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Abstract: Classical molecular dynamics simulations of polyacrylamide (PAM) adsorption on cellulose
nanocrystals (CNC) in a vacuum and a water environment are carried out to interpret the mechanism
of the polymer interactions with CNC. The structural behavior of PAM is studied in terms of the radius
of gyration, atom–atom radial distribution functions, and number of hydrogen bonds. The structural
and dynamical characteristics of the polymer adsorption are investigated. It is established that in
water the polymer macromolecules are mainly adsorbed in the form of a coil onto the CNC facets.
It is found out that water and PAM sorption on CNC is a competitive process, and water weakens the
interaction between the polymer and CNC.
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1. Introduction

Polymer nanocomposites are materials that consist of polymer matrices and nanofillers
distributed in them. The most important factor for achieving the enhancement of the bulk physical
(transport, thermal, mechanical) properties of nanocomposites is interfacial interactions between the
polymer macromolecules and the nanofiller particles. A large number of nanofillers with a variety
of polymer matrices have been used to achieve the enhancement of useful properties. The simplified
model of a nanofiller reinforced polymer suggests the wrapping of the polymer macromolecules around
the nanofiller, providing an intuitional understanding of the mechanism responsible for the improved
physical properties. However, large-scale disorder in polymer nanocomposites leads to substantial
reduction of physical properties compared to predictions based on idealized filler morphology [1,2].
Computer simulations can address the issues related to the difficulty of characterizing the in situ
structure of nanoscale objects [3,4]. Achievements in modeling polymer matrix nanocomposites
based on identification of some challenges can enhance our understanding of physicochemical
properties of polymer nanocomposites [5]. Specifically, in-depth understanding of structure and
dynamics at solid/polymer interfaces at nanometer level plays a key role in designing materials with
adjustable properties [6–8].

The features of cellulose nanocrystals (CNC) (a high crystallinity degree, anisotropic shape,
high aspect ratio, and large surface area) have important consequences for the interfacial behavior and
have attracted great attention of the materials community because of their sustainability, renewability,
and biodegradability. Therefore, CNC have widely been used as reinforcing agents in polymeric
nanocomposites in recent years [9].

Nowadays, atomistic modeling of cellulose nanocrystals has been used to complement
experimental measurements. Computer simulations help to predict self-assembly as well as mechanical,
energetic, thermal, and structural features of cellulosic nanomaterials and provide a fundamental
understanding of the atomic-scale origins of these characteristics [10–16]. Models have been employed
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to predict some CNC properties including the most frequently reported mechanical ones [17,18].
Molecular modeling has been utilized to investigate the properties of amorphous cellulose as opposed to
CNC [19–21]. Some studies have applied molecular modeling to investigate the interaction of CNC with
a liquid solvent (most solvent studies are focused on water) [22–24] and with polymeric materials [25].

The current work is a continuation of our previous study that was devoted to the investigation of
the microscopic mechanism of polyvinylpyrrolidone (PVP) adsorption on a cellulose nanocrystal and
the role of water in this process [26]. We have revealed earlier [27] that PVP adsorption onto CNC can
block lateral interactions between the CNC and prevents their agglomeration in the lateral direction,
i.e., hinders growth of the CNC particles width upon the concentration increase or drying of the
composites. Moreover, freezing of CNC suspensions can align rod-like CNC particles in direction of ice
crystal growth allowing formation of the CNC aggregates with a high aspect ratio. These aggregates
can be broken down easily in water and some organic solvents, providing good dispersibility of
the composites.

In this work we focus our attention on the intermolecular interactions in the systems
containing polyacrylamide (PAM), CNC and a polar solvent (water). PAM is a water-soluble linear
polymer. PAM and its derivatives have different applications in many areas including agricultural,
water treatment, medical, and petroleum industries [28,29]. PAM differs from PVP because it contains
not only atoms playing the role of proton-acceptors, but also atoms acting as proton-donors. Because of
such structure the behavior of PAM in water, as well as its interactions with the solvent and CNC
have some features that we describe in terms of structural and dynamic properties by the all atomic
molecular dynamics method.

