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Abstract: Thermal conductivity (k) of polymers is usually limited to low values of ~0.5 Wm−1K−1

in comparison to metals (>20 Wm−1K−1). The goal of this work is to enhance thermal conductivity
(k) of polyethylene–graphene nanocomposites through simultaneous alignment of polyethylene
(PE) lamellae and graphene nanoplatelets (GnP). Alignment is achieved through the application
of strain. Measured values are compared with predictions from effective medium theory. A twin
conical screw micro compounder is used to prepare polyethylene–graphene nanoplatelet (PE-GnP)
composites. Enhancement in k value is studied for two different compositions with GnP content of
9 wt% and 13 wt% and for applied strains ranging from 0% to 300%. Aligned PE-GnP composites
with 13 wt% GnP displays ~1000% enhancement in k at an applied strain of 300%, relative to k of
pristine unstrained polymer. Laser Scanning Confocal Microscopy (LSCM) is used to quantitatively
characterize the alignment of GnP flakes in strained composites; this measured orientation is used as
an input for effective medium predictions. These results have important implications for thermal
management applications.
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1. Introduction:

Miniaturization accompanied with integration of additional functionalities in electronic devices
has resulted in a continuous increase in power dissipation. Efficient heat dissipation in these devices
is crucial to maintain chip temperatures below permissible levels allowing optimum performance
and reliable service life [1,2]. Lightweight polymer composites with enhanced thermal conductivity
can enable dissipating required levels of heat fluxes. The goal of this research is to enhance thermal
conductivity of polyethylene using graphene nanoplatelets (GnPs) as a filler by simultaneously aligning
polyethylene lamellae and GnPs along the direction of heat transfer.

Polymers are used in a wide spectrum of applications ranging from electronic packaging to
aerospace materials. Because of their unique advantages such as light weight, good chemical resistance,
good corrosion resistance, and excellent processability, polymers provide avenues to replace metals in
thermal management applications [3–6]. Polymers, however, typically have lower thermal conductivity
(<0.5 Wm–1K–1) compared to metals (>20 Wm–1K–1), which limits their application in thermal
management. The low thermal conductivity of polymers is in part due to the random orientation
of polymer lamellae (crystalline regions) and presence of amorphous regions in between crystalline
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regions. Entanglement and impurities present in those regions lead to an increase in phonon scattering
which diminishes thermal transport [7]. Studies have shown that orienting polymer chains along
one direction can lead to significant enhancement in k [7–11]. Several methods for inducing polymer
chain orientation have been investigated, which include deformation by simple shear [11], mechanical
strain [12], gel spinning [13–15] and super drawing [16–18]. Singh et al. achieved 20-fold enhancement
in k value (4.4 Wm–1K–1) of a vertically aligned array of polythiophene fibers by electropolymerization,
in comparison to bulk polymer, due to aligned chain orientation [19]. The k of a single PE fiber with
ultra-aligned PE chains was measured to be 104 Wm–1K–1, almost 200 times larger than the k of bulk PE
(∼0.5 Wm–1K–1) [20]. In another report, Ghasemi et al. found that alignment of polymer chains resulted
in a thermal conductivity of ∼16 Wm–1K–1 in polyethylene films [21], at draw ratios approaching ∼100.
Choy and co-workers [22] investigated both in plane and out-of-plane thermal conductivity of oriented
high-density polyethylene and found the in-plane k value to increase to 14 Wm–1K–1 at 300K for an
applied strain of 2500%.

Graphene has emerged as a superior nanofiller compared to carbon nanotubes for enhancing
thermal conductivity of polymer composites, owing to its lower thermal boundary resistance (TBR) [23]
with polymers in comparison to carbon nanotubes (CNTs). The estimated range of TBR between
CNTs and the polymer matrix is 10–8–10–7m2K W–1 [24], whereas the TBR of GnPs is in the range of
~10–9m2K W–1 [23]. This lower TBR allows efficient heat transfer between polymer and graphene,
leading to overall higher thermal conductivity.

