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A. The Magnetic Field Flux Quantum in Multiply Connected Space

The magnetic field flux quantum, Φ, defines in 2D the size of a cyclotron orbit, Φ
B . In 2D cyclotron

orbits in perpendicular magnetic field are planar without the driving part along the field direction.
Here we will demonstrate that the magnetic field flux quantum, Φ, has a different value in different
homotopy phases. To this end one can consider the Bohr-Sommerfeld (BS) rule. This rule links the
area of the 1D phase space inside the classical phase trajectory loop with the total number of quantum
states corresponding to this loop. Let us write out quasi-classical wave function in a 1D well U(x) with
the turning points a and b,

Ψ(x) =

{ c√
p sin 1

h̄

∫ x
a pdx, for Ψ(a) = 0,

c′√
p sin 1

h̄

∫ x
b pdx, for Ψ(b) = 0,

(1)

where p(x) =
√

2m(E−U(x)) (to simplicity the notation, let us assume the vertical infinite borders of
the well). From the uniqueness condition for the wave function one gets,

2
∫ b

a
pdx =

∮
pdx = Sxp = n2πh̄ = nh, (2)

which is the conventional formulation of BS rule (h is Planck constant, n is an integer; for the general
non-vertical borders of the well U(x), Sxp = (n + 1

2 )h [1]). The BS formula was derived with the
condition that the trajectory is of single-loop type. However, for a distinct homotopy class with
multi-loop trajectories one obtains,

2
∫ b

a
pdx =

∮
pdx = Spx = (2k + 1)n2πh̄ = n(2k + 1)h, (3)

for additional k loops in trajectories linking points a and b. These additional loops on both both phase
trajectory branches, ’upper’ (+p) and ’lower’ (−p), together creating the closed trajectory after the
integral

∮
pdx add 2πk.

The above observation is of high significance if BS rule is applied to an effective 1D phase
space (Y, Py) of x, y components of the 2D kinematic momentum at the presence of a perpendicular
magnetic field. The kinematic momentum components can be written explicitly at the Landau gauge,
A = (0, Bx, 0) in the following form,

Px = −ih̄ ∂
∂x ,

Py = −ih̄ ∂
∂y − eBx.

(4)

The above operators do not commute,

[Px, Py]− = ih̄eB. (5)

The operators, Y = 1
eB Px and Py, can be thus treated as operators of canonically conjugated generalized

position Y and momentum Py, as [Y, Py]− = ih̄. Hence, the 1D effective phase space, (Y, Py), is actually
the 2D space, (Px, Py). The 2D kinematic momentum space is, on the other hand, the appropriately
renormalized by the factor 1

(eB)2 and turned in-plane by π/2 the ordinary 2D space (x, y). This is due
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to the quasi-classical formula for the Lorentz force, F = dP
dt = e dr

dt × B, which gives dPx = eBdy and
dPy = −eBdx determining the relation between the trajectories in the kinematic momentum space and
position space.

Now we can notice that in the 2D position space, trajectories (x, y) may in general belong to
various homotopy classes with some non-contractible additional loops (as in the case of the charged
particle 2D systems at sufficiently strong quantizing magnetic field). In such nontrivial trajectory
homotopy case, from the BS rule one obtains,

SYPy = n(2k + 1)h, (6)

or rewritten to (x, y) space,

Sx,y =
(2k + 1)nh

eB
, (7)

which defines the quantum of the magnetic field flux,

Φk = ∆Sx,yB =
(2k + 1)h

e
, (8)

∆Sx,y is the change of Sx,y in Equation (7) when n is changed by 1. We see that exclusively for k = 0,
i.e., for the homotopy class without any additional loops on trajectories, the flux quantum equals
to Φ0 = h

e . This is the fundamental flux quantum. In other homotopy classes the flux quantum is
(2k + 1)-times greater.