2. Computational Details

Classical molecular dynamics simulations were carried out using a GPU-accelerated
(graphics processing unit) Gromacs-5.0.7 software package [30]. Molecular graphics and visualization
were performed using VMD 1.8.6 [31]. The molecular dynamics (MD) simulations were carried
out for the NVT ensemble (a constant number of particles N, a volume V, and a temperature T).
The reference temperature of 298 K was kept constant using a Nose–Hoover thermostat [32,33] with
the coupling constant τ = 0.1 ps. Periodic boundary conditions were applied to all three directions
of the simulated cubic box. The Verlet algorithm [34] was adopted to integrate the equations of
motion. The modified Ewald summation method [35,36] was used to account for the corrections of the
long-range electrostatic interactions with a cutoff radius of 1.5 nm, which was also the cutoff value
for the Van der Waals (VDW) interactions. All the bond length constraints were implemented using
the LINCS algorithm (LINear Constraint Solver) [37]. In our work for PAM (Figure 1a) we utilized
a potential based on OPLSAA (Optimized Potential for Liquid Simulations All Atomic) force field
parameters [38]. The initial structure of a PAM macromolecule containing 50 monomer units (with the
molecular weight of 3552 g/mol) was constructed by means of Avogadro [39]. This number of monomer
units is sufficient to observe the conformational transitions of the polymer and to obtain sufficient
statistical data to calculate quantitative characteristics. For cellulose we used GROMOS54a7 force field
parameters [40]. The initial structure of CNC was built based on the experimental crystallographic
data [41] by a toolkit named Cellulose Builder [42]. The model of the Iβ CNC consisted of 14 or 9 glucan
chains, and the degree of polymerization of each chain was 10 (Figure 1b,c). The number of chains and
degree of polymerization provide a sufficient surface area for effective interactions with the polymer.
As known, in the structure of cellulose there is clear segregation into polar (OH) and nonpolar (CH)
sites [10]. Because of the hydrophobic properties of the glucopyranose plane, the sheet-like structure
of the top and bottom surfaces (200) of CNC (Figure 1c–e) has a predominantly hydrophobic character.
CNC with predominantly hydrophilic surfaces (110 and 1–10) (Figure 1h, for example) has a large
number of free OH groups (O1H1, O6H4, O3H3, O2H2). In the current study, we consider two types of
CNC with large hydrophobic facet (200) and with large hydrophilic facets (110 and 1–10). The systems
were solvated by water which was preliminarily equilibrated in NpT-ensemble at 298 K and 0.1 MPa.
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For water molecules, the SPC/E (extended simple point charge) model [43] was used. After systems
energy minimization, we equilibrated the systems for 0.5 ns in the NVT ensemble. The production run
simulations were performed in NVT ensemble in a cubic box with periodic boundary conditions for
10 ns for all systems in a vacuum and binary system PAM-water, 15 ns for large systems with a high
concentration of PAM. For the systems with a low PAM concentration, the simulation time was chosen
as 60 ns to obtain sufficient statistical data. A time step was set of 1 fs. The data for the analysis were
collected every 0.1 ps. In Supplementary Material one can find the time dependencies of temperature
for all systems, which are evidence that the structures obtained are equilibrated well at all length- and
time-scales (Figure S1).Nanomaterials 2020, 10, 1256 4 of 16 

 

 
(a) 

 
(b) 

 
 

 
 

 
 

(c) (d) (e) 

 
 

 
 

 
 

(f) (g) (h) 

 
(i) 

Figure 1. Atom numbering in monomer units of polyacrylamide (PAM) (a) and a cellulose nanocrystal 
(CNC) (b), CNC with a predominantly hydrophobic surface (c—top view; d, e—end-on views) and 
with a predominantly hydrophilic surface (f—top view; g, h—end-on views). The red spheres denote 
the oxygen atoms, the gray ones represent the hydrogen atoms, the cyan ones show the carbon atoms, 
and the blue sphere represents the nitrogen atom. The instant snapshot of System 3 (i): CNC is blue 
and PAM macromolecules are green, the red dots are the water molecules. 

Table 1. Simulation details of different systems: the number (N) of PAM, CNC, and water molecules, 
simulation time (t, ns), length of box (L, nm). 

