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Abstract: Zinc Oxide is widely used in many industrial sectors, ranging from photocatalysis, rubber,
ceramic, medicine, and pigment, to food and cream additive. The global market is estimated to be
USD 3600M yearly, with a global production of 10 Mt. In novel applications, size and shape may
sensibly increase the efficiency and a new nano-ZnO market is taking the lead (USD 2000M yearly
with a capacity of 1 Mt and an expected Compound Annual Growth Rate of 20%/year). The aim of this
work was to investigate the possibility of producing zinc oxide nanoparticles by means of a spinning
disk reactor (SDR). A lab-scale spinning disk reactor, previously used to produce other nanomaterials
such as hydroxyapatite or titania, has been investigated with the aim of producing needle-shaped zinc
oxide nanoparticles. At nanoscale and with this shape, the zinc oxide particles exhibit their greatest
photoactivity and active area, both increasing the efficiency of photocatalysis and ultraviolet (UV)
absorbance. Working at different operating conditions, such as at different disk rotational velocity,
inlet distance from the disk center, initial concentration of Zn precursor and base solution, and inlet
reagent solution flowrate, in certain conditions, a unimodal size distribution and an average dimension
of approximately 56 nm was obtained. The spinning disk reactor permits a continuous production
of nanoparticles with a capacity of 57 kg/d, adopting an initial Zn-precursor concentration of 0.5 M
and a total inlet flowrate of 1 L/min. Product size appears to be controllable, and a lower average
dimension (47 nm), adopting an initial Zn-precursor concentration of 0.02 M and a total inlet flow-rate
of 0.1 L/min, can be obtained, scarifying productivity (0.23 kg/d). Ultimately, the spinning disk reactor
qualifies as a process-intensified equipment for targeted zinc oxide nanoparticle production in shape
in size.

Keywords: process intensification; spinning disk reactor; nano zinc oxide

1. Introduction

Nowadays, nanoparticle production has increased in a notable way due to its widespread
number of applications in different sectors—such as electronic and energy storage [1–4], industrial
catalysis [5,6], pharmaceutical and biomedical [3,7–9], food [10–12], civil and waste re-use [13–16],
and the environment [13,17–23]. The production of nanoparticles requires particular operating
conditions and equipment, in particular the achievement of micro-mixing conditions [24,25] to avoid
rapid aggregation phenomena [26,27], or the use of complexing agents to reduce surface electrostatic
attraction among nanoparticles, such as carboxy-methyl-cellulose, alginate, xanthan and other organic
compounds [28,29]. Metallic and metal oxide nanoparticle synthesis has been widely studied, and many
articles can be found in the literature [30]. Among metal oxide nanoparticles, ZnO attracted the interest
of focused research due to its extraordinary electronic, optical, mechanical, magnetic and chemical
properties, that are significantly different from those of the bulk counterpart: high chemical stability,
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high electrochemical coupling coefficient, a broad range of radiation absorption, paramagnetic nature
and high photostability [31]. In particular, the lack of a center of symmetry in wurtzite, combined
with large electromechanical coupling, results in strong piezoelectric and pyroelectric properties,
and the consequent use of ZnO in mechanical actuators and piezoelectric sensors [32]. ZnO is a
wide band-gap (3.37 eV) compound semiconductor, which is suitable for various kind of applications,
such as ultraviolet (UV) lasers, power generators, solar cells, etc., whereas ZnO in powder is widely
used as an additive to numerous materials and products, including ceramics, glass, cement, rubber,
and in skin lotion [33]. ZnO has been produced by various methods, using vapor deposition or
chemical precipitation methods [34]. The latter method, prepared in its liquid phase, is advantageous
for the production of nanoparticle suspensions, which avoids, among other things, the dispersion of
its material in the environment. Since the activity of ZnO is so high, it can result in greater amounts
of toxicity and requires inhibition by the addition of surfactants [35,36]. Chemical precipitation was
mainly investigated using classical lab-scale glassware, and to the author’s knowledge, no other
particular equipment (either at lab or pilot-scale) has been employed in the past. The use of a spinning
disk reactor (SDR) for inorganic and metal oxide nanoparticles production has been studied in the last
two decades by a small number of research teams, and less than 100 articles on this subject can be found
in the literature [37–44]. However, the adoption of such equipment may allow for the rapid scaling-up
of classical batch productions of nanoparticles, achieving the advantages of a continuous production
process (waste reduction, larger reproducibility and production rate, reduced manufacturing cost,
higher and consistent product quality, etc. [45]), and the production of size and shape controlled
nanoparticles from a bottom-up approach.