While graphene has very high in-plane thermal conductivity (~1500–5000 Wm–1K–1) [25,26],
its out-of-plane k value is low ∼10–20 Wm–1K–1 [27]. A random orientation of GnPs causes significant
heat to be partly conducted along the less efficient out-of-plane direction, limiting the contribution of
GnPs to the enhancement of k along a particular direction. Alignment achieves full advantage of the
high in-plane k of GnPs in enhancing overall composite k along a given direction. Several studies have
addressed the alignment of nanofiller. Different approaches like mechanical stretching [28], electric
field [29–31] and magnetic field [32–34] have been used for orientation of nanofillers. Mechanical
stretching has been used for alignment of both the polymer matrix [35,36] and dispersed filler
material [37,38]. Amy et al. reported an enhancement in k by a factor of 18 in epoxy-CNT composites with
densely aligned arrays of CNTs [39]. Yan et al. used magnetic field to align magnetic GnP-Fe3O4 particles
in epoxy composites and found it to enhance the k value of epoxy by almost 40% in comparison
with randomly oriented GnPs [34]. Song et al. used a self-alignment method and achieved a k value
of 6.168 Wm–1K–1 for nano fibrillated cellulose (NFC)/reduced graphene oxide (RGO) nanosheets
composite film [40].

Simultaneous alignment of both the polymer lamellae and GnPs along a given direction can
result in significant enhancement in thermal conductivity values along that direction. In this study,
we explore such simultaneous alignment effect by using mechanical strain; thermal conductivity
of PE-GnP composites is measured using the Angstrom method [41]. Laser Scanning Confocal
Microscopy [42,43] is used to visualize GnP alignment within composite samples and ImageJ Software
(v1.53c) is used to derive quantitative information regarding the average angle of orientation of GnPs
with respect to the direction of applied strain for different strains. Characterization of GnP using
confocal microscopy is a unique technique to observe the changes in alignment with applied strain,
both visually as well as quantitatively. Scanning electron microscopy (SEM), X-ray photoelectron
spectroscopy (XPS), Raman spectroscopy and Atomic force microscopy (AFM) are used to characterize
GnPs. Finally, measured enhancement in k value is compared with predictions of effective medium
theory [44].

2. Experimental Work

Polyethylene–graphene nanocomposites were prepared using a DSM Xplore micro-compounder
(Xplore Instruments, Netherlands) (Figure S1) and mechanically strained using motorized slide
(Figure S2). The processes involved in preparing the composites and mechanically straining them are



Nanomaterials 2020, 10, 1291 3 of 12

described in the Supplementary Section. Below, we present measurements of thermal conductivity of
prepared composites, characterization of GnP alignment using LSCM and effective medium theory
used for predictions of thermal conductivity of aligned composites.

2.1. Thermal Conductivity Measurement

Thermal conductivity k is obtained from the knowledge of specific heat (Cp), density (ρ), and
thermal diffusivity (α) using k = αρCp. Thermal diffusivity is measured in this work using the
Angstrom method [41]. The method involves applying a periodic heat pulse in the middle of the
sample. For this, a high resistance wire with a resistance of 262.5 Ω/m was embedded in a notch
made in the middle of the composite sample and a thermally conductive adhesive paste was used to
establish good thermal contact between the wire and the sample (Figure 1a). The wire was used to
apply sinusoidal heat signal. Two thermocouples are attached to the sample at distances of 2 and 6
mm from the heater, respectively (Figure 1a). Amplitude of temperature response decays along the
length of the sample and simultaneously experiences a phase shift (Figure 1b). Thermal diffusivity
is obtained through the knowledge of temperature amplitude and phase shift through the equation,
α = L2/([2× ∆t× ln(M/N)]), where L is the distance between temperature sensors, ∆t is the phase
difference between two temperature responses, M and N are the temperature amplitudes measured
at the two locations. A function generator supplies sinusoidal heat pulse to the heater. The sample
is placed inside a high vacuum chamber to eliminate convective heat losses. A turbo pump (Pfeiffer
HiCube, USA) is used to evacuate the chamber to pressures down to 10 mtorr. The experimental
set-up used to measure the thermal diffusivity is presented in Figure S3. Specific heat and density are
measured using Differential Scanning Calorimeter (DSC-Q1000) (TS Instruments, USA) and Pycnometer
(AccuPyc 1340V2.0) (Micromeritics, USA) respectively. The accuracy of the measurement set-up was
established through good agreement between the measured k of the pristine PE (~0.5 Wm–1K–1) and
literature [11].
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Figure 1. (a) Sample prepared for Angstrom method (b) Measured temperature response at two
different locations on the sample.