System Medium and CNC type N(PAM) N(CNC) N(Water) t, ns L, nm 
System 1  vacuum 1 - - 10 6.0 
System 2  water 1 - 6916 10 6.0 
System 3  water hydrophobic CNC 3 1 31322 60 9.0 
System 4  vacuum hydrophobic CNC 3 1 - 10 9.0 
System 5  water hydrophilic CNC 3 1 31322 60 9.0 
System 6  vacuum hydrophilic CNC 3 1 - 10 9.0 
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Figure 1. Atom numbering in monomer units of polyacrylamide (PAM) (a) and a cellulose nanocrystal
(CNC) (b), CNC with a predominantly hydrophobic surface (c—top view; d,e—end-on views) and
with a predominantly hydrophilic surface (f—top view; g,h—end-on views). The red spheres denote
the oxygen atoms, the gray ones represent the hydrogen atoms, the cyan ones show the carbon atoms,
and the blue sphere represents the nitrogen atom. The instant snapshot of System 3 (i): CNC is blue
and PAM macromolecules are green, the red dots are the water molecules.
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Ten systems were simulated; the simulation details are listed in Table 1. The initial configuration
of Systems 2 was constructed placing 1 PAM molecule with a nearly extended conformation into a
cubic box with 6916 water molecules. Initial Systems 3, 5, 7, and 9 were built by inserting one CNC
with predominantly hydrophobic and hydrophilic surfaces, respectively, into the center of the cubic
boxes. Then 3 or 64 PAM macromolecules were placed into the cell with CNC, which was followed by
the addition of 31322 (System 3 and System 5) or 273740 (System 7 and System 9) water molecules.
The size of the water box was chosen so that it ensured the systems had at least a 20 Å solvation shell in
all the directions. As an example the instant snapshot of System 3 is presented in Figure 1i. The initial
configurations of Systems 4, 6, 8, and 10 were obtained by removing the water molecules from the final
configuration of Systems 3, 5, 7, 9, respectively.

Table 1. Simulation details of different systems: the number (N) of PAM, CNC, and water molecules,
simulation time (t, ns), length of box (L, nm).

System Medium and CNC Type N (PAM) N (CNC) N (Water) t, ns L, nm

System 1 vacuum 1 - - 10 6.0
System 2 water 1 - 6916 10 6.0
System 3 water hydrophobic CNC 3 1 31322 60 9.0
System 4 vacuum hydrophobic CNC 3 1 - 10 9.0
System 5 water hydrophilic CNC 3 1 31322 60 9.0
System 6 vacuum hydrophilic CNC 3 1 - 10 9.0
System 7 water hydrophobic CNC 64 1 273740 15 20.5
System 8 vacuum hydrophobic CNC 64 1 - 10 20.5
System 9 water hydrophilic CNC 64 1 273740 15 20.5
System 10 vacuum hydrophilic CNC 64 1 - 10 20.5

3. Results and Discussion

In order to understand the structural behavior of the polymer chain placed into the water box, we
calculated the radius of gyration (Rg), which is one of the most important quantities in conformational
statistics of polymer chains [44,45]. The radius of gyration was calculated by the following equation:

Rg =


∑
i
‖ri‖

2mi∑
i

mi


1/2

, (1)

where mi is the mass of site i and ri is the position of site i relative to the center of mass of the molecule.
As can be seen in Figure 2, Rg differs from the original value in both the vacuum (System 1) and water
(System 2). In water, the value of the radius of gyration fluctuates during the simulation process and
achieves ≈ 1.5 nm, while at the beginning of the simulation Rg was 1.7 nm. Therefore, we can conclude
that we observe a certain transformation of the polymer chain, which, however, does not lead to a
strong folding of the PAM and the chain remains quite expanded, like a coil. In the absence of a polar
solvent (water), the polymer chain folds quickly into a dense conformation (polymer globule), and Rg

becomes equal to approximately 1.0 nm. The snapshots of the last simulation frame, presenting the
PAM coil in water (System 2) and the PAM globule in a vacuum (System 1), are also depicted in
Figure 2. It should be noted that in the systems with a high PAM concentration (Systems 7 and 9),
the average value Rg slightly decreases compared with the dilute solution containing only 1 PAM
macromolecule and equals approximately 1.2 nm. This result is in agreement with the works of Chen
and coauthors [46,47], where the value Rg = 1.20 nm was obtained for a water solution of a PAM
macromolecule with a polymerization degree of 50 at 298 K.