The present work reports the investigation of the nano-ZnO production intensification process
by the use of a lab-scale SDR, analyzing the influence of the main operative parameters on the shape,
average dimension, and size distribution of the produced particles.

2. Materials and Methods

All of the reagents were purchased from Carlo Erba (Milan, Italy) and were of analytical grade,
whereas all of the solutions were prepared with deionized water. The following reagents have
been adopted in the experiments: Zinc Sulphate Heptahydrate (ZnSO4·7H2O, purity > 99.95%,
M = 287.49 g/mol) was used as a Zn(II) precursor, whereas KOH (purity > 99.00%) was used as the
base, for the formation and precipitation of Zn(OH)2, according to the Equation (1):

ZnSO4 + 2KOH→ Zn(OH)2 + K2SO4 (1)

The molar ratio used in the production experiments was fixed as Zn(II)/OH = 0.25 mol/mol,
according to the optimal results obtained in preliminary experiments (data not showed).

The SDR used in this work is schematically reported in Figure 1, to allow insight into the main part
of this equipment, which would not be possible by displaying a photo (since it is a boxed equipment).

The equipment consists of an inner disk made of Teflon, with a 4.25 cm radius inside an external
cylinder (stator part). The feed streams are injected onto the disk surface, which rotates by means of an
electric motor. The distance from the injection point to the disk center can be varied, hereafter called
ri [cm], from 3.0 cm down to 1.5 cm at 0.5 cm steps, whereas the rotational velocity ω [rpm] can be
varied from 0 rpm up to 1400 rpm. The reagent solutions have been injected, maintaining constancy at
25 ◦C—the temperature of the water batch. The internal diameter of the feed stream tubes was 3 mm.

A total of 25 experimental runs were performed. The production experiments were performed
varying the following parameters as reported in brackets: Zn(II) initial concentration (0.02–2.00 M,
and, as a consequence, KOH molar concentration varied in the range 0.08–8.00 M), reagent solution
inlet flowrates (QZn and QKOH [L/min], 0.025–0.500 L/min), ω (400–1400 rpm) and ri (1.5–3.0 cm).
Referring to the data reported in Table 1, the pH of the produced solution was in the range 12.51–12.62
in the first 16 runs. Then, at higher Zn(II), i.e., KOH molarity, the pH increased: in runs 17–19 it
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was in the range 13.0–13.5, and in the remaining runs, it reached 13.7–14.0. At the end of each test,
the Zn(OH)2 precipitated and was separated from the liquid by centrifugation (12,000 rpm, 15 min).
The solid residue was washed three times with ethanol and was placed in the oven for 24 h at
105 ◦C. The obtained powder was then characterized and the size distribution and average diameter,
d [nm], were measured by the Dynamic Light Scattering method, using a Zetasizer Nano ZS (Malvern
Panalytical, Westborough, MA, USA), and the pH was measured using a Crison pH-meter (Barcellona,
Spain). The pH value during measurements was almost the same for all of the samples, and equal to
6.0. The yield of ZnO was measured as the ratio between ZnO produced mass and Zn(II) initial mass.
The most convincing productions were characterized using a SEM-EDS (Zeiss, Oberkochen, Germany).
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Figure 1. Spinning disk reactor (SDR) schematization.

Initially, the Zn(II) and KOH molar concentrations were set equal to 0.02 and 0.08 M, and the
maximum rotational velocity (1400 rpm) value was fixed, according to the optimal results obtained on
metallic iron nanoparticles in a previous work [34], varying both the reagent solution flowrate (0.025,
0.050, 0.075 and 0.100 L/min) and ri (1.5, 2.0, 2.5 and 3.0 cm). Once the optimal reagent flowrate and ri
values were found, all of the operating parameters were fixed, varying ω (200, 400, 800, 1200 rpm).
Therefore, once the ω optimal value was found, the Zn(II) and KOH molar concentrations were
varied (0.05/0.20, 0.10/0.40, 0.20/0.80, 0.5/2.0 and 1.0/4.0 M, respectively). Finally, an additional 4 runs
were carried out, fixing the reagent flowrates at 0.5 L/min and varying the Zn(II) and KOH molar
concentrations (0.5/2.0, 0.75/3.0, 1.0/4.0 and 2.0/8.0 M, respectively). Each experiment was carried out
in duplicate, and the average values of the obtained results were reported.
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The productivity P [kg/d] was calculated as the multiplication of the total flowrate (converted in
l/d), initial Zn concentration (converted in kg/L), and yield of ZnO.

