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Abstract: The demand for eco-friendly renewable energy resources as energy storage and management
devices is increased due to their high-power density and fast charge/discharge capacity. Recently,
supercapacitors have fascinated due to their fast charge–discharge capability and high-power density
along with safety. Herein, the authors present the synthesis of 3D-hierarchical peony-like ZnCo2O4

structures with 2D-nanoflakes by a hydrothermal method using polyvinylpyrrolidone. The reaction
time was modified to obtain two samples (ZCO-6h and ZCO-12h) and the rest of the synthesis
conditions were the same. The synthesized structures were systematically studied through various
techniques: their crystalline characteristics were studied through XRD analysis, their morphologies
were inspected through SEM and TEM, and the elemental distribution and oxidation states were
studied by X-ray photoelectron spectroscopy (XPS). ZCO-12h sample has a larger surface area
(55.40 m2

·g−1) and pore size (24.69 nm) than ZCO-6h, enabling high-speed transport of ions and
electrons. The ZCO-12h electrode showed a high-specific capacitance of 421.05 F·g−1 (31.52 C·g−1)
at 1 A·g−1 and excellent cycle performance as measured by electrochemical analysis. Moreover,
the morphologic characteristics of the prepared hierarchical materials contributed significantly
to the improvement of specific capacitance. The excellent capacitive outcomes recommend the
3D-ZnCo2O4 hierarchical peony-like structures composed of 2D-nanoflakes as promising materials
for supercapacitors with high-performance.

Keywords: 2D-nanoflakes; 3D-hierarchical peony-like structures; ZnCo2O4; supercapacitors

1. Introduction

Over the past few decades, energy management, transportation and combination have become
crucial for the rapidly growing market owing to the depletion of fossil fuel and the development
of eco-friendly energy resources [1–4]. In this regard, clean, inexpensive, and consistent energy
technologies such as batteries, and supercapacitors (SCs) have come into the limelight in our modern
day-to-day life [5–7]. Recently, SCs are considered promising energy resources owing to excellent
reliability, high power density, better setup safety, fast charge/discharge capability and large energy
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density [8–10]. The SCs can be divided into electrochemical double-layer capacitors (EDLC) or
pseudocapacitors [11]. In EDLCs, the electrode is composed of CNT, activated carbon, graphene
and other carbon-oriented materials, which can supply energy through ion adsorption on a material
surface [12,13]. Moreover, the carbon materials have a large specific surface area, good chemical stability
and good electronic conduction. Differently, the pseudocapacitors depend on the fast-reversible faradic
redox reactions at the surface material of the electrode, which provides a high theoretical capacitance
based on the multiple oxidation states and morphology [14,15]. Thus, numerous studies have focused
on electrode materials such as conducting polymers, binary and ternary transition metal oxides [16–18].
Based on these ternary metal oxides such as NiCo2O4 [19], CuCo2O4 [20], ZnCo2O4 [21], NiMoO4 [22],
Zn2SO4 [23] and NiFe2O4 [24] show fascinating electrochemical performances due to the synergetic
effects of the metal ions. ZnCo2O4 (ZCO) has been promoted as an electrode material for energy storage
devices due to its high theoretical capacitance, electrical conductance, enhanced cycle stability, abundant
resources and low price [25–27]. Recently, ZCO has been studied for Li-ion batteries and photocatalytic
CO2 reduction [28,29]. ZCO materials have been prepared with various morphologies such as
nanosheets, nanorods, nanotubes, nanowires and nanoparticles [30,31]. Furthermore, microstructures
prepared for Li-ion batteries consist of nanosheets, mesoporous structures, yolk–shell structures and
microspheres [32]. In recent times, 3D-well-organized microstructures comprising nanoarchitectures
have emerged as encouraging constituents for energy storage applications owing to their robust
mechanical stability and a short diffusion path of ions and electrons [33,34].

Herein, polyvinylpyrrolidone (PVP)-supported ZCO 3D-hierarchical peony-like structures were
fabricated by a hydrothermal route and used for pseudocapacitor with high-performance. The electrode
had a 3D-structure consisting of 2D-nanoflakes with high specific capacitance and showed good cycle
stability. The prepared materials exhibited notable electrochemical performances because the ZCO has
hierarchical structures consisting of 2D-nanoflakes.