As it may be supposed, changes in the PAM conformation in water or in a vacuum is connected
with the PAM ability to form intra- and intermolecular hydrogen bonds (HBs). Using the geometrical
criterion of HBs (a donor–acceptor distance less than 0.35 nm, and an acceptor–donor–hydrogen



Nanomaterials 2020, 10, 1256 5 of 14

angle less than 30◦), we calculated the time dependence of PAM–PAM and PAM–water HBs per
one monomer unit of PAM in Systems 1 and 2 (Figure 3). Because of PAM folding in the vacuum,
the number of HBs increases and at the end of the simulation almost every monomer unit forms
one HB with another one. In contrast, in the presence of water, the number of intramolecular HBs
between the PAM monomers is significantly smaller and is about 0.3. Although, as we have shown
(Figure 2), in water the PAM chain exists in the form of a coil, a certain transformation is observed.
The number of intramolecular HBs increases (Figure 3a), and the number of intermolecular PAM–water
HBs decreases (Figure 3b). Nevertheless, by the end of the tenth nanosecond, each monomer unit of
the polymer forms an average of 2 HBs with the water molecules. Table 2 lists some structural and
dynamic characteristics, including average numbers of HBs, for all the systems.
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Figure 2. Time dependence of the radius of gyration of PAM (a) in a vacuum (System 1) and water
(System 2), the snapshot of the PAM conformations in System 9 at the end of the simulation (b).
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The stability of a HB can be characterized by HB lifetimes τHB. The continuous mean lifetime
of a HB [48], τHB, was calculated from the autocorrelation function (ACF) CHB(t) of the parameter
characterizing the HB existence between the i and j molecules Sij(t) using the standard program package:

CHB(t) =

〈
Si j(0)Si j(t)

〉〈
S2

i j(0)
〉 , (2)

where Sij(t) = 1 if the criterion of HB existence between the i and j molecules was satisfied at the
initial moment of time and is satisfied at a current moment of time t, and if the duration of the violated
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criterion periods on the time interval from 0 to t did not exceed a predetermined value t*; otherwise,
Sij(t) = 0. At t* = 0, the autocorrelation function CHB(t) demonstrates continuous existence of hydrogen
bonds. Integration of this function using the standard program package gives the mean HB lifetimes:

τHB =

∞w

0

CHB(t)dt, (3)

Table 2. The structural and dynamic characteristics obtained by analyzing the last 10 and 5 ns of the
trajectories for water-contained and vacuum systems, respectively.

System 1 2 3 4 5 6 7 8 9 10

<nHB>

PAM–PAM 0.76 0.30 0.35 0.66 0.40 0.76 0.31 1.00 0.32 1.03

PAM–Water - 2.01 1.80 - 1.83 - 1.93 - 1.94 -

PAM–CNC - - 0.08 0.32 0.003 0.22 0.02 0.76 0.04 1.03

CNC–Water - - 2.91 - 3.22 - 2.90 - 3.24 -

CNC–CNC - - 3.61 4.26 3.31 3.88 3.66 4.3 3.40 3.86

Water–Water - 3.57 3.54 - 3.56 - 3.57 - 3.57 -

τ, ps

PAM–PAM 1.71 1.47 1.52 1.58 1.62 1.61 1.45 1.63 1.44 1.67

PAM–Water - 2.06 1.79 - 2.14 - 1.95 - 1.94 -

PAM–CNC - - 2.40 2.85 - 2.83 2.37 3.07 2.14 2.81

CNC–Water - - 3.19 - 3.87 - 3.21 - 3.86 -

CNC–CNC - - 6.50 6.62 6.87 5.64 7.09 6.88 8.01 6.87

Water–Water - 2.81 2.77 - 2.77 - 2.77 - 2.77 -

Rg, nm PAM 1.00 1.48 1.28 1.19 1.34 1.30 1.21 0.95 1.22 0.96

Re-t-e, nm PAM 0.99 3.56 3.55 3.04 3.56 3.75 2.78 1.75 2.79 1.81

<Nc> PAM–CNC - - 199 668 5 262 66 1519 73 1387

<rmin> nm PAM–CNC - - 2.07 1.67 2.19 2.17 2.06 1.62 1.97 1.63

<nHB> and τ are the average number of hydrogen bonds and lifetime of PAM–PAM and PAM–water hydrogen
bonds (per a PAM monomer unit), PAM–CNC, CNC–water, and CNC–CNC ones (per a CNC monomer unit),
and water–water ones (per a water molecule); Rg and Re-t-e are the radius of gyration and the end-to-end distance of
PAM, <NC> and <rmin> are the average number of close contacts and average minimum distance between any pair
of atoms of PAM and CNC within the limits of 0.5 nm.