Different magnetic field flux quanta Φk determine different sizes of the multi-loop cyclotron orbits,
Φk/B. We have already shown that the IQHE corresponds to k = 0 (the homotopy class of single-loop
cyclotron orbits) with the ordinary single-loop cyclotron orbit of size ∆Sxy = h

eB0
= S

N = S
N0

.
The FQHE-main hierarchy line corresponds to k = 1, 2, . . . (the homotopy classes with

q = (2k + 1)-loop cyclotron orbits or braids, the halves of cyclotron orbits, with k additional loops).
For example for k = 1 (the simplest and most pronounced Laughlin state), the three-loop cyclotron
orbit is of the size ∆Sxy = 3h

eB . This orbit for B = 3B0 perfectly fits to interparticle separation S
N and via

the commensurability condition, 3h
eB = S

N , one gets, ν = N
N0

= N
BSe/h = 1

3 .
Let us emphasize that the quasi-classical method of BS quantization used in many particle

systems is interaction independent, i.e., it is accurate for arbitrarily strong interacting multiparticle
systems. Thus, the sizes of the magnetic flux quanta are also interaction independent. Nevertheless,
the existence of some specific homotopy trajectories in (x, y) space is conditioned by the Coulomb
interaction of 2D charged particles. The interaction determines the Wigner crystal and the particle
separation unavoidably required to the commensurability condition. In the hypothetical gas system
of noninteracting charged particles their mutual positions can be arbitrary, which dismisses the
commensurability notion and nontrivial homotopies.

The Laughlin correlations expressed by exponential, q = 2k + 1, in the Jastrow polynomial
manifesting themselves by the phase shift qπ when particle interchange [2], is the 1DUR of the
cyclotron braid group generator with additional k loops [3]. Actually, for the initial 1DUR for ordinary
electrons, σi → eiπ , we obtain the projective 1DUR for the cyclotron subgroup at q = 2k + 1, σ

q
i → eiqπ ,

which agrees with the Laughlin phase shift qπ.

B. The Degeneracy of Landau Levels

The degeneracy of LLs is the property which is independent of material and interaction and results
from the form of ladder operators of kinematic momentum of a 2D charge particle (electron) exposed
to a perpendicular magnetic field—it is the single-particle effect. At Landau gauge, A = [0, Bx, 0],
B = ∇×A = [0, 0, B], the kinetic energy of an electron,

H = − h̄2

2m
∂2

∂x2 +
(−ih̄ ∂

∂y − eBx)2

2m
, (9)
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and the wave function,
Ψ = eipyy/h̄ f (x), (10)

result in the equation for f (x),

− h̄2

2m
d2 f (x)

dx2 +
e2B2

2m

(
x−

py

eB

)2
f (x) = E f (x). (11)

Equation (11) is the oscillator equation with energy spectrum, En = (n + 1
2 )h̄ωB, where ωB = eB

m ,
with the degeneracy due to a shift of the oscillator center, x0 =

py
eB . This oscillator center must be

located inside the sample Lx × Ly, i.e., 0 < x0 < Lx, whereas py =
2πh̄ny

Ly
. The condition for x0 gives,

0 < py < eBLx, (12)

thus the total number of states for a whole range of py equals to Lx LyBe
h , which is the degeneracy of

LLs, N0.
A filling rate of LLs is expressed by the ratio ν = N

N0
. In the case of Chern topological insulators

without LLs, a filling rate is counted per crystalline node, i.e., ν = N
n0

, where n0 is number of nodes in
the lattice.

C. Reentrant IQHE in a Single Hall Layer

The problem of so-called reentrant IQHE experimentally observed in a single layer of a
conventional 2DES or graphene manifests itself as quantization Rxy = h

e2ν
with ν = 1, 3, . . . ,

and Rxx = 0 but for an actual filling νnom deviated from integer ν. This deviation is quite large,
and the reentrant behavior is observed in GaAs samples even up to νnom ∈ (0.8, 1.2). It is easy to
explain this effect as the result of the energy competition enforcing a local redistribution of electrons in
such a way that electrons are concentrated in stripes with local filling rate exactly equal to νlocal = 1
(or other integers for higher LLs). The integer local filling in stripes allows for formation of IQHE
correlations ranged to stripes despite the fractional nominal filling. This is possible because the energy
gain due to IQHE state formation in stripes prevails the increase of the Coulomb interaction energy
due to striping when electrons attain local density beyond or below the actual charge density of the
jellium. The simple simulation of the related energy trade-off is as follows (∆E per the area l2