2. Materials and Methods

Fabrication of 3D-Peony-Like ZCO

All chemical reagents were procured from Sigma-Aldrich, St. Louis, MO, USA. First, 0.1 g of PVP
(K-30) was added with 240 mL of deionized (DI) water and apply constant stirring to get a homogeneous
solution. Then, 0.7 g (10 mmol) of zinc nitrate hexahydrate, 1.4 g (20 mmol) of cobalt nitrate hexahydrate
and 0.7 g (48 mmol) of urea were mixed to the PVP solution with stirring. After stirring for a further
30 min, the mixed solution was shifted to a hydrothermal reactor (Zhengzhou Keda Machinery,
Zhengzhou, Henan, China) and maintained at 180 ◦C for 6 h in the furnace. After cooling the reactor,
the precipitate was collected, cleaned with ethanol and DI water and lastly dried at 80 ◦C for 10 h.
Afterward, the products were annealed at 400 ◦C under an air atmosphere for 4 h with a ramping
rate of 5 ◦C /min to acquire crystallized flower-like ZCO (denoted as ZCO-6h). Flake-like ZCO
(denoted as ZCO-12h) was produced under similar synthesis conditions, except for the reaction time
(180 ◦C/12 h). The material characterization and electrochemical measurements are described in the
Supplementary Materials.

3. Results and Discussion

3.1. XRD Analysis

XRD profiles (PANalytical X’Pert PRO, Malvern, UK) of the as-prepared ZCO-6h and ZCO-12h
samples match well with the standard XRD profile of ZCO (Figure 1) (JCPDS No.: 23–1390) [21,26].
The Bragg’s diffraction peaks appeared at 18.80◦, 31.19◦, 36.78◦, 44.5◦, 55.58◦, 59.27◦ and 65.09◦

corresponding to the reflections of (111), (220), (311), (222), (400), (422), (511) and (440), respectively.
No additional impurity peaks were detected in the XRD profiles, which indicates that the crystal
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structure of the prepared ZCO is uncontaminated. Furthermore, the average crystallite size of ZCO-6h
and ZCO-12h was calculated as 15 and 14 nm, respectively, using Scherrer’s equation [35].

Figure 1. XRD pattern of the as-prepared ZCO-6h and ZCO-12h.

3.2. Morphologic Analysis

The size, morphology and assembly of the ZCO structure were examined by FE-SEM (Hitachi,
S-4800, Tokyo, Japan) coupled with EDS and TEM studies. The SEM images (Figure 2a,b) of the
as-prepared ZCO-6h shows 3D-hierarchical peony-like architectures of different sizes, with the petals
made up of densely interconnected nanosized flakes with a diameter of 20–30 nm. The high-magnification
SEM image displays that the surface of the ZCO-6h sample is porous and rough, and assembled
with numerous nanoflakes. These nanoflakes are composed of small nanoparticles. Furthermore,
these nanoflakes are self-assembled to form peony-like architectures, which leads to improves the
mechanical strength and generate crevices for the quick response of electrolyte ions within the redox
phase, resulting for improving electrochemical properties [36,37]. To further examine the morphology
of ZCO-12h, the sample was synthesized at 180 ◦C/12 h, as displayed in Figure 2c,d. In the case of 12 h
reaction time, the flower-like structure undergoes fragmentation, leading to the formation of individual
agglomerated nanoflakes.

Figure 2. Field emission scanning electron microscopy (FE-SEM) images of ZCO-6h (a,b) and ZCO-12h
(c,d) samples at different magnifications.
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Furthermore, PVP exhibits a substantial part in the formation of the peony-like morphology
of ZCO structures. Due to the coordination effect of PVP, the morphologies of metal oxides were
controlled [3]. Because PVP molecules contain both hydrophilic and hydrophobic functionality, they can
prevent particles from agglomerating with each other, making them an excellent surface stabilizer,
that can change the dynamic growth of specific crystal planes and act as a morphology control agent.
Furthermore, the elemental percentage of the ZCO-6h and ZCO-12h were qualitatively examined by
FE-SEM coupled with EDS, as exposed in Figure 3. For two samples, it is obvious that the uniform
distribution of each component mapped images, such as O (white), Co (red) and Zn (green). The mapping
images of the ZCO-6h and ZCO-12h samples are depicted in Figure 3a–d and 3e–h, respectively.