Table 2 shows that the PAM–water HB lifetime is longer than the PAM–PAM τHB. Moreover, in water
the lifetime of PAM–PAM HBs is shorter than in a vacuum.

In order to understand which sites of molecules take part in HB formation, we calculated the
atom–atom radial distribution functions (RDFs). Figure 4 shows the radial distribution functions of
oxygen Ow and hydrogen Hw water atoms around the polymer atoms in System 2. Figure 4a compares
five intermolecular RDFs for pairs of PAM atoms with water molecules, including H6-Ow, H7-Ow,
O4-Hw, N5-Ow, and O4-Ow, where H6, H7, N5, and O4 represent hydrogen, nitrogen, and oxygen
atoms of the PAM, respectively (Figure 1a). In Figure 4a, two peaks appear in the vicinity of the
carbonyl oxygen, O4, for gO4-Hw(r) and gO4-Ow(r). These peaks are positioned at approximately 0.19,
0.33 nm and 0.29, 0.54 nm for gO4-Hw(r) and gO4-Ow(r), respectively, and represent two hydration shell
structures forming around O4. The first peak at 0.19 nm in the gO4-Hw(r) indicates a high probability of
the HB formation between O4 and water molecules. At the same time the pre-peaks at 0.24 nm and
0.25 nm in the gH6-Ow(r) and gH7-Ow(r) (which also satisfy the HB geometric criterion RH—O ≤ 0.26 nm)
confirm hydrogen bond formation. However, the height and position of the peaks allow us to suppose
the existence of weaker H6-Ow and H7-Ow HBs compared with O4-Hw. Besides, the height of the
first peak of gO4-Ow(r) is greater than that of gN5-Ow(r), which also means that hydration of oxygen is
stronger than that of nitrogen. The behavior of the C1-Ow, C2-Ow, H89-Ow, and H11-Ow RDFs, namely,
the existence of small shoulder peaks at long distances, can be attributed to a highly hydrophobic
nature of the PAM hydrocarbon chain. Thus, a comparison of the RDFs confirms that the HBs are
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predominantly formed through the PAM carbonyl oxygen and only a few of them are formed through
the amide group hydrogen atoms. In Singh’s work [49], the DFT computations were performed on
various acrylamide-water clusters in the gas phase in order to explore the microsolvation. In clusters
consisting of one acrylamide molecule and 5–15 water molecules, the length of the Ow—H-N HB was
≈ 0.21 and the length of the Hw—O=C HB varied between 0.18 and 0.19 nm. This observation is in
agreement with our molecular dynamics results. Also the authors of [49] calculated the binding energy
of the acrylamide–acrylamide and acrylamide–water hydrogen-bonded complexes and obtained the
values of 6.52 and 12.48 kcal/mol per an acrylamide molecule, respectively. This result is consistent with
our findings for the HB lifetime of PAM–PAM and PAM–Water interactions, and explains why PAM
macromolecules tend to form intermolecular HBs with water molecules rather than intramolecular HBs.Nanomaterials 2020, 10, 1256 8 of 16 
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Figure 4. Atom–atom radial distribution functions for PAM in water: System 2. (a) The radial distribution
functions of oxygen Ow and hydrogen Hw water atoms around the polymer atoms H6, H7, O4, N5,
and O4 in System 2; (b) the radial distribution functions of oxygen Ow water atoms around the polymer
atoms C1, C2, H8,9, and H11 in System 2.

