CuMo_xW_(1-x)O₄ Solid Solution Display Visible Light Photoreduction of CO₂ to CH₃OH Coupling With Oxidation of Amine to Imine

Chao Luo ¹, Tian Yang ³, Qianfei Huang ², Xian Liu ³, Huan Ling ¹, Yuxin Zhu ¹, Guoming Xia ¹, Wennan Zou ^{1,*} and Hongming Wang ^{1,*}

- ¹ Institute for Advanced Study, Nanchang University, Nanchang 330031, China; luochao@ncu.edu.cn (C.L.); huanling_ncu@126.com (H.L.); ncu_zhuyuxin@163.com (Y.Z.); gmxia_ncu@126.com (G.X.)
- ² School of Information Engineering, Jiangxi Modern Polytechnic College, Jiangxi 330095, China; huangqianfei1015@hotmail.com
- ³ College of Chemistry, Nanchang University, Nanchang 330031, Jiangxi, China; yangtian_92@163.com (T.Y.); lzhnxydlx@163.com (X.L.)
- * Correspondence: zouwn@ncu.edu.cn (W.Z.); https://www.hongmingwang@ncu.edu.cn (H.W.)

The standard curve method was applied to carry out the quantitative analysis using benzylamine, methanol and N-benzylidenebenzylamine as standard sample, respectively.

The conversion rate of benzylamine were obtained according to the internal standard curve:

$$m_{t0} = 1.9451 \times 10^{-4} \times A_{t0} - 0.027, \tag{1}$$

$$Con.\% = (m_0 - m_{t0})/m_0 \times 100\%, \tag{2}$$

 $m_0 = 0.9813mg$, slope:1.9451×10⁻⁴, intercept: -0.027, m_0 : the mass of benzylamine, A_{t0}: Gas chromatographic peak area of benzylamine at time t, m_{t0} : the mass of benzylamine at time t.

The yield of CH₃OH were obtained according to the formula:

$$Y_t = 0.34482 \times A_{t1} + 0.012 \tag{3}$$

At: Gas chromatographic peak area of CH₃OH at time t, Yt: The yield of CH₃OH at time t, units: μ mol, slope: 0.34482, intercept 0.012.

The selectivity of N-benzylidenebenzylamine were obtained according to the formula:

$$m_{t1} = 2.4091 \times 10^{-4} \times A_{t1} - 0.016, \tag{4}$$

Sel.% =
$$m_{t1}/(m_0 - m_{t0})$$
, (5)

slope: 2.4091×10^{-4} , intercept: - 0.016, m_{t1}: the mass of N-Benzylidenebenzylamine at time t, A_{t1}: Gas chromatographic peak area of N-benzylidenebenzylamine at time t.

Figure S1. GC chromatograms of (**a**) before irradiation and (**b**) the stand CH₃OH and benzylamine in CH₃CN and (**c**) product (CH₃OH) after irradiation for 10 hours with the partial enlarged drawing.

Figure S2. The ¹H NMR spectrums of (**a**) the product (CH₃OH) photocatalyzed by CuW_{0.7}Mo_{0.3}O₄ (x = 0.7) after reaction for 10 hours and (**b**) the stand CH₃OH.

Figure S3. the MS of Products photocatalyzed by $CuW_{0.7}Mo_{0.3}O_4$ (x = 0.7) after irradiation for 10 hours.

Figure S4. GC chromatograms of gas phase products after irradiation for 10 hours.

Figure S5. XPS spectra of (a) $\rm Cu_{2p}$ and (b) $\rm W_{4f}$ of photocatalysts.