Figure 3. FE-SEM images for ZCO-6h (a) and ZCO-12h (e) and their respective elemental mapping
images of (b,f) oxygen (O), (c,g) Cobalt (Co) and (d,h) Zinc (Zn).

Moreover, the morphology and peony-like structures of the prepared ZCO were determined
by HR-TEM (Technai G2 F20 STWIN, Hillsboro, OR, USA) analysis. Figure 4a–c and 4e–g shows
the HR-TEM images of the ZCO-6h and ZCO-12h samples, respectively; the attained outcomes are
consistent with the FE-SEM results. The two samples are composed of numerous nanoparticles,
which are the basic building blocks for the formation of respective architectures via a self-assembly
process The d-spacing values of ZCO-6h, and ZCO-12h was calculated to be 0.466 nm (Figure 4c),
and 0.467 nm (Figure 4g), respectively, which were related to the (111) direction. Furthermore, the SAED
patterns of ZCO-6h and ZCO-12h are shown in Figure 4d,h, respectively. The samples show well-defined
diffraction rings of a polycrystalline nature, which is reliable with the XRD analysis outcomes.

Figure 4. TEM and HR-TEM images and the corresponding SAED patterns for (a–d) ZCO-6h and
(e–h) ZCO-12h.
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3.3. XPS Analysis

The chemical composition of ZCO was evaluated by XPS (Thermo Scientific, K-alpha, Marietta,
OH, USA). The survey of all elements in the ZCO-6h and ZCO-12h samples was studied in the order of
1350 to 0 eV, as revealed in Figure S1 (Supplementary Materials). The two samples show similar XPS
profiles, which indicate their similar composition. Furthermore, the peaks correspond to the Zn, O and
Co elements in the prepared materials. The presence of carbon is probably owing to the exposure of
the samples to air. The O 1s core-level spectra (Figure 5a); as depicted, the profiles of the samples are
not similar. In the case of ZCO-6h, the O 1s spectrum exhibit peaks at O1—529.4 eV and O2—530.6 eV
corresponding to the metal–oxygen band, whereas the O3—531.48 eV component is usually related to a
low oxygen dexterity and O4—532.5 eV was assigned to the surface hydroxyl groups [38]. In ZCO-12h,
the peaks appeared at O1—529.4, O2—530.9, O3—531.9 and O4—533.1 eV. The Zn 2p doublet peaks
appeared at around 1021.0/1021.3 eV and 1044.2/1044.4 eV in the spectra of ZCO-6h and ZCO-12h,
respectively (Figure 5b). The former was assigned to the Zn 2p3/2 state, while the latter corresponds to
the Zn 2p1/2 state, signifying the presence of Zn2+ in the normal state in the as-prepared ZCO samples.
The binding energy variation between the spin–orbit interaction of the Zn 2p3/2 and Zn 2p1/2 states was
projected as 23 eV, which is reliable with the earlier reports [39–41]. Similarly, the Co 2p core-level
spectra of all the samples are displayed in Figure 5c.

Figure 5. Comparison of (a) O 1s, (b) Zn 2p and (c) Co 2p for ZCO-6h (top) and ZCO-12h (bottom).

The asymmetric spectra exhibit three different regions of peaks, which are related to Co in the +2
and +3 states, along with a satellite peak. For comparison, we decomposed the spectra into two peaks
for the +2 and +3 states and ignored the satellite peaks. The two peaks originating from the spin–orbit
of Co 2p3/2 and 2p1/2 states appeared at 779.6/779.6 eV (Co1) and 794.6/794.6 eV (Co3) for the Co3+ state
of ZCO-6h and ZCO-12h, respectively, while the other peaks appeared at 780.8/781.1 eV (Co2) and
795.8/795.8 eV (Co4) for Co3+. For all the samples and the two states (+2 and +3 of Co), the energy
alteration between 2p3/2 and 2p1/2 was nearly 15 eV, which agrees well with former reports [12,25,42].
Therefore, Co was present in all the ZCO samples in two different states: +2 and +3. The detailed
peak positions and corresponding atomic percentages, full width at half maxima (FWHMs) and Zn/Co
ratios of the two samples are presented in Table 1.
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Table 1. Atomic percentages of fitted high-resolution O 1s, Zn 2p and Co 2p spectra for ZCO-6h
and ZCO-12h.