Table 1. Experimental conditions adopted in the 25 runs.

ID QZn (L/min) QKOH (L/min) Zn(II) (M) KOH (M) ω (rpm) ri (cm)

1 25 25 0.02 0.08 1400 1.5
2 50 50 0.02 0.08 1400 1.5
3 100 100 0.02 0.08 1400 1.5
4 25 25 0.02 0.08 1400 2
5 50 50 0.02 0.08 1400 2
6 100 100 0.02 0.08 1400 2
7 25 25 0.02 0.08 1400 2.5
8 50 50 0.02 0.08 1400 2.5
9 100 100 0.02 0.08 1400 2.5

10 25 25 0.02 0.08 1400 3
11 50 50 0.02 0.08 1400 3
12 100 100 0.02 0.08 1400 3
13 50 50 0.02 0.08 200 2.5
14 50 50 0.02 0.08 400 2.5
15 50 50 0.02 0.08 800 2.5
16 50 50 0.02 0.08 1200 2.5
17 50 50 0.2 0.8 1400 2.5
18 50 50 0.1 0.4 1400 2.5
19 50 50 0.05 0.2 1400 2.5
20 50 50 0.5 2 1400 2.5
21 50 50 1 4 1400 2.5
22 500 500 0.5 2 1400 2.5
23 500 500 0.75 3 1400 2.5
24 500 500 1 4 1400 2.5
25 500 500 2 8 1400 2.5

3. Results

In this section, the experimental results of the 25 runs will be reported. A summary table (Table 1)
of the investigated operating conditions is reported.

3.1. Influence of Reagents Flowrate and Reagent Injection Point Position

Figure 2 repots the average diameter of nZnO as a function of different QZn (i.e., QKOH) and
ri values.

Table 2 reports the detail of the results obtained in the first 12 runs.

Table 2. Results obtained in the first 12 runs.

ID QZn (L/min) QKOH (L/min) Zn(II) (M) KOH (M) w (rpm) ri (cm) d (nm) Yield P (kg/d) PSD 1

1 25 25 0.02 0.08 1400 1.5 84.2 0.961 0.113 Unimodal
2 50 50 0.02 0.08 1400 1.5 67.1 0.956 0.224 Unimodal
3 100 100 0.02 0.08 1400 1.5 74.3 0.949 0.445 Unimodal
4 25 25 0.02 0.08 1400 2 81.3 0.980 0.115 Unimodal
5 50 50 0.02 0.08 1400 2 64.1 0.972 0.228 Unimodal
6 100 100 0.02 0.08 1400 2 69.5 0.966 0.453 Unimodal
7 25 25 0.02 0.08 1400 2.5 69.1 0.982 0.116 Unimodal
8 50 50 0.02 0.08 1400 2.5 50.3 0.979 0.229 Unimodal
9 100 100 0.02 0.08 1400 2.5 55.7 0.968 0.454 Unimodal

10 25 25 0.02 0.08 1400 3 76.4 0.961 0.116 Unimodal
11 50 50 0.02 0.08 1400 3 59.4 0.956 0.230 Unimodal
12 100 100 0.02 0.08 1400 3 63.7 0.952 0.456 Unimodal

1 Particle Size Distribution.
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3.2. Influence of Disk Rotational Velocity and Reagent’s Concentration

Figure 3 reports the average diameter of nZnO measured at different ω (a) and Zn(II)/KOH molar
concentrations at 0.05 L/min (b) and 0.5 L/min (c).

Table 3 reports the detail of the results obtained in the remaining 13 runs.

Table 3. Results obtained in the remaining 13 runs.