2.2. Characterization of Graphene

GnPs (graphene nanoplatelets) were characterized using SEM (JEOL, Boston, MA, USA),
XPS (PHI 5800 X-ray Photoelectron Spectrometer, Physical Electronics, Chanhassen, MN, USA),
Raman spectroscopy (Horiba, USA) and AFM (Digital Instruments, New York, USA). GnPs used in
this work had an average lateral size of ~5 µm and average thickness of 60 nm. Figure 2a shows an
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SEM image of a GnP with lateral size in the vicinity of ~5 µm. Figure 2d,e show an AFM image of
GnP indicating a thickness of 90 nm. X-ray Photoelectron Spectroscopy was used to characterize the
chemical composition of GnPs and showed a carbon content of 95.54% along with a minor oxygen
content of 3.41%. GnPs were also characterized using Raman spectroscopy as shown in Figure 2c.
The low defect density of GnPs used in this work is evident from the low intensity of the D peak and
the ratio of D/G peaks.
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Figure 2. (a) SEM image, (b) XPS spectrum, (c) Raman Spectrum, (d) Atomic force microscopy (AFM)
image, (e) AFM thickness profile.

2.3. Confocal Microscopy for Characterization of Orientation of Graphene Nanoplatelets (GnPs)

To characterize the alignment of GnPs in strained samples, we used Laser Scanning Confocal
Microscopy (LSCM). A confocal microscope creates sharp images of a specimen by excluding light
from the specimen that is not from the focal plane. The image has less haze and better contrast than
that of a conventional microscope and represents a thin cross-section of the specimen. Point-to-point
illumination of the specimen and the pinhole apertures are the key features of the modern confocal
microscope [45].

A Leica SP8 laser scanning confocal microscope with a 561 nm DPSS (Diode pumped solid state)
laser was used for imaging in this study. The samples were imaged with a 63x/1.4 oil immersion
objective with the pinhole aperture at 0.2 AU (Airy unit) and voxel dimensions of 90.2 nm × 90.2
nm × 166.4 nm and to a depth of 11 µm. Figure 3 shows LSCM images of GnPs in PE-GnP (9 wt%)
nanocomposite sample, for different strains varying from 0% to 300%. While GnPs are seen to be
randomly oriented in Figure 3a, Figure 3b–d clearly show alignment of GnPs along the stretch direction
(vertical direction shown in these figures). As a next step, we processed these images using ImageJ
software to extract quantitative understanding of orientation of GnP in strained samples.
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polyethylene (PE)-GnP composites with strains of (a) ε = 0%, (b) ε = 100%, (c) ε = 200% and (d) ε = 300%
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2.4. Angle Measurement Between GnP and Draw Direction

Using confocal optical sectioning, an image of a section is captured from the PE-GnP composite
sample. The section is in the x-y plane with thickness along the z direction. Stacking such sections
creates a 3D image of the sample. From the 3D image, average angle between GnP and stretching
direction can be measured using ImageJ software v1.53c. To find out the angle, all slices within a
certain thickness are used for detecting GnP particles in each image. Using the 3D object counter tool in
ImageJ software, the 3D particles were detected. Then, the 3D ellipsoid fitting tool within the software
is used to fit ellipsoids to individual particles. The tool provides detailed quantitative information
for each ellipsoid, including its orientation. Specifically, the coordinates of three main elongation axis
of 3D ellipsoids are provided. The vector of the shortest elongation axis is considered as a normal
vector to the ellipsoid and provides a way to quantify orientation of the ellipsoid, as shown in Figure 4.
The direction angle of the normal vector with respect to the stretch direction is calculated using the
formula, ϕ = cos−1

[
x/

√
x2 + y2 + z2

]
, where x is the direction of applied strain. The angle between

the graphene nanoplatelet and alignment direction is θ = 90◦ – ϕ. The average angle is measured by
calculating angles of orientation for approximately 3000–4000 GnPs for each sample. Analysis was
repeated for different locations within a sample and for samples with different weight percentages of
GnPs and for different strains varying from 0% to 300%.
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2.5. Effective Medium Theory (EMT)

The measured effect of alignment on the enhancement of thermal conductivity is also compared
against predictions of effective medium theory. We use the effective medium theory presented by Nan
et al. [44] as it can account for both orientation of the dispersed phase as well as interfacial thermal
resistance between dispersed particles and polymer matrix. According to the theory, the effective
thermal conductivity of aligned PE-GnP composite can be predicted by using the following equation,

ke f f ective= km
2 + f

[
β11(1− L11)

(
1 + 〈cos2 θ〉

)
+ β33(1− L33)

(
1− 〈cos2 θ〉

)]
2 + f [β11L11(1 + 〈cos2 θ〉) + β33L33(1− 〈cos2 θ〉)]

(1)

where km is the thermal conductivity of pristine polymer and ke f f ective is the effective thermal conductivity
of polymer–graphene nanocomposite with a volume fraction, f , of GnPs. The orientation of GnPs is
taken into account in the above equation through the parameter 〈cos2 θ〉, where θ is the angle between
GnPs and the draw direction, and 〈cos2 θ〉 is an ensemble averaged value of cos2 θ over all GnPs
(〈cos2 θ〉 = 1/3 for a completely random orientation and 〈cos2 θ〉 = 1 for perfectly aligned GnPs).