B, in units
of 1

4πε0
e2

lB
),

∆E = − l−x
l(2π)2

∫ l
0 dx1

∫ l
x dx2

∫ L
0 dy1

∫ L
0 dy2

1
ε1
√

(x1−x2)2+(y1−y2)2

+
(

l−x
l2π

)2 ∫ l
0 dx1

∫ l
0 dx2

∫ L
0 dy1

∫ L
0 dy2

1
ε1
√

(x1−x2)2+(y1−y2)2

+0.85× 0.5
(

l
2π

)2 ∫ l
x dx1

∫ l
x dx2

∫ L
0 dy1

∫ L
0 dy2

1
ε1
√

(x1−x2)2+(y1−y2)2

−0.92× 0.5
(

l−x
2lπ

)2 ∫ l
0 dx1

∫ l
0 dx2

∫ L
0 dy1

∫ L
0 dy2

1
ε1
√

(x1−x2)2+(y1−y2)2
,

(13)

where integrations account for the Coulomb energy of attraction between electrons either located in
the stripe (l − x)× L with νlocal = 1 or on the entire plaquette with νnom = l−x

l and the jellium of size
l × L positively charged with the density per l2

B, ρ = l−x
l2π (size dimensions are expressed in units of lB,

the energy in units of 1
4πε0

e2

lB
). The interaction between electrons in the stripe with νlocal = 1 is assessed

according to Metropolis Monte Carlo simulation [4] of IQHE (cf. Supplementary Materials E). This
procedure results in the coefficient 0.85 reducing electron interaction in Laughlin-type state with the
Jastrow polynomial with q = 1 (IQH state). The electrons compressed in the stripe (l − x)× L are not
balanced by the local jellium with lower charge density l−x

l
1

2π corresponding to the nominal filling
rate νnom = l−x

l . The energy gain due to incompressible IQHE state in the stripe prevails; however,
the electrostatic energy increase is caused by imbalanced charge distribution. The plot for ∆E assessed
by the Monte Carlo simulation is presented in Figure S1 (for l = L = 100(500)lB and ε1 = 12.9(2) for
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GaAs and graphene, respectively). One can notice that reentrant IQHE is energetically convenient
for x < x∗ (∆E(x∗) = 0), which gives (for considered in the model l = L = 100(500)lB) νnom > 0.82
(for graphene with four times lower permittivity in free space [11] the reentrant deviation in energy
is larger, but the onset of reentrant IQHE is similar for GaAs νnom > 0.8. We thus conclude that
the constant 0.92 in Equation (13) properly models the uncorrelated state contribution for the IQHE
reentrance, and this factor is next used in Equations (6) and (7).

electron

Figure S1. (Upper) The pictorial illustration of the shift of electron distribution resulting in reentrant
IQHE. (Lower) Evaluation of ∆E according to Equation (13) versus x, νnominal =

l−x
l (for x = 20lB and

l = 100lB, νnominal = 0.8 as is visible in experiment [12]).

To assess the energy of electron-electron interaction it has been used the Metropolis Monte
Carlo simulation method [4] (cf. Supplementary Materials E), which allows for calculation of the e-e
interaction energy averaged over the correlated quantum multiparticle state given by the Laughlin
function or (as needed in our case) by the Slater function for completely filled the lowest LL (for ν = 1),〈

Ψ(z1, . . . , zN)
∣∣∣∑N

i>j
1

|zi−zj |

∣∣∣Ψ(z1, . . . , zN)
〉

(here zl = xl + iyl are complex representations of particle

positions rl = (xl , yl), l = 1, . . . , N). This energy per single-particle scales with N as proportional to√
N, cf. Figure S3. Similarly scales the energy of Coulomb interaction jellium-jellium, which can be

accounted for analytically (in cylindrical geometry), ρ2

2

∫
S d2r1

∫
S d2r2

1
|r1−r2|

= 8
√

ν
√

N
3π
√

2
. The energy of

interaction of electrons with jellium averaged over the correlated Hall state,〈
Ψ(z1, . . . , zN)