ID QZn (L/min) QKOH (L/min) Zn(II) (M) KOH (M) w (rpm) ri (cm) d (nm) Yield P (kg/d) PSD 1

13 50 50 0.02 0.08 200 2.5 68.4 0.979 0.23 Bimodal
14 50 50 0.02 0.08 400 2.5 62.4 0.979 0.23 Bimodal
15 50 50 0.02 0.08 800 2.5 58.5 0.985 0.23 Bimodal
16 50 50 0.02 0.08 1200 2.5 54.1 0.992 0.23 Unimodal
17 50 50 0.2 0.8 1400 2.5 54.2 0.992 2.32 Unimodal
18 50 50 0.1 0.4 1400 2.5 53.1 0.991 1.16 Unimodal
19 50 50 0.05 0.2 1400 2.5 50.9 0.993 0.58 Unimodal
20 50 50 0.5 2 1400 2.5 55.6 0.991 5.81 Unimodal
21 50 50 1 4 1400 2.5 60.4 0.991 11.60 Bimodal
22 500 500 0.5 2 1400 2.5 56.1 0.983 57.60 Unimodal
23 500 500 0.75 3 1400 2.5 59.4 0.981 86.22 Unimodal
24 500 500 1 4 1400 2.5 62.3 0.982 115.08 Bimodal
25 500 500 2 8 1400 2.5 64.7 0.983 230.39 Bimodal

1 Particle Size Distribution.
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3.3. Morphology of Obtained nZnO Particles

Figure 4 displays the SEM and EDX results obtained of the nZnO produced in runs: 23 (a, QZn =

0.05 L/min, ω = 1400 rpm, ri = 2.5 cm and Zn(II) = 0.02 M) and 8 (c, QZn = 0.5 L/min, ω = 1400 rpm,
ri = 2.5 cm and Zn(II) = 0.5 M). The first one was selected as it exhibited the highest productivity still
characterized by a unimodal particle size distribution; the second because it performed at the same
operating conditions, but at 1/10 of the reagent concentrations compared with run 23.
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4. Discussion

The influence of ri on the nZnO particles and total flowrate on the rotating disk was clearly visible
in Figure 2. Indeed, the optimal values were 2.5 cm for ri and 0.05 L/min for QZn, i.e., 0.1 L/min as the
total flowrate. These two parameters strongly influenced the fluid dynamic conditions established in
the rotating liquid film, which was generated onto the surface of the disk [46]. The residence time τ [s]
on the disk can be calculated as [37]:

τ =

(
81π2υ

16ω2Q2

)1/3(
r4/3

d − r4/3
i

)
(2)

where Q is the total inlet flowrate [m3/s], ν is the kinematic viscosity [m2/s], assumed equal to that of
water being the diluted solution, and rd [m] is the disk radius. Figure 5 summarizes the influence of ri
on residence time.

The increase of ri and Q caused a decrease in the reagents residence time on the rotating disk surface;
therefore, τ being too low, or Q too large, may hinder completion of the reaction. Usually, these kind
of precipitation reactions performed by the SDR are very rapid [38], with induction times lower
than 1–1.5 ms. Therefore, the influence of the analyzed parameters on the reaction yield was quite
limited within the investigated range. Indeed, at fixed ri, an increase in Q caused a yield reduction of
approximately 1–3% (see Table 2), whereas when maintaining Q as constant, an increase in ri led to
a yield reduction of 1–2%. These parameters also influenced the average dimension of the obtained
nanoparticles, mainly due to the different specific power values dispersed in the rotating liquid film ε
[W/kg] and mixing time τmix [s], as already observed in previous works [10,24]:

ε =
1

2τ

[(
ω2r2 + vr

2
)
out
−

(
ω2r2 + vr

2
)

f eed

]
(3)

τmix = 12
(
υ
ε

)0.5
(4)
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where vr [m/s] is the average radial velocity calculated according to a simplified centrifugal model [35].
Figure 6 displays the influence of ε (a) and of τmix (b) on the nZnO particles mean diameter.
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The mean particle’s diameter trend with respect to ε and τmix was, of course, analogous, as the
latter parameter depends on the former, and showed that the same minimum occurred for ri = 2.5 cm,
at all Q values. The order of magnitude of ε and τmix were in line with those obtained in a previous study,
working at similar operative conditions (Q = 0.1–0.2 L/min) [34]. It has already been demonstrated
that when the mixing time of the SDR is in the order of 0.1–1 ms, the obtained particles can reach
dimensions lower than 100 nm, as obtained in the present study [35].

The subsequent runs were performed by fixing the Q to 0.1 L/min and the ri to 2.5 cm, according
to the lower mean diameter obtained. The influence of the Zn(II) precursor molar concentration on
d was quite limited, compared with that of ω (see Figure 3). This can be explained by considering
that when the SDR is used, the average size of the produced nanoparticles is mainly influenced by ε
and of τmix (i.e., by ω and fluid dynamic conditions), whereas the initial reagents concentration can
influence d only to some extent, as reported in previous works, where classical synthesis pathway and
equipment were also used.

