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Abstract: In recent years, impurity-doped nanocrystal light-emitting diodes (LEDs) have aroused both
academic and industrial interest since they are highly promising to satisfy the increasing demand of
display, lighting, and signaling technologies. Compared with undoped counterparts, impurity-doped
nanocrystal LEDs have been demonstrated to possess many extraordinary characteristics including
enhanced efficiency, increased luminance, reduced voltage, and prolonged stability. In this review,
recent state-of-the-art concepts to achieve high-performance impurity-doped nanocrystal LEDs are
summarized. Firstly, the fundamental concepts of impurity-doped nanocrystal LEDs are presented.
Then, the strategies to enhance the performance of impurity-doped nanocrystal LEDs via both
material design and device engineering are introduced. In particular, the emergence of three types of
impurity-doped nanocrystal LEDs is comprehensively highlighted, namely impurity-doped colloidal
quantum dot LEDs, impurity-doped perovskite LEDs, and impurity-doped colloidal quantum
well LEDs. At last, the challenges and the opportunities to further improve the performance of
impurity-doped nanocrystal LEDs are described.

Keywords: light-emitting diode; impurity doping; quantum dot; perovskite; quantum well

1. Introduction

Nanocrystal light-emitting diodes (LEDs) have huge potential in display, lighting, and signaling
applications because of their exceptional advantages including high efficiency, excellent luminance,
low voltage, impressive power consumption, and long lifetime [1–5]. In 1994, Alivisatos et al.
reported the first nanocrystal LED by using CdSe colloidal quantum dots (CQDs), achieving a
maximum external quantum efficiency (EQE) of 0.01% [6]. Since then, plenty of endeavors have
been taken to enhance the performance (e.g., EQE, current efficiency (CE), power efficiency (PE),
voltage, luminance, and stability) of CQD-LEDs [7–11]. Nowadays, the performance of CQD-LEDs
can be comparable to or even better than that of state-of-the-art organic LEDs (OLEDs) [12–16].
For example, the maximum EQE of CQD-LEDs exceeds 20% [1], while the maximum luminance of
CQD-LEDs overtakes 614,000 cd m−2 [17]. As a comparison, the maximum EQE of OLEDs is above
36% [13], but the maximum luminance of OLEDs is usually below 200,000 cd m−2 [15]. Benefiting from
the understanding of CQD-LEDs, researchers have also explored other types of nanocrystal LEDs.
As a representative class of optoelectronic materials, both organic-inorganic hybrid and all-inorganic
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perovskites have been intensively studied for LEDs in the recent years [18–23]. In 2014, Friend et al.
realized the first successful organic-inorganic MAPbBr3 (MA= CH3NH3) perovskite LED (PeLED),
yielding an EQE of 0.1% [18]. With the combined efforts from scientists worldwide, the performance
of PeLEDs has been significantly enhanced [24]. So far, the maximum EQE of PeLEDs surpasses
20% [25–27], while the maximum luminance of PeLEDs surmounts 591,197 cd m−2 [28]. In addition,
colloidal quantum wells (CQWs), also commonly nicknamed as semiconductor nanoplatelets, are
considered to be another highly promising family of emitters for nanocrystal LEDs [29–33]. In 2014,
Dubertret et al. developed the first CQW-LED by using CdSe/CdS core/shell heterostructures, obtaining
a maximum EQE of 0.63% [34]. Over the past few years, the performance of CQW-LEDs has been
improved step-by-step. Currently, the maximum EQE of CQW-LEDs is close to the theoretical limit
of 20% [35]. These exciting facts demonstrate that the rapid development of nanocrystal LEDs will
become real commercialization in the near future.

Impurity doping is a broadly exploited strategy to endow nanocrystals exhibiting a multitude
of novel electronic, optical, catalytic, transporting and magnetic properties [36–40]. By intentionally
inserting atoms or ions of appropriate elements (e.g., transition metal, alkali metal, rare earth,
and lanthanide impurities) into host lattices or nonstoichiometry-induced self-doping, various
impurity-doped nanocrystals with desirable properties and functions can be achieved [41–45]. Since the
self-quenching and reabsorption from enlarged Stokes shift can be eliminated, impurity-doped
nanocrystals are much less sensitive than undoped ones to the chemical, thermal, and photochemical
disturbances [46–50]. In particular, extra holes (p-type doping) or electrons (n-type doping) are
provided with the utilization of impurities, enriching the electronic applications [51]. Doping levels
and dopant positions are varied according to the synthesis schemes (e.g., reaction parameters, working
temperatures, and doping agents), leading to the changed dopant luminescence and electronic
impurities [52–55]. For instance, Norris et al. obtained p-type and n-type Ag doping through different
doping levels by using the cation-exchange reaction between PbSe/CdSe and ethanolic Ag+ [56].
Klimov et al. incorporated Mn ions into CsPbX3 (X= Cl, Br, or I) perovskites through elucidating the
function of bond strengths within the precursor and perovskite lattice, showing that the energy transfer
between perovskites and Mn2+ played a key role in the intensity of band-edge and Mn emissions [57].
Eychmüller et al. observed that high-temperature synthesis methods (e.g., 240 ◦C) lead to a firm binding
of Hg atoms within CQWs responsible for the single peak emission, while low-temperature means
(e.g., 200 ◦C) caused both loosely (probably via interstitial incorporation) and firmly (substitutional)
bound Hg atoms for double radiative recombination channels of lower and higher energies (i.e., two
red PL signals) [58]. As a matter of fact, it has been demonstrated that impurities can afford CQDs,
perovskites, and CQWs with new functionalities.

Generally, impurity-doped nanocrystals can exhibit not only the intrinsic merits of nanocrystals
but also additional advantages including enhanced thermal and chemical stability, improved
photoluminescence quantum efficiency (PLQY), reduced Auger recombination, impurity-related
emission, and tailored charge mobility [59–63]. Owing to these superiorities, impurity-doped
nanocrystals have sparked efforts to satisfy the requirement of many optoelectronic applications.
For example, Manoj et al. realized high-performance luminescent solar concentrators by using
Cu-doped CQWs, whose quantum efficiency is near-unity (up to ≈97%) [64]. Huang et al. improved
hole extraction through Ag doping (1% concentration) in PbS CQD solar cells, boosting the power
conversion efficiency from 9.1% to 10.6% [65]. In the case of LEDs, impurity-doped nanocrystals have
been extensively explored as versatile emitters. In general, impurity-doped nanocrystal LEDs can emit
not only band-edge emissions but also impurity-related emissions [66–68]. As a consequence, three
emission phenomena exist in impurity-doped nanocrystal LEDs (i.e., LEDs exhibit only host emissions,
LEDs show only impurity emissions, and LEDs possess both host and dopant emissions). This is
different from undoped nanocrystal LEDs, where only band-edge emissions can be observed [69–71].
Additionally, both the efficiency and luminance of impurity-doped nanocrystal LEDs can be enhanced
compared with those of undoped counterparts. For example, nine times the EQE in CQW-LEDs [72]
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and ~10 times the luminance in PeLEDs [73] were accomplished via impurity doping. Furthermore, the
stability of impurity-doped nanocrystal LEDs could be improved related to that of undoped ones [74].
Owing to the unique characteristics and impressive advantages (e.g., enhanced efficiency, improved
luminance, lowered voltage, and increased stability), impurity-doped nanocrystal LEDs, especially for
CQD-LEDs, PeLEDs and CQW-LEDs, are hugely promising for the new-generation display, lighting,
and signaling technologies.

Herein, the recent state-of-the-art concepts to achieve high-performance impurity-doped
nanocrystal LEDs will be concluded. First, the fundamental concepts of impurity-doped nanocrystal
LEDs will be presented. Second, the efforts to enhance the performance of impurity-doped nanocrystal
LEDs via both material design and device engineering will be introduced. In particular, the emergence
of various types of impurity-doped nanocrystal LEDs (e.g., CQD-LEDs, PeLEDs, and CQW-LEDs)
will be comprehensively highlighted. Finally, the issues and ways to further improve the device
performance will be clarified.