∣∣∣∣∣−ρ
N

∑
i=1

∫
S

d2r
1

|r− ri|

∣∣∣∣∣Ψ(z1, . . . , zN)

〉
/N,

can be also assessed by the Metropolis Monte Carlo approach for quantum averaging,
using the analytical form of the integral, ρ

∫
S d2r 1

|r−ri |
=
√

2ν
√

N f
(
|ri |
R

)
, with f (x) ={ 2E(x)

π , x ≤ 1(
1

2x

)
F2;1(1/2, 1/2 : 2 : 1/x2), x ≥ 1

, where E(x) is the complete elliptic integral and F2;1(a, b : c :

y) is the hypergeometric function (R is the radius of the sample plaquette in cylindrical geometry).
The scaling of the averaged energy of electron-jellium interaction as proportional to

√
N is explicit.
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D. Energy Trade-Off in Bilayer Hall System—Contributions to Equation (11) [Main Text]

The terms ∆Etop(bot) in Equation (11) [Main Text] represent the energy gain caused by the striping
internally in each layer, top and bottom, respectively. The term ∆Einter represents the contribution to
the energy gain due to the inter-layer interaction. They have the following form,

∆Etop = eltop [νlocal = 1]↔ jelltop

[
ρ = l−x

l2π

]
− eltop

[
νnom = l−x

l

]
↔ jelltop

[
ρ = l−x

l2π

]
+ eltop [νlocal = 1]↔ eltop [νlocal = 1]

− eltop

[
νnom = l−x

l

]
↔ eltop

[
νnom = l−x

l

] (14)

and
∆Ebot = elbot [νlocal = 1]↔ jellbot

[
ρ = x

l2π

]
− elbot

[
νnom = x

l
]
↔ jellbot

[
ρ = x

l2π

]
+ elbot [νlocal = 1]↔ elbot [νlocal = 1]
− elbot

[
νnom = x

l
]
↔ elbot

[
νnom = x

l
]

.

(15)

In the above expressions, we used the following notation: ↔ marks the Coulomb interaction between
electrons (el) or jellium (jell) in a single layer (top or bottom) in the stripes with the indicated local filling
factors adjusted to the presence or absence of the striped structure. The last term in Equation (11)
[Main Text] describes the energy gain due to the inter-layer interaction across the barrier in the stripe
structure. It has the form,

∆Einter = eltop [νlocal = 1]↔ jellbot
[
ρ = x

l2π

]
− eltop

[
νnom = l−x

l

]
↔ jellbot

[
ρ = x

l2π

]
+ elbot [νlocal = 1]↔ jelltop

[
ρ = l−x

l2π

]
− elbot

[
νnom = x

l
]
↔ jelltop

[
ρ = l−x

l2π

]
+ eltop [νlocal = 1]↔ elbot [νlocal = 1]

− eltop

[
νnom = l−x

l

]
↔ elbot

[
νnom = x

l
]

.

(16)

The expressions (14), (15) and (16) have the following explicit forms, respectively,

∆Etop = − l−x
l(2π)2

∫ l
x dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2)

+
(

l−x
l2π

)2 ∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2)

+ 0.85× 0.5
(

1
2π

)2 ∫ l
x dx1

∫ L
0 dy1

∫ l
x dx2

∫ L
0 dy2A(1, 2)

− 0.92× 0.5
(

l−x
l2π

)2 ∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2),

(17)

∆Ebot = − x
l(2π)2

∫ x
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2)

+
( x

l2π

)2 ∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2)

+ 0.85× 0.5
(

1
2π

)2 ∫ x
0 dx1

∫ L
0 dy1

∫ x
0 dx2

∫ L
0 dy2A(1, 2)

− 0.92× 0.5
( x

l2π

)2 ∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2A(1, 2),

(18)
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∆Einter = − x
l(2π)2

∫ l
x dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2B(1, 2)

