4 × 1011

1100 ◦C 2 h 0.9 48.8 4.0 × 1011

1250 ◦C 1 h 3.2 52.8 1.3 × 1012

1250 ◦C 2 h 5.9 56.8 2.2 × 1012
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3.5. Interface Traps

Energy distributions of interface states densities of the samples irradiated by proton doses obtained
by Terman’s method based on measured HF C-V characteristics (in Figure 3) are shown in Figure 15.
It can be observed that the Dit is increased with the increasing irradiation dose. The displacement
effect of the proton irradiation causes various types broken bonds between atoms, when the protons
penetrate though the interface. The defects generated at the interface caused by the displacement effect
could be the reason for the increase of Dit. But the worse of Dit is present in the irradiation of only
ionization effect [3]. Which effect has more significant influence on Dit is analyzed by the annealing
response of the samples without irradiation and with the irradiation dose of 5 × 1013 p/cm2. The HF
C-V characteristics of the sample at different stages of the isochronal annealing are shown in Figure 16.
The relationship between the nD and annealing condition is shown in Figure 17. It can be seen that the
nD only returned to 29% of pre-irradiation levels after the isochronal annealing. The extracted VFB of
the sample at different stages of the isochronal annealing are showed in Figure 18. It can be noticed
that the VFB of the samples returned to 70% of pre-irradiation levels after the isochronal annealing.
Energy distributions of Dit of the sample at different stages of the isochronal annealing are plotted in
Figure 19. It can be seen that the recovery of Dit of the sample is 32% which is similar to the recovery
of nD (29%) mainly affected by the displacement effect and different from the recovery of VFB (70%)
mainly influenced by ionization effect, so it can be considered that the worse of Dit is mainly affected
by the displacement effect of proton irradiation.
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isochronal annealing.

Up to now, the irradiation effect on NIETs and interface traps have been analyzed and it can be
summarized in Figure 20. The µFE of MOSFET is affected by the interface traps located close to the
conduction band and the NIETs near the conduction band, and the effect of the latter one is more
significant [19–21]. The electrons in the inversion layer can directly tunnel or tunnel via interface traps
to the un-trapped NIETs when the MOSFET devices are biased into strong inversion, which reduce the
number of channel conducting electrons resulting in the effective reduction of µFE. This could explain
the results of previous study, in which the µFE of MOSFET irradiated by 5 MeV proton is increased
with the increasing irradiation dose [11]. In this case, the reduction of the un-trapped NIETs by the
ionization effect of proton irradiation could be the reason for the improvement of µFE with increasing
irradiation doses.
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3.6. The Positive Bias Stress Stability of VFB

Electrons tunneling into the NIETs far away from the interface and oxide electron traps are hardly
released quickly when suffering time-dependent bias stress (TDBS), resulting in the problem of the
threshold voltage stability [22]. It has been confirmed that n-channel MOSFET operated in strong
inversion (in a positive gate bias) can be equivalent to an n-type MOS capacitor in the accumulation
state. Thus, it is necessary to investigate the irradiation effect on the positive bias stress stability of
VFB. The samples without irradiation and with the irradiation dose of 5 × 1013 p/cm2 were applied by
positive bias stress of 3 MV/cm for different stress time in the range of 0–600 s, followed by HF C-V
measurements, as shown in Figures 21 and 22, respectively. The variation of VFB (∆VFB) compared
with the samples before the positive bias stress extracted from the C-V measurements of the samples
versus the stress time is shown in Figure 23. Compared with the un-irradiated samples, the ∆VFB

of the samples after irradiation is decreased after every stress time, which could be attributed to the
NIETs far away from the interface and oxide electron traps filled by the electrons resulted from the
ionization effect of proton irradiation. The decrease of ∆VFB after irradiation could contribute to the
threshold voltage stability of n-channel MOSFETs.
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Figure 23. The variation of VFB of the samples without irradiation and with the irradiation dose of
5 × 1013 p/cm2 versus the stress time.

Up to now, the ionization effect on the electrical characteristics can be summarized as that traps
present at the regions from SiO2 to interface (shown in Figure 13) can be filled during irradiation
caused by ionization effect, which could be beneficial to the µFE and threshold voltage stability of
n-channel MOSFETs, but cause serious problem of obvious negative shift of VFB and VTH.

4. Conclusions

In this paper the effects of 5 MeV proton irradiation on nitrided SiO2/4H-SiC MOS capacitors are
studied in detail and the related mechanisms are revealed. Because of the displacement effect of proton
irradiation in the oxide, the gate oxide integrity is broken after the irradiation dose of 5 × 1013 p/cm2,
which could lead to the failure of power MOSFET. The Dit is increased with the irradiation doses,
and the annealing response suggests that the worse of Dit is mainly caused by displacement effect of
proton irradiation. However, the XPS measurement shows that the quantity proportion of breaking
of Si≡N induced by displacement is only 8%, which means that the numbers of NIETs and NIHTs
are not significantly changed by displacement effect. The measurements of bidirectional HF C-V
characteristics and positive bias stress stability show that the number of un-trapped NIETs and oxide
electron traps decreased with increasing irradiation doses because they are filled by electrons resulted
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from the ionization effect of proton irradiation, benefiting to the µFE and threshold voltage stability
of MOSFETs. The obviously negative shift of VFB resulted from the dominant NIHTs induced by
nitrogen passivation capture more holes produced by ionization effect, which has been revealed by
the experimental samples with different nitrogen content under same irradiation dose. This serious
problem must be addressed because it could induce the MOSFETs to be not turned off normally.
Therefore, it is necessary for nitrogen content controlling to carefully choose annealing condition to
balance the improvement of µFE induced by the decrease of both of NIETs and the shift of VTH caused
by the formation of NIHTs for the application of MOSFETs in ionization irradiation environment.
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