2. Fundamental Concepts of Impurity-Doped Nanocrystal LEDs

2.1. Impurity-Doped Nanocrystal Emitters

Nowadays, CQDs, perovskites, and CQWs are the three most extensively studied nanocrystals
for LEDs. In this work, CQDs, perovskites, and CQWs do not belong to the same category. Here,
the materials of zero-dimensional (0D) CQDs and 2D CQWs are formed by IV elemental nanocrystal
semiconductors (e.g., Si, Ge), the common groups being II-VI (e.g., CdSe, CdTe), III-V (e.g., InP, InAs),
and IV-VI (e.g., PbSe, PbS), binary nanocrystal semiconductors, and nanocrystal semiconducting
materials of ternary chalcogenide compounds ABmCn (A= Cu, Ag, Zn, Cd, etc.; B= Al, Ga, In; C= S,
Se, Te) [7–11]. Perovskites here refer to the materials possessing the formula ABX3, in which A-site is
MA+, [CH(NH2)2]+ (FA+) or Cs+, B-site is mostly Pb2+, and X-site is Cl, Br, I or mixed halide systems
(Cl/Br, Br/I) [24–28]. Although perovskite materials can have different morphologies (e.g., nanowires,
quantum dots, and nanoplatelets), perovskites in this work are indicated to be different from CQDs and
CQWs from the perspective of material composition instead of the morphology, which is used to avoid
confusion since the same material can have different morphologies and different materials can have
identical morphologies [29–33]. In the following parts, we will focus on these three impurity-doped
nanocrystals (i.e., CQDs, perovskites, and CQWs).

With the successful synthesis of colloidal nanocrystals, size-dependent quantum confinement
effects and controlled tunability of physical characteristics are allowed [75–77]. Since the representative
work in 1993 [78], CdSe CQDs have functioned as a representative system for wet-chemical syntheses.
Continuous endeavors enable the manipulation of size, shape, composition, and crystal structure of
nanocrystals, giving rise to a large number of nanocrystals including core-only CQDs (e.g., CdSe, ZnS,
ZnSe, CdS, and InP), core/shell CQDs (e.g., CdSe/ZnS, CdSe/ZnSe, and CdSe/CdS), and core/shell/shell
CQDs (e.g., CdSe/ZnSe/ZnS, CdSe/CdS/ZnS, and CdTe/CdS/ZnS) [79–83]. Currently, the CQD-LED
technology is entering the display market. In addition, halide perovskites are found to be a new
family of LED emitters because of the outstanding characteristics such as high PLQY, narrow spectrum,
and tunable emission in the entire visible region through controlling over anion identity or perovskite
size [84–88]. To date, both organic-inorganic hybrid perovskites (e.g., MAPbX3, FAPbX3) and
all-inorganic perovskites (e.g., CsPbX3) have attracted a great deal of attention from both academic
and industrial scientists [89–91]. Usually, the halide exchange method is exploited to tune the
composition post synthetically at mild conditions since anions exhibit good mobility in relatively open
perovskite crystal structures, controlling the bandgap [92]. Aside from CQDs and perovskites, CQWs,
which possess the tight quantum confinement only in the vertical direction, have emerged as another
novel class of emitting materials for LEDs thanks to their ultranarrow emission linewidth, excellent
PLQY, and short radiative fluorescence lifetime [93–97]. Since Joo et al. used a low-temperature
solution-phase strategy to synthesize the first 2D CdSe nanoribbons/CQWs showing a wurtzite
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structure 1D confinement in 2006 [98] and Dubertret et al. prepared 2D zinc blende CQWs in
2008 [99], various colloidal synthesis pathways have been reported to engineer the electronic structure
and optical characteristic of CQWs. Nowadays, apart from the core-only structures, CQWs with
heterostructures are available (e.g., core/shell CQWs, core/crown CQWs, and core/crown/shell CQWs),
which greatly widen the application range of CQW emitters [100–102]. In particular, the recently
developed hot-injection shell growth technique enables CQWs with near-unity PLQY, which renders
CQWs able to yield desirable performance in both lasers and LEDs [103–105].

As undoped nanocrystals are well developed, researchers have also turned their attention to explore
new functionalities in impurity-doped nanocrystals [106–108]. The investigation of impurity-doped
nanocrystals began in 1994 when Bhargava et al. reported that Mn-doped ZnS nanocrystals
simultaneously yielded good PLQY and shortening lifetime [109]. Since then, impurity-doped
nanocrystals have emerged as a novel family of materials. A popular doping scheme is to use the
precursor with an intentional impurity during syntheses, where the resulting nanocrystals are needed
to be carefully characterized (e.g., the electron paramagnetic resonance technique, the magnetic circular
dichroism technology) to determine whether impurities are incorporated or surface-bound [109–112].
In 2016, Klimov et al. introduced Mn2+ into CsPbX3 to show that doped perovskites were indeed a
new family of materials [57]. In terms of impurity-doped CQWs, Demir et al. took the first step to
incorporate Mn ions into CdSe/CdS core/multishell CQWs to manifest the carrier-dopant exchange
interaction effect in 2015, where the colloidal atomic layer deposition technology was used to grow a
Cd0.985Mn0.015S monolayer shell onto CdSe CQWs [113]. After these pioneering works, impurity-doped
nanocrystals have been explored to be highly promising emitters for LEDs. It is worth noting that
doping in CQWs has not been investigated to the same extent as CQDs or perovskites and most of
the impurity-doped CQWs are based on core-only CdSe structures [114]. In addition, more attention
about doping has been paid on all-inorganic perovskites due to their superior stability, compared with
organic-inorganic hybrid ones [115].

2.2. Device Architectures

On top of emissive materials, the design of device architectures plays a vital role in the
performance of impurity-doped nanocrystal LEDs [116–118]. In particular, the optimization of
device engineering has been verified to be a feasible way to gain high performance, since charge
injection, transporting, accumulation, leakage, balance and recombination are strongly associated with
device engineering [119–123]. For example, three-fold luminance improvement was accomplished
through sandwiching a perfluorinated ionomer (PFI) as a hole injection layer (HIL) between the hole
transporting layer (HTL) and CsPbBr3 emitting layer (EML) in PeLEDs [124], while seven-fold EQE
enhancement was fulfilled by using a stepwise dual-HTL 4,4′-bis-(m-tolyphenylamino)biphenyl
(TPD)/4,4′,4”-Tri(N-carbazolyl)triphenylamine (TCTA) in type II CdSe/CdSe0.8Te0.2 core/crown
EML-based CQW-LEDs [125]. So far, many well-developed concepts in OLEDs have been applied to
accelerate the innovation of device engineering for nanocrystal LEDs [126–130].

In principle, both forward and inverted device architectures are effective to organize undoped
or impurity-doped nanocrystal LEDs [131–135], as shown in Figure 1. According to the employed
charge transporting/injecting materials, three types of device architectures can be classified, regardless
of forward or inverted nanocrystal LEDs. First, nanocrystal LEDs with organic charge transporting
layers (CTLs) (Type I, Figure 1b), formed by organic HTLs and organic electron transporting
layers (ETLs), are broadly used to fabricate extremely efficient PeLEDs. For example, Kido et al.
employed poly(4-butylphenyl-diphenyl-amine) (poly-TPD) HTL and tris-(1-phenyl-1H-benzimidazole)
(TPBi) ETL in a forward architecture to demonstrate the first CsPb(Br/I)3 PeLED with a maximum
EQE of >20% [27], while Wei et al. reported a green PeLED with a maximum EQE of 20.3%
by using poly(ethylenedioxy thiophene):polystyrene sulfonate (PEDOT:PSS) HTL and C37H26N6

(B3PYMPM) ETL [25]. In general, polymer CTLs are prepared by the solution-processed technique,
while small-molecule CTLs are established by either the solution-processed or vacuum-evaporated
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technology [136–140]. In particular, the evaporated CTLs show no damage to the underlying layers,
averting solvent penetrating problems. Since a huge number of polymer and small-molecule organic
charge transporting materials can be synthesized and selected [141–145], this type of device architecture
possesses a vast potential to attain high-performance nanocrystal LEDs.
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Figure 1. Diagram of device architectures for nanocrystal light-emitting diodes (LEDs). (a) Forward
and inverted device architectures, where core/shell colloidal quantum dot (CQD), perovskite, and
core/crown colloidal quantum well (CQW) material structures are used to clarify the corresponding
nanocrystal emitters. EIL is the electron injection layer. (b) Nanocrystal LEDs with organic charge
transporting layers (CTLs) (Type I). (c) Nanocrystal LEDs with inorganic CTLs (Type II). (d) Nanocrystal
LEDs with organic-inorganic hybrid CTLs (Type III).