+ x(l−x)
(l2π)2

∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2B(1, 2)

− l−x
l(2π)2

∫ x
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2B(1, 2)

+ x(l−x)
(l2π)2

∫ l
0 dx1

∫ L
0 dy1

∫ l
0 dx2

∫ L
0 dy2B(1, 2)

+ 1
(2π)2

∫ l
x dx1

∫ L
0 dy1

∫ x
0 dx2

∫ L
0 dy2B(1, 2)

− x(l−x)
(l2π)2

∫ l
0 dx1

∫ l
0 dy1

∫ l
0 dx2

∫ l
0 dy2B(1, 2),

(19)

in the above, A(1, 2) = 1
ε1
√

(x1−x2)2+(y1−y2)2
, B(1, 2) = 1

ε2
√

d2+(x1−x2)2+(y1−y2)2
, ε1(2) denotes the

dielectric permittivity of the layer (barrier) material. All dimensions are taken in lB units.
In Equation (11) [Main Text], ∆E means the energy gain of the striped structure with local νlocal = 1

in the filled stripes with respect to the non-striped uniform two layers with the nominal νbot =
x
l and

νtop = l−x
l (νbot + νtop = 1) for an arbitrary x ∈ (0, l). One can notice that the condition νT = 1 (or other

integer) is connected with the geometrically unique situation when two stripes in the top layer (the first
one of width x and empty of electrons (positively charged due to jellium) while the subsequent one of
l − x width overfilled with electrons up to local νlocal = 1) ideally fit to the inverted stripe ordering
in the bottom layer, as shown in Figure S2. The negatively charged stripes are over-charged with
electrons (beyond the positive jellium charge still corresponding to the nominal filling rate νtop = l−x

l
and νbot =

x
l ) up to local νlocal = 1 (with the density of electrons 1

2π per l2
B surface, and the jellium

charge density νnominal
2π ).

balanced filling imbalanced filling

v =(l-x)/ltop

v =x/lbot

Figure S2. The cartoon presentation of the bilayer Hall structure GaAs/GaAlAs/GaAs with marked
dimension of an elementary striped sector of length l. Electrons are shifted to the over-charged
stripes, while empty stripes are hole stripes charged by the positive jellium. The structure is mirrored
symmetrical with charge change across the barrier of thickness d, which is possible only for a
complementary filling of layers, νtop + νbot = 1 (r other integer), with νtop = (l−x)

l and νbot = x
l

(in left panel, both equal to 1/2).

Two last multi-fold integrals in Equations (17) and (18) describe the quantum effects beyond the
electrostatic interaction of stripes and are crucial for the total energy trade-off and the resulting phase
diagrams. The factors 0.85, 0.92 in these integrals correspond to the energy gain due to electron-electron
interaction in the correlated IQH state (0.85) for the νlocal = 1 with respect to not correlated state at
νnominal < 1 (the latter entering with the factor 0.92). The factors, 0.85 and 0.92, are most important for
the energy minimization and are determined by the Monte Carlo Metropolis method [4] used to the
estimation of the energy of correlated integer quantum Hall state with respect to the uncorrelated state
and adjusted (0.92) to the experimental data for the observed range of a monolayer reentrant IQHE
state (νIQH

reentrant ∈ (0.8, 1.2)). The factors for the IQH state in the overfilled stripes (0.85) is assessed by
the numeric Monte Carlo Metropolis method [4] for the multiparticle Slater-type wave function for
IQHE [2].

http://dx.doi.org/10.3390/nanoxx010005
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E. Metropolis Monte Carlo Assessment of the Energy Gain Due to IQHE Correlations