To prove the existence or absence of the interaction between PAM and CNC in Systems 3–10,
we calculated the time evolution of the number of contacts (Figure 5) between any pair of PAM and
CNC atoms within a given distance (0.5 nm). In Systems 3, 7, and 9, the adsorption process was
successful, and all the three PAM macromolecules in System 3, four PAM molecules in System 7,
and one PAM molecule in System 9 were adsorbed on the CNC. In System 3 after 5 ns of the modeling,
the number of close contacts increased and at the end of the simulation reached ≈200 (Figure 5a and
Table 2). At the same time in System 5, where the CNC surface possesses a predominantly hydrophilic
character with a large number of OH-groups, only a few rare episodes of interactions between PAM
and CNC were observed (Figure 5a and Table 2). On the contrary, in a vacuum (Figure 5b,d) the PAM
molecules were adsorbed on both the hydrophobic (Systems 4, 8) and hydrophilic facets (Systems 6
and 10) of CNC. The number of close contacts in a vacuum was significantly bigger than that in
water. This implies that there were competitive interactions in Systems 3, 5, 7, and 9, since the
molecules of water and PAM were able to form hydrogen bonds with the oxygen and hydrogen
atoms of CNC. Because of the high hydrophilicity of CNC in Systems 5 and 9, almost all the free
OH-groups of cellulose were involved in HB formation with the water molecules. Table 2 shows that
an average number of HBs for CNC–water was bigger and their lifetime was longer in Systems 5
and 9 than in Systems 3 and 7. Moreover, the CNC–water hydrogen bonds were slightly more stable
than those between the water molecules. In general, if we analyze the hydrogen bond lifetimes in all
the systems, then we can arrange HBs in the order of increasing stability as follows: τHB(PAM–PAM)
< τHB(PAM–Water) < τHB(PAM–CNC) < τHB(Water–Water) < τHB(CNC–Water) < τHB(CNC–CNC).
Cellulose chains had a strong affinity with each other and with materials containing hydroxyl
groups. Therefore, the lifetimes of the CNC–CNC and CNC–water HBs were higher than the lifetimes
of other HBs in the systems. In the work of Chen et al. [50], it was found that water-cellulose HBs are on
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average stronger than water–water ones. In particular, they found that EHB(Water–Water)~4.2 kcal/mol,
while EHB(Water–cellulose)~5.4 kcal/mol. Having compared τHB(PAM–CNC) for Systems 3 and 4,
we can suppose that water weakens the interaction of the polymer with the cellulose nanoparticles.
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Figure 5. Time dependence of the number of contacts between any pair of atoms of PAM and CNC
within a given distance of 0.5 nm. For System 5 when NC = 0, the red line coincides with the abscissa
and therefore is not visible in the figure. (a) Systems 3 and 5, (b) Systems 4 and 6, (c) Systems 7 and 9,
(d) Systems 8 and 10.

In order to visualize the process of the polymer adsorption on cellulose, we presented snapshots
of the modeling cells for Systems 3–10 at the end of the simulation (Figure 6). To highlight CNC
and PAM, all the water molecules from Systems 3, 5, 7, and 9 were removed. In System 3, two PAM
macromolecules were adsorbed on the top hydrophobic side of CNC and one macromolecule was
adsorbed on the bottom hydrophobic side of CNC. The same picture was observed for System 4,
i.e., for PAM–CNC composite in a vacuum. The losses of CNC–water intermolecular hydrogen bonds
were compensated with new hydrogen bonds with PAM, and we observed a significant increase
in <nHB> for PAM–CNC (Table 2). On the other hand, although PAM molecules interacted with a
hydrophilic facet of CNC more actively in a vacuum than in water, a large part of the CNC surface
remained free, and the number of PAM–CNC close contacts in System 6 was three times less than in
System 4. Besides, the average minimal distance of the PAM contact with a CNC hydrophilic facet,
<rmin>, was approximately 1.3 times longer than with a hydrophobic one (Table 2). At the same
time, in the systems with a high polymer concentration (Systems 7–10), the difference between the
average numbers of closest contacts was not so noticeable for hydrophobic and hydrophilic CNC,
i.e., the probability to find PAM near CNC significantly increased and almost all the accessible HB
centers of CNC were occupied by PAM. Table 2 clearly shows that the average numbers of PAM–CNC
HBs per one CNC monomer in Systems 8 and 10 were equal to 0.76 and 1.03, respectively, which is ≈2.4
and ≈4.7 times higher than in the systems with a deficiency of PAM molecules. The difference between
the <NC> values for Systems 8 and 10 (1519 and 1387, respectively) is due to the fact that the area of
the available surface for the polymer is smaller for hydrophilic CNC. Additionally, with gmx_sasa tool
from Gromacs-5.0.7 we calculated the total accessible solvent surface area (SASA) for both CNC types:
SASA (hydrophobic CNC) = 73.1 nm2 and SASA (hydrophilic CNC) = 58.4 nm2.