The results obtained by the SDR are well comparable with those reported in literature by Liu and
Zeng [47], Gao et al. [48] and Wirunmongkol et al. [49]. In this work, the mean hydrodynamic diameter
of the obtained particles was always in the range of 50–80 nm, with a lower OH−/Zn(II) molar ratio in
comparison with those reported in the aforementioned studies, where the most commonly used ratio
value was 10/1. In detail, in the first study, ZnO nanorods of an effective diameter of approximately
50 nm, were obtained by means of hydrothermal synthesis at 180 ◦C for 20 h, using ethylenediamine
(EDA) at an EDA/Zn(II) molar ratio of 50/1, in addition to the adoption of a Zn(II)/OH−molar ratio of 20/1.
Therefore, the synthesis required a higher energy demand and a larger quantity of reagents to obtain a
homogeneous rod-like structure for the product, if compared with the SDR equipment. Regarding
the second mentioned study [45], the authors adopted a OH−/Zn(II) molar ratio equal to 10/1 and
produced ZnO nanorods with an average diameter of approximately 100 nm, assembled into sphere-like
structures, by means of hydrothermal synthesis at 95 ◦C for 5 h, using hexamethylenetetramine (HMT)
at a HMT/Zn(II) molar ratio equal to 1/1. Finally, the last study [46] reported ZnO nano-rods assembled
in flower-structures, similar to those reported in the present study (Figure 4a,b), with a mean diameter
in the range of 30–80 nm, using hydrothermal synthesis (60 ◦C for 6 h) and adopting a OH−/Zn(II)
molar ratio equal to 10/1. The main influence of the OH− concentration was on the ZnO nanoparticles
morphology variation: at a lower OH−/Zn(II) molar ratio (2/1), they were of spherical shape, and at
a higher molar ratio (10/1–20/1), they became rod/wire-shaped, when the classical hydrothermal
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synthesis was adopted. Another important consideration reported in the aforementioned studies was
the influence of the initial Zn(II) concentration: an increase in the precursor molar concentration usually
led to an increase in the average diameter and a change in the morphology, causing an increase in the
mean diameter and the occurrence of rod/wire-shaped particles. Analogous considerations were made
in another study, where a continuous hydrothermal synthesis by supercritical water was reported [50].
Analogous results have been reported in the present study, where the flower-shaped particles obtained
at a Zn(II) concentration of 0.5 M (Figure 4b), they changed their morphology to wire/rod-shaped when
the Zn(II) concentration decreased down to 0.02 M (Figure 4a). The initial reagents concentration also
influenced the shape of the Particle Size Distribution (PSD): indeed, bimodal PSD occurred when the
Zn(II) molar rate was larger than 0.5 M—both at low and high inlet flowrates. This can be explained
by considering that at higher reagent concentration and at fixed or lower liquid film volume values
(as at higher inlet flowrate), the volume concentration of the ions quickly increased, leading to more
possibilities for nucleation reactions, but also crystal growth and aggregation phenomena [51–53].
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Overall, the production of the chemical precipitation of nano ZnO by means of a spinning disk
reactor, does not appear to require particular precautions to work continuously for a long period of
time. Scaling in the reactor was absent after the experimental campaign, and all of the particles were
suspended in the liquid, which did not evaporate at the adopted temperature values.

5. Conclusions

In conclusion, the SDR demonstrated itself to be a suitable equipment for the intensification of
nano-ZnO particles production, as it was able to obtain good performances in terms of average size
(approximately 50 nm), high yield (>97%), and unimodal particle size distribution. The same could
be achieved by adopting a larger inlet flowrate and initial Zn(II) precursor concentration, in order
to increase the production rate. Indeed, the last four runs of the reported experimental set showed
that it was possible to keep the modal particle size below 60 nm using a Zn(II) molar concentration
<1 M. In these conditions, productivity values were higher than 50 kg/d, making the overall production
process useful for industrial application. Higher inlet flowrates were not suggested, as these operating
conditions led to a sensible increase in the average dimension of particles and the size distribution,
changing from a unimodal to a bimodal one. However, further studies should be performed to
investigate the possibility of achieving larger production rates (up to 1000 kg/d), without exiting the
range of the desired product’s characteristics.
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