Second, nanocrystal LEDs with inorganic CTLs (Type II, Figure 1c), constructed by inorganic
HTLs and inorganic ETLs, usually exhibit outstanding stability since inorganic materials are insensitive
to the oxygen and water [146–150]. Recently, Ji et al. also demonstrated that CQD-LEDs with
all-inorganic device architectures could possess a high efficiency (20.5 cd A−1) and impressive
luminance (20,000 cd m−2) simultaneously, where nickel oxide (NiO) and zinc oxide (ZnO) were used
as HTL and ETL, respectively [151]. However, relatively few effective inorganic charge transporting
materials are available, which restricts the further development of this type of device architecture [152].

Third, nanocrystal LEDs with organic-inorganic hybrid CTLs (Type III, Figure 1d), built by the
combination of organic HTLs and inorganic ETLs or the alliance of inorganic HTLs and organic ETLs,
are the most extensively investigated type for high device performance [153–157]. Type III device
architectures are considered to be able to collate the advantages from both Type I and Type II device
architectures, leading to the simultaneous achievement of excellent efficiency, high luminance and long
lifetime [158–160]. As a matter of fact, a lot of attention has been paid to the hybrid device architecture.
For example, Peng et al. sandwiched CdSe/CdS EML between the inorganic ZnO ETL and organic
poly(9-vinlycarbazole) (PVK) HTL, achieving a CQD-LED with a high EQE of 20.5% and a long lifetime
of over 100,000 h at 100 cd m−2 [1]. In addition, the most efficient CQW-LED is also fulfilled via hybrid
device architecture [35].
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2.3. Emission Mechanisms

To boost the device performance, it is beneficial to unveil the emission mechanism of
impurity-doped nanocrystal LEDs. The electroluminescence (EL) procedure can be summarized
as follows [161–166]. Upon connecting power sources, electrons and holes are injected through the
cathode and anode, respectively. Then, electrons reach the EML by drawing on the electron injection
layer (EIL) and ETL, while holes arrive at the EML through HIL and HTL. Excitons are generated
for radiative recombination when electrons and holes meet each other in the EML, leading to the
intentional emissions based on the used emitters. To guarantee excitons being radiatively decayed,
the nonradiative channels (e.g., Auger recombination) should be avoided [167–169]. In particular,
charge imbalance is harmful to the device performance [170–174]. For example, excess electrons or
holes will easily cause nanocrystals charging, leading to poor performance [175–178]. Thus, the good
understanding of the EL process is essential to guarantee the efficient emissions.

To date, Mn, Cu, and Ag are the three most well-studied impurities for nanocrystals. In the case of
Mn-doped nanocrystals, the impurity emission peak is located in the yellow-orange range (e.g., 580–600 nm)
because Mn-emission is attributed to the intrinsic 4T1-6A1 transition of Mn ion [179–182]. For Cu-doped
nanocrystals, the impurity can show a large emission window affected by the size, composition, and nature
of matrix materials (e.g., Cu-doped ZnS showing blue-green emissions [183], Cu-doped ZnSe exhibiting
green-yellow emissions [184], Cu-doped CdS possessing orange-red emissions [185], and Cu-doped InP
displaying near-infrared emissions [186]). In terms of Ag-doped nanocrystals, the dopant emission can
also cover a broad spectral range, which is somewhat similar to that of Cu-emission [187–189]. However,
the recent study showed that Ag-doped nanocrystals and Cu-doped nanocrystals possessed different
electronic structures, where photogenerated holes mainly localized in Cu(3d) orbitals for Cu+-doped CdSe
(Cu+ was oxidized to Cu2+) while holes primarily localized in 4p orbitals of four neighboring Se2- ligands
for Ag+-doped CdSe (Ag+ was unoxidized) [190].

For undoped nanocrystals, photogenerated excitons will be formed upon excitation and then decay
radiatively, furnishing the band-edge emissions [191–193], as shown in Figure 2a. Thanks to the extra
impurity electronic energy levels, impurity-doped nanocrystal LEDs can show impurity-related
emissions apart from the generation of band-edge emissions [194–202]. Thus, three emission
mechanisms occur in impurity-doped nanocrystal LEDs, i.e., LEDs exhibit only host emissions, LEDs
show only impurity emissions, and LEDs possess both host and dopant emissions. These phenomena
are unlike undoped nanocrystal LEDs, where only band-edge emissions are generated. To insightfully
understand such distinguished behavior, the emission mechanism of Mn ions doped nanocrystals
is analyzed as an example below, considering that all the first doped CQDs [109], the first doped
perovskites [57], and the first doped CQWs [113] are based on the Mn impurity.
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Figure 2. Diagram of photoluminescence (PL) emission mechanisms for undoped and Mn-doped
nanocrystals. (a) Emission mechanism for undoped nanocrystals. VBM and CBM denote the valance
band maximum and conduction band minimum, respectively. Both host and dopant emissions (b),
only the host emission (c), and only the dopant emission (d) exist in Mn-doped nanocrystals.

The host and dopant PL emissions in Mn-doped nanocrystals is dependent on the interplay of rates
of several competing processes, including band-edge electron-hole recombination (kH), nonradiative
recombination (kN), deactivation of the impurity dopant (kD), forward (kET) and back (kBET) energy
transfer between the host and dopant. Additionally, the competition between kET and kBET is strongly
influenced by (i) the energy difference (∆E) between the host and dopant transitions, and (ii) the dopant
concentration (CD). If ∆E is positive and CD is small or mild, both host and dopant emissions will
be generated, since kET is favored and the energy transfer between host and dopant is not complete
(Figure 2b). If ∆E is positive but CD is large enough, only dopant emission will be formed, because
the favored kET enables the complete energy transfer between host and dopant, quenching the host
emission (Figure 2c). If ∆E is negative, only host emission will be furnished, as kBET is favored and
the exciton energy of host cannot be transferred to the dopant, diminishing the dopant emission
(Figure 2d).

Phonon participation in cooperative energy transfer processes plays a critical role in energy
migration; however, this participation is usually not considered in impurity-doped nanocrystal
LEDs. One of the critical reasons for this phenomenon may be the fact that the emission mechanism
becomes complicated if phonon participation is considered [57]. Therefore, following the previous
impurity-doped nanocrystal LEDs [66–74], we do not consider phonon participation. Additionally,
it is still somewhat controversial for the mechanism of charge-phonon interactions. Hence, further
understanding and control will depend on pinpointing the molecular motions, organic/inorganic
interfaces and nanocrystals phonons “bottleneck problem” that can cause substantial change to the
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band structure. Hence, more and new systematic and comprehensive papers are needed to study them,
which is beyond the scope of this review.