Sample

Peak Binding Energy (eV ± 0.1)/ (Relative Atomic Concentration (%))/FWHM (eV) Ratio Elemental at%

O 1s Zn 2p
Co 2p

Zn/Co O Zn CoCo3+ Co2+

O1 O2 O3 O4 Zn1 Zn2 Co1 Co3 Co2 Co4

ZCO-6h
529.4
(41.24)
[1.05]

530.6
(8.66)
[1.05]

531.5
(7.20)
[1.05]

532.5
(2.23)
[1.05]

1021.0
(20.17)
[2.26]

1044.2
779.6
(7.87)
[1.60]

794.6
780.8
(12.63)
[3.26]

795.8 0.984 59.33 20.17 20.5

ZCO-12h
529.4
(34.10)
[1.15]

530.9
(12.67)
[1.15]

531.9
(7.71)
[1.15]

533.1
(3.84)
[1.15]

1021.3
(21.56)
[2.89]

1044.4
779.6
(5.78)
[1.50]

794.6
781.1

(14.34)
[3.50]

795.8 1.071 58.32 21.56 20.12

3.4. BET Analysis

The surface properties of the ZCO structures were further evaluated by Brunauer Emmett
Teller (BET) investigations. N2 adsorption–desorption isotherms of ZCO-6h and ZCO-12h and results
are presented in Figure 6. Both ZCO-6h and ZCO-12h samples exhibited typical type-IV isotherm
characteristics with a type H3 hysteresis loop (Figure 6), which indicates that the samples have a
characteristic mesoporous structure [16,19]. Fascinatingly, the ZCO-12h sample exhibits the highest
surface area of 55.40 m2

·g−1, which is much bigger than that of the ZCO-6h sample (32.49 m2
·g−1).

ZCO-12h possesses more places and networks, thereby generating a greater interaction area among the
electrolyte and the active material owing to its large active surface area. In addition, the pore volumes
of the ZCO-6h and ZCO-12h samples are 0.19 and 0.28 cm3

·g−1, respectively. The larger pore volume
of ZCO-12h causes less resistance to the process of diffusion of electrolyte into the active material
and mitigates volume expansion during the galvanostatic charge–discharge (GCD) method [17,43].
The average pore sizes of the ZCO-6h and ZCO-12h samples were calculated as 21.43 and 24.69 nm,
respectively. For the two samples, the pore size is in the 2–50 nm range, suggesting that the two
samples are mesoporous nature. Typically, the size of the pores about 24.69 nm is mainly produced
by PVP through the synthesis and annealing process, which is also well agreement with the FE-SEM
outcomes. Based on these results, ZCO-12h is expected to show good electrochemical performances.

Figure 6. Comparison of N2 adsorption–desorption isotherms of ZCO-6h and ZCO-12h. The inset of the
table displays a comparison of ZCO samples with respect to Brunauer Emmett Teller (BET) parameters.

3.5. Electrochemical Analysis

Figure 7a displays the CV profiles of the two electrodes measured at a scan rate of 5 mV·s−1 in the
potential window of −0.2 to 0.6 V (vs. Ag/AgCl) using 6 M of KOH. For the two samples, a couple of
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redox peaks can be detected in the CV profiles, which implies the pseudocapacitive behavior of the two
electrodes rather than an EDLC (rectangular shape) [44]. The integral part surrounded through the CV
curve and the current responses of the ZCO-6h and ZCO-12h electrodes almost exhibit similar trends.
To further understand the processes involved in electrochemical reactions of ZCO-6h and ZCO-12h
electrodes, we investigated the dependence between peak current density (i) and scan rate (v) using a
power law [45].

i = avb (1)

where ‘i’ is the peak current and ‘v’ is the scan rate, respectively, ‘a’ and ‘b’ are the appropriate
constants. The value of the constant determines the charge storage process involved in the reaction.
When b = 0.5, designates diffusion-controlled electrochemical process and when b = 1, denotes a
non-diffusion-controlled surface redox process [45]. Figure 7b, ZCO-6h and ZCO-12h electrodes have
anodic peaks with b values of 0.55 and 0.45, respectively. These values are close to 0.5, which confirms
that the electrochemical process of ZCO-6h and ZCO-12h electrodes are mainly the diffusion-controlled
processes ( Supplementary Materials Figure S2). In addition, the diffusion-controlled process plot
clearly shows a higher current response of the ZCO-12h electrode compared to ZCO-6h, suggesting
that ZCO-12h has an excellent electrochemical performance. Figure 7c shows the assessment of GCD
curves for the ZCO electrodes at 1 A·g−1 in the potential window of 0–0.4 V. As observed from
the CD measurements of the two electrodes, the curves are symmetric in shape (voltage plateaus),
which indicates an excellent pseudocapacitive behavior ( Supplementary materials Figure S3). Clearly,
ZCO-12h exhibits a slightly higher time response than that of the ZCO-6h electrode.