The method has been developed [4] to assess multidimensional of high order integrals for
particle interaction energy in states described by the Laughlin function. Instead of taking the
multidimensional integral directly, a quickly convergent iteration random procedure is applied to
define the particle distribution governed by the density of probability given by the multiparticle
wave function under analysis. The repeating small finite and random steps for position changes of
all particles are undertaken up to determination of a maximal value of the wave function modulus
at final positions. The iteration of this procedure repeated ca. 108 times defines the distribution of
particle positions in agreement with the multiparticle wave function, in this case, with the Laughlin
functions for FQHE states (including the IQHE state for ν = 1, when the Jastrow polynomial has the
Vandermonde determinant form). The resulted distribution of particle positions is independent of
a start points of the iteration and reveals interparticle correlations specific to a particular quantum
Hall state. The determination of different but equivalent distributions of particle positions is repeated
next ca. 106 times densely covering local maxima of the examined multiparticle wave function.
Each distribution allows for estimation of the corresponding electron-electron and electron-jellium
interactions in accordance with the multiparticle wave function. Next, these particular results for
the interaction energies are averaged over all 106 repetitions of particle distribution determination
which finally gives the quantumly averaged the electron-electron and electron-jellium interaction
energies with high accuracy confirmed by the perfect consistence with the exact diagonalization on
small models and with the experimentally measured activation energies for states at various filling
rates. The method is efficient and relatively quick and not limited to small N only (contrary to the
exact diagonalization of the interaction feasible only in very small model Hall systems). Therefore, this
method is especially convenient and sufficiently accurate to study an effect of the reentrant IQHE in
twin Hall structures, where inclusion of relatively high number of electrons is necessary.

10 12 14 16 18 20 22

20

10

10

N

E
/N

 [
e

2
/l

B
/4
π
ε

0
]

∆Etotal/N

Eel-el/N

Ejell-jell/N

Ejell-el/N

Figure S3. The components of the interaction energy per single particle for the correlated state of IQHE,
ν = 1 as listed in Table S1, versus

√
N (by Metropolis Monte Carlo method of averaging over quantum

states given by the multiparticle Laughlin-type wave function with q = 1 for ν = 1).

Table S1. Energies of various Coulomb channels for ν = 1 IQH state calculated by Metropolis Monte
Carlo simulation (in units of e2

lB

1
4πε0

).

N Ejell−jell /N Ejell−el /N Eel−el /N ∆Etotal /N

80 5.36845 −10.6326 4.6936 −0.570516

160 7.59213 −15.1761 6.95414 −0.629868

240 9.29843 −18.5908 8.672 −0.620415

320 10.7369 −21.4734 10.1046 −0.631899

400 12.0042 −24.0026 11.3821 −0.616286

480 13.15 −26.2682 12.4993 −0.618932
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In more details, the Metropolis Monte Carlo method [4] consists of an assessment of the quantum
mean value,

〈Ψm (z1, . . . , zN) |A (z1, . . . , zN)|Ψm (z1, . . . , zN)〉 , (20)

for Ψ(z1, . . . , zN) = ∏N
i<j(zi − zj)

qe[−∑N
i=1 |zi |2/4l2

B]. The function A(z1, . . . , zN) may be averaged over
numerous (of 106 order) various distributions of z1, . . . , zN satisfying the detailed balance according to
the probability density 〈Ψ|Ψ〉. Such particular particle position distributions are determined by the
random walk for all variables z1, . . . , zN starting from the randomly selected initial start points with
the positive feedback imposed assuring a growth of the probability density 〈Ψ|Ψ〉 along the random
walk. This gives the convergence to an optimal distribution of particle positions respecting correlations
involved in the Laughlin wave function. The repetition of this procedure sufficiently many times and
the averaging of the quantity A(z1, . . . , zN) over all distributions efficiently and quickly approaches
searched quantum mean value of A. The procedure is the subject of its optimization by the control of
the feedback criteria and the length of steps of the random walk of point positions [4].

The Metropolis MC procedure may be applied to Hall systems with varying particle number
N. Next, the results for averaged energies can be extrapolated to the thermodynamic limit (due to
scaling of all multiparticle averaged energies with respect to

√
N). In Table S1 there are collected a

few exemplary energies related to the Hall system with respect to N for the IQHE state, ν = 1 (cf.
Figure S3). From these data one can refine the coefficient 0.85 used in Equations (6) and (7) as well as
in Equation (13) for representation of the el − el interaction energy in IQHE phase in the integral form,

0.85× 1
2

(
l

2π

)2 ∫ l
x dx1

∫ l
x dx2

∫ L
0 dy1

∫ L
0 dy2

1
ε1
√

(x1−x2)2+(y1−y2)2
, in the plaquette (l − x)× L with local

filling νlocal = 1.