Lii are geometrical parameters and depend upon the aspect ratio (p) of graphene nanoparticle
(aspect ratio is the ratio of the thickness, t, to the lateral dimension, L, of the nanoplatelets). For oblate
inclusions such as nanoplatelets, where p = t/L < 1, these geometrical parameters, Lii, are computed
using the following equations

L11= L22=
p2

2(p2 − 1)
+

p

2(1− p2)3/2
cos−1 p (2)

L33= 1 − 2L11 (3)

The parameters βii in Equation (1) above are computed using,

βii =
Kc

ii − km

km + Lii
(
Kc

ii − km
) (4)

where, Kc
ii are the effective values of nanoplatelet thermal conductivity along different cartesian

directions, based on including the effect of interface thermal resistance. The effective thermal
conductivities of the nanoplatelet along in-plane (Kc

11 and Kc
22) and out-of-plane (Kc

33) are, respectively,

Kc
11= Kc

22=
kin

1 + γL11kin/km
(5)

Kc
33=

kout

1 + γL33kout/km
(6)

where, γ = (1 + 2p)α and α (= Rkm/t) is a dimensionless parameter related to interface thermal
resistance, R. kin and kout represent the in-plane and out-of-plane thermal conductivity of graphene
nanoplatelet (GnP), respectively.

3. Result and Discussion

Measured thermal conductivity values of PE-GnP composites with 9 wt% and 13 wt% GnP content
with strains between 0% to 300% are displayed in Figure 5. Thermal conductivity values for pure PE
are also presented for comparison.
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Figure 5. Thermal conductivity enhancement of pure PE, PE/GnP (9 wt%) and PE/GnP (13 wt%) as a
function of strain.

The thermal conductivity for unoriented pure PE is measured to be ∼0.5 Wm−1K−1. For the
oriented sample with an applied strain of 300%, the measured thermal conductivity of the PE sample
reaches k = 2.3 Wm−1K−1. This increase in thermal conductivity in strained PE sample is due to
the alignment of polymer lamellae. Figure 5 further shows that thermal conductivity of PE-GnP
composites is higher than pristine PE samples, indicating the beneficial effect of adding GnPs. For 9 wt%
GnP composite, k values of 1.23 Wm−1K−1 and 5.03 Wm−1K−1 are achieved for 0% and 300% strain,
respectively. A higher amount of filler content in the polymer matrix enhances the thermal conductivity
value even further. Further, the rate of increase of thermal conductivity with respect to applied strain
is higher for PE-GnP composites compared to pristine polymer samples. This higher slope is due to
the additional beneficial effect of alignment of GnPs within the strained PE-GnP composites, while in
pristine PE samples, only the alignment of polymer lamellae contributes to thermal conductivity
enhancement. This slope is observed to increase with an increase in GnP content, further indicating
that alignment of larger amount of GnPs leads to greater increase in thermal conductivity.

The above measurements clearly demonstrate the beneficial effect of simultaneous alignment of
polymer and graphene. Figure 5 also shows a good agreement between measurements and predictions
of the effective medium theory.

In Table 1, we also report thermal conductivity enhancements in aligned systems reported in other
recent works. The measured thermal conductivity enhancement in our work is seen to be comparable
to the values in Table 1.
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Table 1. Enhancement in thermal conductivity of graphene-polymer nanocomposites through
alignment effect.

Material Filler
Content

k (in plane)
(Wm−1K−1) Method of Alignment Ref

GDY/PVDF a 1 wt% 3.86 Hot press [46]
GNS/NR b 5.78 wt% 3.62 Vulcanization pressure [47]

GnP/LDPE c 7.5 wt% 2 Flow induced [48]
GnP/PS d 10 wt% 0.244 Hot press [49]

GWF e /Polyamide 12 wt% 3.73 Layer by layer stacking [50]
GnP/Epoxy 15 wt% 2.1 Z-pinning [51]
GNS/PFA f 30 wt% 2.39 Hot compression [52]

CF g/PA6 30 wt% 0.32 Thermal annealing [53]
GNP− E paper h/CF 35 wt% 20 Compression [54]

GnP/PE 13 wt% 5.5 Mechanical Strain This work
a GDY/PVDV- Graphdiyne/Polyvinylidene fluoride; b GNS/NR- Graphene Nanosheet/Natural Rubber; c LDPE- Low
Density Polyethylene; d PS- Polystyrene; e GWF - Graphene woven fabric; f PFA- Perfluoroalkoxy; g CF- Carbon
fiber; h GnP-E paper- Epoxy coated GnP.