3. Strategies to Achieve High-Performance Impurity-Doped Nanocrystal LEDs

3.1. Basic Aspects of Impurity-Doped Nanocrystal LEDs

Based on the above-mentioned concepts, impurity-doped nanocrystal emitters, device
architectures, and emission mechanisms are three major factors which are necessary to be considered
when establishing high-performance devices. However, it is important to note that these three major
factors are not equally important for a specific device/application, thus understanding which of these
factors play more significant role for a given material/device is important. After the preparation of
LEDs, EQE is the most widely adopted parameter to determine the device performance [203–205].
In thermal-evaporated OLEDs, the EQE is generally written as follows [206–208]:

EQE = η · r · q · γ (1)

where η, r, q, and γ are the factor of outcoupling, the fraction of excitons being decayed radiatively,
the PLQY of emitters, and the factor of charge balance, respectively. For solution-processed LEDs,
the EML film morphology plays a key role in the performance [1]. Hence, the EQE of solution-processed
LEDs (EQE′) can be defined below [35]:

EQE′ = α·η·r·q·γ (2)

where α is the factor of film morphology extracted out from γ to emphasize the effect of film roughness
on the leakage current (γ = α · γ′). α is nearly not considered thanks to the extremely smooth films
formed through vacuum-evaporated processes in OLEDs [209–211], while α is considered to be ≤1 in
solution-processed LEDs. For α = 1, a superior film morphology that has a negligible influence on
the performance will be formed. In such cases, EQE′ is equal to EQE, or else EQE′ is lower than EQE.
Because η is not influenced by the internal operation while r is ≈1 owing to the low energetic separation
between ‘bright’ and ‘dark’ band-edge excitonic states (<25 meV) [8], the EQE′ of impurity-doped
nanocrystal LEDs is decided by α, q, and γ′. In other words, the film morphology is a crucial element to
determine the efficiency of impurity-doped nanocrystal LEDs, aside from the consideration of emitters
and the innovation of device engineering.

To evaluate whether impurity-doped nanocrystal LEDs can satisfy the demand of real commercialization,
other parameters are also required to be considered, such as CE, PE, efficiency droop, operational voltage,
luminance, lifetime, and color purity [212–216]. In general, CE is directly proportional to EQE. Despite CE
not being an important parameter for lighting technology, it is significant to displays. Low voltages are not
only essential to fulfill the high PE, since PE is inversely proportional to voltages, but also beneficial to the
long lifetime, because Joule heating can be reduced [217]. Low efficiency droop is significant to practical
applications, since high efficiency is required at high luminance or current density. For high luminance,
enough electrons and holes are necessary to be provided for the generation of excitons, apart from the
excellent charge balance [218]. Despite color purity being mainly dependent on the exploited emitters,
the emissions from the neighboring CTLs should be avoided, indicating that materials with excellent
charge confining ability are desirable [219]. According to these aspects, plenty of strategies to enhance the
performance of impurity-doped nanocrystal LEDs have been reported, particularly for CQD-LEDs, PeLEDs,
and CQW-LEDs, which will be described in the following sections.

3.2. Impurity-Doped CQD-LEDs

Impurity-doped CQD-LEDs emerged in the late 1990s [220,221]. Nevertheless, only EL spectra
were usually reported at the initial stage, while negligible attention was paid to other important
EL performances (e.g., EQE). One of the critical reasons is that the performance of impurity-doped
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CQD-LEDs is very poor at that time due to the scarce understanding of this new type of LEDs [221–224].
For example, Yang et al. used Mn-doped ZnS (2.14 mol%) as the EML to fabricate an LED with the
device architecture of indium tin oxide (ITO)/PEDOT:PSS/PVK/EML/Al, where very high working
voltages (20–28 V) were needed to measure the EL spectra [225]. By step-by-step discovering the
excellent properties of impurity-doped nanocrystals along with unlocking the potential of device
engineering, the performance of impurity-doped nanocrystal LEDs has been vastly enhanced [226].
In particular, more attention has been paid to the factor of impurity-doped materials as compared to
the factor of device architecture or emission mechanism in impurity-doped CQD-LEDs.

3.2.1. Improving the Charge Injection via Cu-Doped CQDs

A significant factor limiting the efficiency of impurity-doped CQD-LEDs is the ineffective charge
injection into CQDs. In 2008, Janssen et al. demonstrated a strategy to overcome this limitation,
where the charge recombination readily occurred on Cu-doped CdS CQDs when blended into the
mixed matrix PVK: 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) [227]. The improved
performance of doped LEDs as compared to undoped counterparts was attributed to efficient hole
injection into the Cu-doped CdS CQDs via the Cu energy levels. The charge imbalance might be
reduced owing to the enhanced hole injection directly into the energy levels of Cu ions located near the
QD surface, leading to the high EQE. Without inorganic passivating shells, the doped LED exhibited a
maximum EQE of 5.1% and a CE of 9 cd A−1, which were the highest values among CQD-LEDs at that
time [227]. To achieve such a high performance, it was first found that the PL spectra of Cu-doped
CdS CQDs could be tuned via two ways, i.e., enhancing the amount of Cu during the synthesis,
and adjusting the size of CQDs through reaction temperatures. Thus, emissions were influenced by
electronic levels of Cu as well as CdS. Then, LEDs with the device architecture of ITO/PEDOT:PSS/PVK:
PBD: CQDs/TPBi/Ba: Al were developed, in which 1% Cu-doped CdS CQDs were synthesized at
200 ◦C. The working mechanism of the LED could be summarized as follows. If the concentration of
Cu-doped CdS CQDs was not high (e.g., 10%), the EL emissions of CQDs and PVK/PBD matrix could
be simultaneously obtained, as shown in Figure 3a. To exclude the matrix emissions (i.e., 460 nm for
PVK and 490 nm for PBD), an increased concentration of Cu-doped CdS CQDs was utilized (e.g., 30%),
where only the CQD emission (620 nm) was achieved thanks to the efficient Förster energy transfer.
In addition, holes were directly injected into the energy levels of Cu ions, which reduced the hole
barrier since the highest occupied molecular orbital (HOMO) of PVK was better aligned with the
Cu level (Figure 3b). Hence, the effective trapping of charges in LEDs resulted in the predominant
CQD emissions for high efficiencies. Another key factor for the high device performance was the use
of PVK/PBD matrix, since (i) PVK showed good hole-transporting ability while PBD improved the
electron transporting, (ii) the UV/blue emissions emitted by PVK and PBD were well overlapped with
absorption spectra of Cu-doped CdS CQDs, leading to a good Förster energy transfer upon excitons
being generated at the matrix. In fact, this mixed bipolar matrix is very efficient and is also adopted by
other types of LEDs. For example, Gao et al. employed PVK/PBD as the matrix to develop MAPbBr3

PeLEDs with a high luminance of 10,590 cd m−2, which was one of the brightest values for PeLEDs in
2006 [228].
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3.2.2. Increasing Solid-State Luminescence for High Device Performance

In general, solution-processed routes are used to fabricate the EMLs of nanocrystal LEDs, where
solid-state EML films are formed within devices. Nanocrystals will easily suffer from luminescence
quenching in solid states, despite they are highly luminescent in solutions [229–233]. Hence, an important
factor to improve the performance of nanocrystal LEDs is the achievement of intense solid-state
luminescence for EMLs. Toward this end, Acharya et al. reported that high concentration Cu-doped
CdS with overcoated CdS shell could exhibit an excellent solid-state PLQY of ~55% [234]. To prepare
the samples, copper oleate and cadmium oleate with dodecanethiol were first heated in air (for core),
and then TOP-S complex solution (0.1 mmol) and cadmium oleate (0.1 mmol) were added dropwise to
the nanocrystal solution at 170 ◦C (for shell). The samples were substantially stable in air for nearly a year,
retaining bright solid-state luminescence. By using these core/shell samples as the emitters, LEDs with
the device architecture of ITO/PEDOT:PSS/TPD/emitters/ZnO/Al were constructed, as shown in Figure 4.
The LED responded with an outstanding low turn-on voltage below 2 V, which might be ascribed to the
low oxidation potential of 0.85 V as confirmed by the cyclic voltammetry of the core/shell nanocrystals
solution (inset of Figure 4c). Additionally, the resulting LED showed stable EL spectra in a broad range of
working voltages. Nevertheless, the device engineering was required to be studied furhter, considering
the undesirable luminance (~280 cd m−2) and EQE (0.25%).