F. Two-Component Bogolubov Model for Superfluid Exciton BEC in Bilayer Hall Systems

Creation of the indirect excitons in a twin Hall system is related with the inter-layer Coulomb
coupling of the LL band electrons and holes occupying appropriate complementary states in opposite
layers numbered by the LL quantum numbers (k, n = 0) in the LLL, as given by Equation (10) [Main
Text] (in the Landau gauge A = (0, Bx, 0)).

The striping in k-space corresponds to the striping of electron distribution in x × y space
complementary in opposite layers and can be accounted for by the similar electrostatic energy gain as
given in Equation (11) [Main Text]. Striping in k-space may in particular correspond to a longitudinal
or transverse orientation of stripes depending on the selected gauge. The arbitrariness of the gauge
choice allows for maintenance of the k striping in the counterflow configuration.

The two-component, (±) and (∓), BEC of the indirect excitons with suppressed k number
(enumerating the LL degeneracy of states given by Equation (10)) [Main Text] may be described in
terms of a new quantum number—2D momentum p [5,6] via the model Hamiltonian,

H = Ha + Hb

= ∑
p

Ea
pa+p ap +

1
2S ∑

p1,p2,p3,p4,p1+p2=p3+p4

ua(|p1 − p4|)a+p1
a+p2

ap3 ap4

+∑
p

Eb
pb+p bp +

1
2S ∑

p1,p2,p3,p4,p1+p2=p3+p4

ub(|p1 − p4|)b+p1
b+p2

bp3 bp4 ,
(21)

where a(b)(+)
p are the boson–exciton annihilation (creation) operators in p state for ±(∓) polarization;

Ea(b)
p = p2

2m∗a(b)
is the kinetical energy with the effective mass m∗a(b) of the exciton (as derived in [5],

the mass of exciton in Hall system is not connected to band characteristics, and the current direction
with respect to the external electric field is governed by the drift scheme [5,7–10]). In this way we
model the two-component indirect exciton liquid consisting of oppositely polarized electron-hole
pairs suppressing their internal structure, though the momentum p of excitons may be associated,
at selected Landau gauge, with the pairing of (k + p/2, 1(2),−k + p/2, 2(1)) electron-hole states [5,7–
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10]. In the effective Hamiltonian (21) we neglect the interaction between differently polarized excitons
because their spatial separation in k stripes, though interaction between stripes has been included by
appropriate electrostatic terms in Equation (11) [Main Text]. A difference in population of oppositely
polarized excitons displays an imbalance of filling rates, νT = νbot + νtop. The initial BEC is associated

in the model (21) with the condensate of a macroscopic number Na(b)
0 of bosons a(b)+p in p = 0 state

(Na(b)
0 ' Na(b), at low temperatures, Na(b)—total number of excitons with polarization ±(∓) in the

system). We henceforth suppress the further analysis to the only one subsystem as the second one
is analogous. Because a+0 a0 |0〉 = Na |0〉, where |0〉 is the ground state (T = 0), for large Na

0 one can
approximate operators by numbers, a+0 = a0 =

√
Na

0 , and then,

Ha ' 1
2S u(0)Na2

0 + ∑p

[
Ea

p +
Na

0
S ua(|p|)

]
a+p ap

+
Na

0
2S ∑p 6=0 ua(|p|)(a+p a+−p + apa−p).