Figure 7 shows the places of the polymer direct contact with the cellulose in the systems. It can be
seen that in the presence of the solvent the contact areas between the polymer and cellulose are much
smaller than in the vacuum. Most of the CNC solvation shell in System 3 is water molecules (Figure 7).
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the red surface denotes the places of the PAM direct contact with CNC. For better understanding,
the hydrophobic (200) and hydrophilic (110, 1–10) facets are marked.
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It should be noted that in our previous work devoted to studying the adsorption of PVP on CNC,
we also observed the crucial role of water in the interaction between PVP and CNC [26]. In particular,
we showed that the presence of water makes the interaction between the polymer and cellulose
weaker than in a vacuum, and the polymer and cellulose mainly interact through their solvation shells.
Unlike PVP, which only has a hydrogen acceptor atom, PAM is able to act as a proton donor because of
the amide group hydrogen atoms, which increases the probability of HB formation with the cellulose
atoms. To characterize the interaction between PAM and CNC atoms in greater detail, we also analyzed
RDFs for Systems 3–6 (Figures 8–10). The RDFs for Systems 7–10 demonstrate the same behavior;
that is why they are not shown here. As in the case of PAM–water interactions, the carbonyl oxygen
O4 takes the most active part in the HB formation with the cellulose H1, H2, H3 atoms (Figure 8).
The typical peaks, which can be found on the RDF curves gH7O1(r), gH7O2(r) at ≈0.23–0.24 nm, indicate
that the H7 atom also actively interacts with CNC through the O1 and O2 atoms (Figure 8).Nanomaterials 2020, 10, 1256 12 of 16 
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In the absence of water (System 4) all the peaks on the RDF curves become more pronounced and
increased compared with those for System 3, which confirms that more HBs are formed between the
PAM and CNC in a vacuum. A dramatic increase in the peak heights on gH7O2(r), gH7O3(r), gO4H2(r),
gO4H3(r), gO4H4(r) (Figure 9) is observed. It means that in water most of the cellulose hydroxyl groups
O2H2 and O3H3 are involved in the HBs with the solvent molecules rather than the polymer ones.
As for the amide hydrogen atoms, the probability of the H7 atom participation in HB formation is
higher than for the H6 atom, which is located closer to the carbonyl oxygen O4 and may have a steric
hindrance to the HB formation. System 6 does not have such preferences for HB formation through
cellulose hydroxyl groups O2H2, O3H3, O1H1 (Figure 10), with the exception of the ended O6H4
hydroxyl group (Figure 1b).

4. Conclusions

Classical molecular dynamics simulations of polyacrylamide (PAM) adsorption on a cellulose
nanocrystal (CNC) were carried out. Ten different systems containing PAM and CNC in a vacuum
or in water were simulated. The average number of hydrogen bonds and lifetime of PAM–PAM,
PAM–water, PAM–CNC, CNC–water, CNC–CNC, and water–water hydrogen bonds were calculated.
The PAM radius of gyration, end-to-end distance, and the average number of close contacts and average
minimum distance between any pair of atoms of PAM and CNC were determined. The atom–atom
radial distribution functions for PAM, PAM–CNC in a vacuum and water were analyzed. It was
confirmed that hydrogen bonds are predominantly formed through carbonyl oxygen of PAM and the
–NH2 group is the less active participant of the HB-formation process in the systems. It was noted that
PAM macromolecules tend to form intermolecular hydrogen bonds with water molecules rather than
intramolecular ones. Moreover, even in the systems with a high PAM concentration the number of
PAM–CNC hydrogen bonds is low, despite the fact that such HBs are more stable than PAM–PAM
and PAM–water HBs. Based on the analysis of the PAM radius of gyration it can be concluded that
the polymer spends more time in a more extended configuration in water and on the CNC surface
(Rg ≥ 1.19 nm) than in a vacuum at some distance from the CNC (Rg ≤ 1.0 nm). The crucial role of
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water in the interaction between PAM and CNC was highlighted. It was found out that water and PAM
sorption on CNC is a competitive process, and water weakens the interaction between the polymer
and CNC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/7/1256/s1,
Figure S1. Time dependence of the system temperature. Figure S2. The instant snapshots of System 6 at 7 ns (a)
and 7.8 ns (b). These snapshots explain the jump in NC(t) at ≈ 7.5 ns.
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