3.2.3. Exploiting Heavy-Metal-Free Impurity-Doped CQDs for LEDs

Nanocrystals show bright prospects for fabricating LEDs. However, the dependence on
heavy-metal cations (e.g., Cd, Pb, and Hg) is usually required to attain high performance, which is a
drawback that cannot be neglected in nanocrystal LEDs [235–239]. To solve this issue, a strategy is
to develop heavy-metal-free nanoemitters. Ternary chalcogenide compounds ABmCn are promising
as environmental-friendly and nontoxic alternatives thanks to the amazing composition-tunable
optical and electronic characteristics [240]. So far, plenty of ternary chalcogenide compounds have
served as hosts, such as Zn-In-Se, Zn-Cd-S, and ZnS/Zn-Cd-S [241–243]. However, impurity-doped
heavy-metal-free CQDs usually exhibit narrow emission ranges and intermediate efficiencies.
For example, Cu-doped Zn-In-Se CQDs only covered from 540 to 660 nm (120 nm) with a PLQY
of 30% [244]. Thus, efficient impurity-doped heavy-metal-free CQDs with a large emission range
are desirable.
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To loosen the above bottleneck, Zhong et al. established LEDs by using color-tunable highly
bright PL of Cu-doped Zn-In-S CQDs [245]. A critical reason for the improved performance of
doped LEDs as compared to undoped counterparts might be the excellent PLQY of Cu-doped
Zn-In-S CQDs. By virtue of a one-pot noninjection synthetic method, metal acetate salts, sulfur
powder, and dodecanethiol in oleylamine media were heated for Cu-doped Zn-In-S cores. ZnS shell
was directly overcoated in the crude reaction solution, leading to Cu-doped Zn-In-S/ZnS core/shell
CQDs showing composition-tunable emissions over a large spectral window (450–810 nm). The PLQY
could be up to 85%, which was not only the best one for transition-metal-doped nanocrystals but
also among the highest luminescent semiconductor nanocrystals at that time. With the efficient
yellow-emission (580 nm) Cu-doped Zn-In-S/ZnS core/shell emitters, LEDs with the device architecture
of ITO/PEDOT:PSS (10 nm)/poly-TPD (40 nm)/emitters/TPBi (40 nm)/LiF (0.5 nm)/Al (100 nm) were
fabricated, as shown in Figure 5. Compared with the PL spectrum, the full width at half-maximum
(FWHM) of EL spectrum was only a little wider. Hence, EL emissions were mainly derived from
CQDs. The turn-on voltage was 3.6 V, lower than that of the previous lowest CuInS2-based CQD-LEDs
(4.4 V) [246]. The peak luminance reached 220 cd m−2. The CE of 2.45 cd A−1 and PE of 2.14 lm W−1

were also higher in comparison with CuInS2-based CQD-LEDs [246,247]. Thus, Cu-doped Zn-In-S/ZnS
core/shell CQDs may be potentially excellent heavy-metal-free candidate LED emitters. In fact,
Cu-Zn-In-S nanocrystals have been extensively used in various technologies (e.g., photocatalyst for H2

generation) [248–251]. In addition, ternary chalcogenide Zn-In-S has been found to be a near-ideal host
for various impurities because of the excellent chemical stability, well-developed synthetic method,
and composition-tunable bandgap [252]. For instance, Chen et al. doped Ag into Zn-In-S hosts,
realizing Ag-Zn-In-S quaternary CQDs with outstanding optical characteristics [253].
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3.3. Impurity-Doped PeLEDs

In 2014, the first successful organic-inorganic hybrid MAPbBr3 PeLED was reported [18]. In 2015,
the first all-inorganic PeLED was developed [19]. In 2016, the first bright FAPbBr3 PeLED was
demonstrated [254]. Since then, the development of PeLEDs has flourished. Currently, the EQE of
both hybrid and all-inorganic PeLEDs can exceed 20%, indicating the huge potential for optoelectronic
applications [255]. However, the stability of PeLEDs may need to be further improved, given that the
longest lifetime was only ~250 h at 100 cd m−2 for all-inorganic PeLEDs in 2019 [174]. In addition,
the luminance of red and blue PeLEDs is still not satisfactory enough. For example, Kido et al. realized
all-inorganic PeLEDs with an EQE of 21.3%; nevertheless, the lifetime was only 3 h at 100 cd m−2 and
the maximum luminance was only 794 cd m−2 [27]. Furthermore, it is still a challenge for blue PeLEDs
to achieve high efficiency, although both green and red PeLEDs can exhibit EQEs ≥20%. Moreover,
the high toxicity of lead may hinder the commercial applications.

One of the effective approaches to overcome the above restrictions is the exploitation of
impurity-doped ABX3 perovskites to develop PeLEDs. Generally, the poor thermal stability issue
exists in organic-inorganic hybrid perovskites because of volatile organic A-site cations (e.g., MA+,
FA+), which is probably resolved by replacing organic cations with inorganic Cs+ [256–260]. In the
case of B-site cations, although the whole substitution of Pb2+ with other metal ions usually causes
poor optoelectronic characteristics (e.g., Ge2+, Sn2+ will be readily oxidized to +4 states), the partial
substitution (from doping to alloying) is possible to enhance the thermal and phase stability [261–264].
In particular, both isovalent/divalent and heterovalent cations can be used to partially replace the
Pb2+ ions in the lattice structure of perovskites. Meanwhile, the toxicity is reduced [265]. For X-site
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anions, mixed halide systems (Cl/Br, Br/I) are commonly used to tune the emissions (e.g., yellow
and orange emissions are generated by AB(Cl/Br)3) [19]. In fact, X-site doping or halogen-doping is
the predominant and most well-known strategy to develop various-color PeLEDs. Therefore, A-, B-,
and X-site doping can amazingly broaden the applications of perovskites. In brief, A- or B-site doping
is commonly exploited to reduce the trap state, diminish the nonradiative recombination, and enhance
the stability, while X-site doping is mainly employed to tune the emission colors [266–269]. Hence, it is
easy to note that the current research focus is the factor of impurity-doped materials in impurity-doped
PeLEDs. Based on these facts, strategies to boost the device performance of red, green, and blue
PeLEDs are generally focused on A- and B-site doping, which will be introduced in the below sections.

3.3.1. Approaches to Achieve Impurity-Doped Red PeLEDs

The A-site doping strategy for red PeLEDs was first noticed by Rogach et al., where doping
and surface passivation of CsPbI3 films with silver simultaneously occurred [270]. A key factor
to realize this approach was the design of a special device architecture, which was formed by Ag
(cathode)/ZnO/polyethylenimine (PEI)/CsPbI3/TCTA/MoO3/Au/MoO3 (anode), as shown in Figure 6.
In such devices, Ag cathode not only lowered the electron injection barrier, but also provided Ag+

ions which diffused into the lattice structure of CsPbI3 for Ag-doped perovskites. Hence, Ag+

partially substituted Cs+ in CsPbI3 for the stabilization, while passivation of CsPbI3 surface with Ag+

converted nonradiative trap states into radiative states for enhancing the PLQY and stability. Hence,
the factor of device architecture enabled the efficient impurity doping. Compared with PeLEDs with
ITO cathode, the maximum EQE of Ag-based PeLEDs was enhanced from 7.3% to 11.2% and the
stability of nonencapsulated devices was improved in both the nitrogen and the ambient atmosphere.
For the MoO3-1/Au/MoO3-2 (MAM) trilayer, 20 nm MoO3-1 was the HIL, 10 nm Au ensured high
transparency and good conductivity, and 25 nm MoO3-2 reduced the light reflection at the Au/air
interface. The transmittance of MAM at 690 nm was increased from 57% to 67% due to the similar EL
emission of CsPbI3. Additionally, the resistance of MAM was as low as 15 Ω sq−1. As a consequence,
the best-performing devices showed the maximum EQE of 12.1%, which was the highest among CsPbI3

PeLEDs at that time [270]. In fact, metal oxide/metal/metal oxide electrodes have been broadly studied
in OLEDs owing to the high transparency and low resistance [271–273].