(22)

After the Bogolubov diagonalization, ap = α(p)ãp + β∗(p)ã+−p, a+p = α∗(p)ã+p + β(p)ã−p, one finds,

Ha ' 1
2S

ua(0)Na2
0 + ∆Ea + ∑

p
εa

p ã+p ãp, (23)

where εa
p =

√
p4

4m∗2a
+

Na
0 p2ua(|p|)

m∗a S = |p|
√

p2

4m∗2a
+

Na
0 ua(|p|)
m∗a S (and analogously for Hb part of the

Hamiltonian (21)). For the long-wave-length limit (small |p|), εa
p ' ca|p|, with the constant

ca =
√

Na
0 ua(0)
m∗a S is the phonon-type spectrum provided that ua(0) > 0, i.e., the original bosons must

repulse themselves; ∆Ea = − 1
2 ∑p,p 6=0(Ea

k + ua(|p|)
Na

0
S − εa

p). Hence, for the repulsing bosons the low
energy excitation spectrum beyond the BEC is of phonon-type, which guarantees the superfluidity of
the BEC due to impossibility to simultaneously fulfill a conservation of the energy and momentum
for such phonon-type excitations at scatterings [6]. We see that ca ∼

√
Na

0 but in the twin Hall
configuration with νT = νtop + νbot = 1 we deal with Na

0 = νbot
S

2π , whereas Nb
0 = νtop

S
2π and

Na
0 + Nb

0 = S
2π (S is the single layer surface in l2

B units). In the balanced case ua(0) ' ub(0), but the
imbalanced filling, Na

0 6= Nb
0 , causes difference in superfluid properties of both components of exciton

liquid. The critical superflow, ja(b) =
νbot(top)

2π ca(b), is lower for smaller filling νtop(bot) also due to lower

ca(b) ∼
√

Na(b)
0 . The drift velocity, perpendicular to the applied electric field E, is ∼ E

B , thus the
critical electric field Ec ' Bca(b) and differs for opposite polarizations at the imbalanced filling of the
twin system.

In the model (21), the operators a+(b+)p are ideal boson operators, whereas the initial indirect
excitons—let us represent them by operators labeled with k, a+(b+)k, are not exact bosons due to
their internal structure expressed in k states (Equation (10) [Main Text]), as a+k a+k = 0 (b+k b+k = 0).
The applicability of the BEC model is here conditioned by the degeneracy of exciton k states, which
results from the LL massive degeneracy. Due to this degeneracy the quasi-boson excitons, a+(b+)k,
with the same energy may be modeled by the BEC in the p = 0 state of true bosons, a+(b+)p,
experiencing the magnetic field presence only by their internal structure [5,7,8,10] and weakly repulsing
due to k striping, which leads to their superfluidity. Please note that k enumerates states given by
Equation (10) [Main Text] in the main text and marks the internal structure of excitons at an assumed
gauge, but not the energy (neither of electrons and of holes nor of excitons) and, moreover, may be
substituted by a distinct quantum number if one changes the gauge of the magnetic field potential.
The momentum p of the exciton is thus irrelevant to k (and to gauge) [5,7–10] though the role of the k
striping is essential for the exciton BEC superfluidity.

The striping in k-space corresponds to the complementary striping of electron distribution in
x× y space in both layers and can be accounted in the simulation as was presented in the main text.
Striping in k-space may correspond to the distinct stripe orientation in x × y space depending on
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the selected gauge. The arbitrariness of the gauge choice allows for k striping maintenance in the
counterflow configuration in agreement with the experimental observations.

The defined above model of the two-component BEC of indirect excitons with two opposite
polarizations, (±) and (∓), agrees with the theory developed in Refs [5,7–10], where the low energy
spectrum for Landau quantized electron systems in twin layers separated by an insulating barrier has
been discussed assuming the ground state in the form of the BEC of indirect excitons. For limiting
situation of a zero thickness of the barrier for excitons (neglecting their instability due to exciton
recombination) the parabolic low energy dispersion above the BEC has been derived precluding the
BEC superfluidity in a Hall monolayer. However, for a phonon-type excitation dispersion, found for a
finite thickness of the dielectric barrier [9,10], the superfluidity is admitted. The latter, though limited
to a single∓ polarization of excitons in Refs [9,10], actually proves the repulsion of the indirect excitons
in the considered two-component model (21).
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