To achieve prediction through effective medium theory, we derived alignment of nanoplatelets
using confocal microscopy. While the effect of strain on the alignment of polymer lamellae has been
quantified in our earlier works through the use of wide-angle X-ray scattering (WAXS) [43], this work
is the first to quantify alignment of GnPs in strained samples using confocal microscopy. For 9 wt%
PE-GnP nanocomposite, the average angle of GnPs with respect to draw direction was measured to
decrease from 39◦ for 0% strain to 25.7◦ for 300% (Table 2).

Table 2. Measured angle of orientation of GnPs for 9 wt% & 13 wt% PE-GnP composite.

Strain
9 wt% PE-GnP 13 wt% PE-GnP

Angle (〈θ〉) 〈cos2θ〉 Angle (〈θ〉) 〈cos2θ〉

0% 39.03 0.577 41.33 0.542

100% 32.41 0.668 28.00 0.722

200% 26.98 0.740 25.50 0.756

300% 25.68 0.756 25.00 0.751

Analysis for the 13 wt% sample showed a similar decrease in GnP angle from 41.3◦ for zero strain
to 25.0◦ for the sample with 300% applied strain. Clearly, as the applied strain is increased, the average
angle between GnP and stretching direction decreases, indicating progressive alignment of GnPs.

These angles were used as an input for effective medium theory. For k prediction, lateral
dimension (L) and thickness (t) of GnPs were taken to be 5 µm and 60 nm, respectively. Interfacial
thermal resistance (R) is assumed to be 5 ×10–8m2K/W [24], while in-plane (kin) and out-of-plane
(kout), thermal conductivity of GnPs are taken to be 1000 Wm–1K–1 and 10 Wm–1K–1, respectively.
Figure 5 shows a reasonable agreement between measurements and predictions based on the above set
of parameters.

A limitation of the effective medium model used in this work, involves the assumption of isotropic
thermal conductivity for the base polymer matrix. However, this assumption is true only for the
unstrained polymer. For strained polymer, the thermal conductivity along the strained direction
is significantly higher compared to other two directions. In this work, the value of base polymer
matrix thermal conductivity (km) was taken to be the thermal conductivity along the strained direction.
Clearly, this overestimates the average polymer matrix thermal conductivity. The predicted values
thus represent an upper bound of the thermal conductivity of aligned composites.
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4. Conclusions

In this work, we studied the effect of simultaneous alignment of polyethylene lamellae and
graphene nanoplatelets on the thermal conductivity enhancement of PE-GnP nanocomposites.
The nanocomposites were fabricated using the melt-mixing method, using a micro-compounder
followed by compression molding. Alignment effect was achieved through mechanical stretching of the
prepared composites. Laser Scanning Confocal Microscopy (LSCM) was used to quantitatively study
the alignment of graphene nanoplatelets. Thermal conductivity of composites along strain direction
was measured using the Angstrom method. PE-GnP composites with two different GnP contents of 9
wt% and 13 wt% were studied. The average angle between GnPs and strain direction was measured to
decrease from 39◦ for 0% strain to 25.7◦ for 300% strain for the 9 wt% sample, and from 41◦ to 25.0◦ for
the 13 wt% sample, for the same increase in strain, indicating progressive alignment of GnPs with
increasing strain. The thermal conductivity of nanocomposites with 9 wt% and 13 wt% composition
increased from 1.23 Wm–1K–1 and 2.16 Wm–1K–1 for the unstrained case to 5.03 Wm–1K–1 (9 wt%) and
5.55 Wm–1K–1 (13 wt%), respectively, for an applied strain of 300%, indicating the beneficial effect of
GnP alignment. These experimental values were also found to be in good agreement with theoretical
prediction based on effective medium theory.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1291/s1,
Experimental materials and method are described in this section. Figure S1 shows (a) DSM Xplore
micro-compounder (b) twin screws used for melt- mixing polymer and graphene within the micro-compounder
(c) polyethylene (PE) powder and graphene nanoplatelets (GnP) and (d) prepared PE-GnP composite sample after
compression molding. Figure S2 displays (a) Experimental setup for stretching PE-GnP composites (b) Stretched
PE-GnP specimen. Figure S3 shows the experimental setup for measurement of thermal conductivity using the
Angstrom method.
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