The B-site doping strategy for red PeLEDs was also reported by Rogach et al., where SrCl2 was
selected to be a co-precursor to improve the efficiency and stability of CsPbI3 [274]. A key factor to
achieve this approach was the design of material syntheses, in which the introduction of co-precursor
SrCl2 played a crucial role in the synthesis of CsPbI3. For example, the PLQY of CsPbI3 was improved
from 65% to 84% when the synthetic ratio of SrCl2: PbI2 was equal to 0.1 (CsPbI3-0.1). In such synthesis,
the Sr2+ doping owing to the smaller ion radius of 1.18 Å for Sr2+ (1.19 Å for Pb2+) and surface
defect states of Cl− passivation (converting nonradiative trap states to radiative states) simultaneously
occurred. With Sr2+ cations, the stability of perovskites was enhanced due to the increased formation
energy and thus the slightly improved environment tolerance. Importantly, the hole transporting
characteristic of CsPbI3-0.1 was better than that of pristine CsPbI3, which resulted in enhanced
charge balance, as confirmed by electron-only and hole-only devices. PeLEDs were developed with
the device architecture of ITO/ZnO/PEI/perovskites/TCTA/MoO3/Au, where CsPbI3-0.1 and pristine
CsPbI3 were emitters, as shown in Figure 7. Although the turn-on voltage of CsPbI3-0.1 and pristine
CsPbI3-based PeLEDs was similar (~2.0 V), the maximum luminance and EQE of CsPbI3-0.1-based
PeLEDs (1152 cd m−2 and 13.5%) were much higher than those of pristine CsPbI3-based PeLEDs
(510 cd m−2 and <8%). Additionally, the operational stability of CsPbI3-0.1-based PeLEDs was enhanced
thanks to the addition of SrCl2 [274]. Recently, Yao et al. also demonstrated that the Sr2+ substitution
was very effective, which could be used to enhance the efficiency and stability of red α-CsPbI3

PeLEDs [275]. For example, the maximum EQE of 5.92% was obtained for Sr2+-substituted-based
PeLEDs, which was three-fold higher than that of unsubstituted PeLEDs [275].
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Figure 6. (a) Device architectures of PeLEDs with ITO and Ag. Red arrows suggested the transparent
side. (b) Energy level diagram. (c) External quantum efficiency (EQE) of LEDs with Ag and ITO. Inset:
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Besides the Sr2+ B-site doping, other isovalent cations are also reported to partly replace the Pb2+

ions in the lattice structure of red perovskites for high-performance PeLEDs, such as Zn2+, Mn2+, and
Cu2+ [276–278]. For instance, Song et al. used a zinc non-halide dopant approach to study the effect of
Zn2+ on CsPbI3, where Zn-doped CsPbI3 showed 120% higher PLQY than pristine CsPbI3 [279]. As a
result, PeLEDs using Zn-doped CsPbI3 exhibited approximately two times higher EQE (14.6%) versus
control PeLEDs. On the other hand, heterovalent elements B-site doping (e.g., Bi3+, Eu3+, and Gd3+) is
another significant scheme to prepare red perovskites for PeLEDs possessing enhanced optoelectronic
performance [280]. For example, Demir et al. discovered that Gd3+ doping could result in enhanced
PLQY, increased PL lifetime, and improved α-phase stability of CsPbI3 because of the distorted cubic
symmetry, reduced defect density, and increased Goldschmidt’s tolerance factor [281]. In addition,
both the isovalent and the heterovalent B-site doping strategies have been extensively applied to green
and blue perovskites.
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3.3.2. Methods to Obtain Impurity-Doped Green PeLEDs

Currently, the efficiency of organic cation (e.g., FA+, MA+)-based PeLEDs is comparable to that of
state-of-the-art OLEDs. Nevertheless, organic cation-based perovskites are usually criticized due to the
inherent instability, including easy sensitivity to oxygen, moisture, and temperature. Such instability
originates from the chemical noninertness of organic cations coupled with the underlying weak
interaction between cations and surrounding halides because of the eight equivalent orientations of
the cation along the body diagonals in the unit cell, which hinders the future applications [282–286].
To overcome this issue, a popular A-site doping method in green PeLEDs was the mixture of organic
cations and alkali metal cations (e.g., Cs+, Rb+, K+, Na+). For example, the relatively small ionic radius
of 1.81 Å for Cs (e.g., 2.79 Å for FA, 2.70 Å for MA) is conductive to assist the crystallization of the black
phase of FA perovskites because of the entropic stabilization [287]. With alkali metal doping, a superior
stability, higher PLQY, longer exciton lifetime, less exciton binding energy, lower trap density, better
crystallinity, and more tuned tolerance factor can be accomplished [288–290]. Furthermore, alkali metal
halides can passivate the grain boundaries and interface states and fill the dangling bond, averting the
fluorescence quenching [291]. Moreover, alkali metals are oxidation-stable A-site cations that avoid
perovskite electronic property distortion because of oxidation-prone Pb/Sn mixtures [292]. Therefore,
by taking the advantages of alkali-metal-doped perovskites, high-performance green PeLEDs can
be expected.

Sun et al. took the first step to develop green PeLEDs by utilizing mixed-cation perovskite
emitters, where cations in FA(1−x)CsxPbBr3 were formed by partially substituting FA+ with Cs+ during
the synthesis process (i.e., FABr and PbBr2 were precursors, while CsBr provided Cs+ doping) [293].
Two major aspects, chemical composition engineering of FA(1−x)CsxPbBr3 and PeLED application,
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were highlighted in their work. First, the chemical composition of FA(1−x)CsxPbBr3 with various ratios
of FA/Cs was studied to ensure outstanding optical characteristics, including high PLQY, narrow
emission, and tunable bandgap. Then, PeLEDs were fabricated with the device architecture of
ITO/PEDOT:PSS, poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4′-(N-(4secbutylphenyl)diphenylamine)]
(TFB)/perovskites/TPBi/LiF/Al, as shown in Figure 8. A key factor to achieve the high device
performance was the matching of energy levels. This was because electrons were injected from the
lowest unoccupied molecular orbital (LUMO) of TPBi into the CBM of perovskites, while holes were
transferred from the HOMO of TFB into the VBM of perovskites. The VBM of FA(1−x)CsxPbBr3 could
be gradually lowered with the Cs+ increasing, facilitating the hole injection thanks to the reduced
barrier at the TFB/perovskite interface. As a result, the optimized FA(1−x)CsxPbBr3 PeLED exhibited
the maximum luminance and CE of 55,005 cd m−2 and 10.09 cd A−1, respectively, suggesting 6.4- and
3.7-fold higher than FAPbBr3 PeLEDs. In particular, the luminance of 55,005 cd m−2 was the highest
for nanocrystal PeLEDs at that time, which resulted from the proper energy level, homogeneous film
morphology, and the improved stability of perovskites.
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Figure 8. (a) Schematic illustration and cross-section of PeLEDs. (b) Energy band diagram.
(c) High-binding energy secondary-electron cutoff regions of perovskite nanocrystals. (d) Valance band
(VB)-edge region of perovskites. (e) EL spectra and photograph, driven at 4 V, for PeLEDs. Reproduced
from reference [293].

Later, Wu et al. found that Rb+ doping has a great influence on the crystal growth, structure,
photoelectric, and optical characteristics of FAPbBr3, which importantly improved the PLQY of
FAPbBr3 film (~10-fold) on account of the substantially suppressed trap density [73]. Hence, the
maximum luminance and CE of PeLEDs with Rb-doped FAPbBr3 were improved by ∼10-fold and
∼5-fold to 66,353 cd m−2 and 24.22 cd A−1 compared to the controlled devices, respectively, which
were the highest for FAPbBr3-based PeLEDs at that time. On the other hand, the realization of Cs+

doping in MA-based perovskites [294], MA+ doping in FA-based perovskites [295], and FA+ doping
in Cs-based perovskites [296] have also been demonstrated to be effective methods to considerably
enhance the performance of green PeLEDs.

In the case of B-site doping for green PeLEDs, the partial replacement of Pb2+ with isovalent or
heterovalent cations via well-designed synthetic methods is also effective in enhancing the device
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performance, which is similar to the situation in impurity-doped red PeLEDs. For example, the
maximum EQE was increased from 0.81% for pure CsPbBr3 PeLEDs to 1.49% for Mn2+-doped CsPbBr3

PeLEDs [297], while the EQE was improved from 1.6% for pure CsPbBr3 PeLEDs to 4.4% for Ce3+-doped
devices [298]. Additionally, the maximum luminance was enhanced from 4727 cd m−2 for pure CsPbBr3

PeLEDs to 12,500 cd m−2 for Sn4+-doped PeLEDs [299]. Remarkably, the maximum CE of Mg2+-doped
CsPbBr3 PeLEDs was up to 13.13 cd A−1, which was a ~100-fold improvement compared to undoped
counterparts [300]. In particular, Sn2+ doping in CsPbBr3 is easier relative to many other divalent
ions (e.g., Cd2+, Co2+, Zn2+, Sr2+) since CsSnBr3 and CsPbBr3 possess similar ABX3-type perovskite
crystalline structures [301–303]. Nevertheless, Sn2+-based CsSnX3 is unstable since Sn2+ easily oxidizes
to Sn4+, resulting in low PLQY [304]. Hence, the highly conductive and stable Sn4+ doping in CsPbBr3

is more approximate than Sn2+ doping for PeLEDs [299].

3.3.3. Ways to Fulfill Impurity-Doped Blue PeLEDs

Compared with impurity-doped red and green PeLEDs, relatively little attention has been paid to
impurity-doped blue PeLEDs. This may be because it is more difficult to synthesize high-performance
blue perovskites together with the fact that it becomes harder to manipulate the device engineering
due to the wide bandgap of blue emitters [305–308]. Encouragingly, B-site doping has been found to
be a crucial way to fulfill high-performance blue PeLEDs [309]. In particular, Mn2+ doping is widely
adopted to enhance the performance of blue all-inorganic perovskites [310,311]. The key reasons may
be (i) identical octahedral coordination environment of host cations surrounded by six halide atoms
for CsPbX3 and CsMnX3, (ii) higher formation energies of CsMnX3 than those of CsPbX3 to avoid the
thermal instability issue that is associated with the intrinsically low formation energies of perovskite
lattices, iii) smaller ion radius of Mn2+ (∼0.97 Å) [312–314].

The first successful Mn-doped blue PeLEDs was reported by Congreve et al., where a small
amount of Mn2+ increased the PLQY over three-fold for CsPbCl3 films (28%) without an Mn-emission
peak [315]. A significant point to achieve this method was the realization of the high blue color purity,
since the band-edge emission not only competed with nonradiative recombination but also transferred
energy to Mn2+ for Mn emissions. By employing a two-step synthetic scheme to adjust Mn2+ doping,
the PLQY and lifetime were increased while trap states were reduced. In addition, perovskites became
more monodisperse, narrowing the emission bandwidth. PeLEDs were constructed with the device
architecture of ITO/PEDOT:PSS/TFB/PFI/perovskites/TPBi/LiF/Al, where Mn-doped CsPbCl3 was blue
perovskite emitters, as shown in Figure 9. Mn emissions disappeared in such devices, since the very
long emissive lifetime of Mn2+ saturated the emission in the thin EML layer and TFB may further
lower Mn emission, enabling the mild doping for enhanced performance without sacrificing color
purity. Compared with undoped PeLEDs, the maximum of EQE of PeLEDs with the 0.19% Mn doping
showed a four-fold improvement, reaching 2.12%, which was the highest for blue PeLEDs at that
time [315]. Later, Congreve group also demonstrated that Mn2+ doping could enhance the luminance,
efficiency, and stability of bulk sky-blue CsPbBr1.9Cl1.1 PeLEDs [316]. In this work, a maximum
luminance of 11,800 cd m−2 was yielded, which was among the highest for blue PeLEDs. More recently,
Song et al. reported that the maximum EQE of Ni2+-doped blue CsPbBr0.99Cl2.01 PeLEDs was up to
2.4%, which was the best for blue CsPbX3 PeLEDs [317].
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3.4. Impurity-Doped CQW-LEDs

Since the first demonstration of CQW-LEDs in 2014 [34], the investigation of this new type of
LEDs has been thriving. Various kinds of CQWs have been attempted as the emitters for LEDs, such
as core-only, core/crown, and core/shell CQWs [35,72,125,318–322]. Nevertheless, it is important to
point out that the development of CQW-LEDs is still in its infant stage. On one hand, neither blue nor
yellow CQW-LEDs have been reported up to now. In particular, efficient blue CQWs are difficult to
synthesize, which restricts the realization of blue CQW-LEDs. On the other hand, some significant
parameters (e.g., CE, PE, luminance, and lifetime) to judge the performance of CQW-LEDs lag far
behind other types of advanced LEDs, including OLEDs, CQD-LEDs, and PeLEDs. For example, the
maximum PE of CQW-LEDs is 9.44 lm W−1 [125], which is much lower than that of OLEDs surpassing
100 lm W−1 [323–325]. Fortunately, CQW-LEDs can exhibit superior color purity on account of the
strong quantum confinement solely in the vertical direction for CQWs [326–328]. In addition, the
maximum EQE of CQW-LEDs can be close to 20% via the understanding of the shape-, composition-
and device-engineering [35]. Furthermore, the easy solution-processed fabrication procedures and
good compatibility with flexible electronics enable CQW-LEDs to satisfy the low-cost commercial
requirements. All these encouraging characteristics render CQW-LEDs able to offer great potential for
the optoelectronic applications.

In terms of impurity-doped CQW-LEDs, only one work has been reported to date [72]. Specifically,
Liu et al. revealed the Cu-doping effect in LEDs through controlling the Cu concentration in CdSe
CQWs. The improved performance of doped LEDs as compared to undoped counterparts was ascribed
to: (i) the better PLQY of Cu-doped CQWs, (ii) an advanced emission mechanism since two decay
channels for exciton recombination simultaneously occurred in Cu-doped CQW-LEDs. CQW-LEDs
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were established with the device architecture of ITO/ZnO/emitters/4,4-N,N-dicarbazolebiphenyl (CBP)
or 1-bis[4 -[N,N-di(4-tolyl)amino]phenyl]-cyclohexane (TAPC)/MoO3/Al, where CQWs with different
doping concentrations served as the emitters, CBP and TAPC HTLs were used to understand the
device engineering. Firstly, CQW-LEDs with 0% Cu-doped concentration exhibited the narrow EL
FWHM of 12 nm and the Commission Internationale de L’Eclairage (CIE) 1931 coordinates of (0.103,
0.797), rendering than the color gamut covered 104% of the International Telecommunication Union
Recommendation BT 2020 (Rec. 2020) standard in the CIE 1931 color space. Secondly, CQW-LEDs
with 0.5% Cu-doped concentration possessed dual emission with an EQE of 0.146% (Figure 10),
demonstrating that impurity doping was an effective strategy to vastly enhance the performance
(i.e., realizing nine-fold higher EQE than a 0% concentration-based device). Importantly, the dual
emission could be tuned by manipulating the device engineering, since two decay channels for exciton
recombination existed (i.e., excitons were recombined from electrons at CdSe CBM with holes at Cu
level to produce Cu+ emission or holes at CdSe VBM for CdSe emission). In the case of CBP-based
CQW-LEDs, the Cu+ emission was lowered with increasing voltage. In greater detail, the charge
trapping issue existed in the doped LEDs, since holes transported from CBP were more easily trapped
by Cu under a low electrical field while saturated at high voltages due to the high Cu level (5.05 eV)
compared with CdSe VBM (5.69 eV), resulting in relatively more holes transported from CBP being
injected into the VBM of CdSe after saturation at the dopant site. Hence, a lower current density in
doped LEDs was obtained as compared to undoped counterparts. Furthermore, the ideality factor for
the doped LEDs was nearly twice that of undoped counterparts, suggesting that Cu-doping was an
impurity defect site.
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for CQW-LEDs with 0.5% Cu-doped concentration (TAPC HTL). Reproduced from reference [72].



Nanomaterials 2020, 10, 1226 20 of 40

For TAPC-based CQW-LEDs, the EL emission peak of CdSe was lower than that of Cu+, since holes
were readily injected into Cu due to the barrier-free characteristic between the HOMO of TAPC (5.4 eV)
and Cu level while the existing hole barrier between TAPC and CdSe. Finally, a white LED based on
CQWs was explored, in which a high Cu-doped concentration of 2.4% was used. Such findings could
be further extended to other impurity (e.g., Mn, Ag)-doped CQWs to realize LEDs, considering the
well-developed impurity-doped CQD-LEDs and PeLEDs. Therefore, the factor of impurity-doped
materials played a significant role in improving the efficiency and stability, while the factor of device
architecture affected the emission mechanism in impurity-doped CQW-LEDs.

4. Summary and Outlook

By virtue of impurity doping, the electronic, optical, catalytic, transporting and magnetic properties
of nanocrystals can be controlled to satisfy the requirement of optoelectronic and microelectronic
applications. With the gradual comprehending of the effect of impurity doping (e.g., enhancing
synthesis control over impurity incorporations, studying the concentrations, and exploring emerging
phenomena), the development of impurity-doped nanocrystal LEDs is flourishing [329–331].
Nowadays, impurity-doped nanocrystal LEDs can possess many exceptional merits (e.g., enhanced
efficiency, improved luminance, reduced driving voltage, and prolonged lifetime), making them highly
promising for the future-generation displays, lighting, and signaling. Remarkably, the efficiency
of state-of-the-art impurity-doped nanocrystal LEDs is comparable to that of the best undoped
counterparts. In this review, we have mainly focused on the recent progress in the realization of
impurity-doped CQD-LEDs, impurity-doped PeLEDs, and impurity-doped CQW-LEDs. In particular,
we have emphasized various representative strategies to boost the device performance, including
(i) improving the charge injection, increasing solid-state luminescence, and exploiting heavy-metal-free
dopant for impurity-doped CQD-LEDs; (ii) A- and B-site doping for red, green and blue PeLEDs;
(iii) the establishment of impurity-doped CQW-LEDs. More specific performances of impurity-doped
nanocrystal LEDs are given in Table 1.

Table 1. Performances for representative impurity-doped nanocrystal LEDs.

Emitters a Von
b (V) EQEmax

c (%) PEmax
d (lm W−1) CEmax

e (cd A−1) Lmax
f (cd m−2) Reference

CQDs 4.2 5.1 - 9.0 300 [227]
CQDs 2.0 0.25 - - 280 [234]
CQDs 3.6 - 2.14 2.45 220 [245]

Perovskites ~2.2 12.1 - - 1106 [270]
Perovskites 2.0 13.5 - - 1152 [274]
Perovskites 3.5 2.8 - 10.09 55,005 [293]
Perovskites - 2.12 - - 245 [315]

CQWs 2.4 0.146 0.179 0.282 1153 [72]
a Impurity-doped nanocrystal emitters in LEDs. b Turn-on voltage. c Maximum EQE. d Maximum PE. e Maximum
CE. f Maximum luminance.

After extensive efforts made by researchers worldwide, the performance of impurity-doped
nanocrystal LEDs has been gradually improved. Given the facile solution-processed fabrication
procedures, it is believed that impurity-doped nanocrystal LEDs can be well applied to low-cost flexible
electronics and transparent products [332–334]. Additionally, the performance of impurity-doped
nanocrystal LEDs is projected to be further enhanced if outcoupling technologies can be used, since
only approximate 20% light is extracted from the substrate according to the classical ray optical
model [335]. Furthermore, impurity-doped white nanocrystal LEDs may be anticipated by designing
emitters with polychromatic emissions or utilizing effective device architectures (e.g., the mixture
of blue, green and red impurity-doped nanocrystals in single EML unit, and the combination
of various-color nanocrystals in tandem devices [336–338]), which will further broaden their real
applications. Moreover, the development of impurity-doped nanocrystal LEDs is expected to shed
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light on the other EL applications, such as alternating current thin-film electroluminescent device [339],
and light-emitting field-effect transistors [340].

Currently, some effects of impurity-doped nanocrystal LEDs are still unknown. For example,
(i) only a few impurity-doped blue nanocrystal LEDs have been studied, limiting the general full-color
applications; (ii) in spite of the remarkable evolution of impurity-doped nanocrystal emitters, the
deep insight of device engineering is urgently required to be explored; (iii) although impurity-doped
visible-color nanocrystal LEDs have been widely investigated, scarce attention is paid to infrared
and ultraviolet devices; (iv) despite rare earth impurity-doped nanocrystals having been intensively
probed, almost no LEDs based on this type of emitter have been reported; (v) pursuing the real
commercialization of impurity-doped nanocrystal LEDs still faces a number of challenging tasks,
including efficiency, efficiency droop, toxicity and lifetime.

For the traditional III-Nitride-based LEDs, the maximum EQE exceeds 84% [341], while high
power LEDs offer a luminance level of 60 Mnit and blue-laser-based phosphor-converted white sources
enable a luminance above 800 Mnit [342]. To resolve the efficiency issue of impurity-doped nanocrystal
LEDs, the introduction of current state-of-the-art concepts from III-Nitride-based LEDs (e.g., solving
critical challenges related to material quality, light extraction, and internal quantum efficiency) may
be helpful in the anticipated future [343–346]. In brief, the PE of impurity-doped nanocrystal LEDs
is far behind that of the best undoped ones or OLEDs, despite the EQE being greatly improved.
In addition, the EQE, CE, and PE of impurity-doped blue nanocrystal LEDs are not comparable to
those of red and green devices, considering the best EQE is only 2.4% [315]. Since the highest EQE of
undoped blue PeLEDs can reach 11% [4], advanced design concepts in undoped blue PeLEDs (e.g., an
antisolvent dripping process can control the crystallization of perovskites) may be also effective to
enhance the efficiency of impurity-doped blue PeLEDs [347]. To further enhance the efficiency, the
optimization of material design, the innovation of device architecture, and the management of emission
mechanism are required, which is also useful in the efficiency droop, driving voltage, color stability
and lifetime [348–352].

To overcome the toxicity problem, more endeavors should be taken in the development of
heavy-metal-free impurity-doped nanocrystal LEDs [353–355], otherwise it will be difficult to enter
the mainstream display, lighting, and signaling markets. For the lifetime issue, no impurity-doped
nanocrystal LEDs with satisfactory operational stability have been reported. Hence, there is still a
long way for the commercial utilization (e.g., the lifetime of ≥100,000 h at ≥100 cd m−2 for displays
and ≥10,000 h at ≥1000 cd m−2 for the solid-state lighting are necessary) [356–359]. In addition
to synthesize stable impurity-doped nanocrystals, more attention needs to be paid to the careful
manipulation of device engineering (e.g., using inorganic HTL and ETL, lowering charge injection
barrier, improving charge balance, and reducing charge leakage) [360–363] and the introduction of
advanced encapsulation technologies to avoid the moisture and oxygen (e.g., multilayer Al2O3 and SiO2

atomic layer deposition [364] and organic-inorganic multilayer structures [365] to reduce the water vapor
transmission rate toward the ideal encapsulating barriers (10−6 g−1 m−2 day−1) [366]). Upon loosening
these bottlenecks, the prospect for mass production of impurity-doped nanocrystal LEDs will be
undoubtedly bright and the proposed solutions are also conducive to the related optoelectronic fields
(e.g., solar cells, lasers, photodetectors, sensors, X-ray imaging, and light communication) [367–372].
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