Figure 7. Comparison of electrochemical properties of ZCO-6h and ZCO-12h (a) cyclic voltammetry
(CV) curves (b) Square root of scan rate vs. anodic peak current, (c) charge/discharge curves and
(d) specific capacitance vs. current density.

Specific capacitance (Cs in F·g−1) values for ZCO-6h and ZCO-12h were calculated based on the
following equation for a nonlinear charge/discharge curve [39]:

CS =
2I
∫

Vdt

m(Vf −Vi)
2 (2)



Nanomaterials 2020, 10, 1206 8 of 12

where I is the current of discharge curve in mA,
∫

Vdt is the area under the discharge curve in V.s,
Vf − Vi is the potential difference between final and initial voltage in volts (v) and m is the active
electrode mass in grams (g). Based on the above equation, the specific capacitances of ZCO-6h and
ZCO-12h were calculated as approximately 359.85 F·g−1 (28.78 C·g−1) and 421.05 F·g−1 (31.52 C·g−1) at
1 A·g−1, respectively. The determined specific capacitance values for corresponding current densities are
presented in Figure 7d. The ZCO-12h electrode displays higher specific capacitance values compared to
the ZCO-6h, as well as previously reported materials (Table 2) due to the morphology and its excellent
BET parameters (described in the BET section). Typically, at higher current densities, the electronic
and ionic transport rates of the two electrodes increased, leading to a decrease in the effective
interface between the ion and electrodes, thus reducing the specific capacitance [46]. Table 2 shows
the electrochemical performance of the earlier reported spinel ternary metal oxide-based electrodes.
From the table, the specific capacitance of the flower-like ZnCo2O4 (ZCO-6h) and flake-like ZnCo2O4

(ZCO-12h) electrodes in this study is comparable to those of the spinel ternary metal oxide-based
electrodes with a range of morphologies stated elsewhere.

Table 2. Comparison of supercapacitors materials based on spinel ternary metal oxides.

Material Synthesis Method Morphology Specific Capacitance
(F·g−1 @ 1 A·g−1)

[Ref.]

NiCo2O4 Hydrothermal Microsphere 327 [19]

CuCo2O4
Solution

combustion Cauliflower 338 [20]

MnCo2O4 Hydrothermal Nanowire 349.8 [22]

MgCo2O4 Molten salt method particle 321 [23]

CoMn2O4 Solvothermal Flower-like 321 [24]

MnCo2O4 Solvothermal Nanosheet 346 [35]

ZnCo2O4 Hydrothermal Nanosheet 290.5 [39]

ZnCo2O4(ZCO-6h) Hydrothermal Flower-like 359.85 Present work

ZnCo2O4(ZCO-12h) Hydrothermal Flake-like 421.05 Present work

Figure 8 displays the cyclic performance of ZCO-12h at a constant current density of 5 A·g−1 for
2000 cycles. Surprisingly, 88% of the maximum capacity is retained, which demonstrates the excellent
cycle performance of the ZCO-12h.

Figure 8. Cyclic performance of the ZCO-12h electrode.
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Furthermore, the electrochemical performances of the ZCO electrodes were determined through
EIS analysis. The Nyquist plots (Figure 9) of the ZCO-6h and ZCO-12h electrodes were fitted to
an equivalent circuit (inset of Figure 9). Typically, the impedance spectra show a semicircle in the
high-frequency section, which denotes the charge–transfer resistance (Rct) produced by the Faradaic
reactions and a straight line in the low-frequency section, which shows the Warburg resistance (W)
related with the flow of electrolyte into the electrode surface [17,34,47]. The fitted Rs, Rct and W values
of ZCO-6h and ZCO-12h are presented in the inset table of Figure 9. Noticeably, the Rct decreases as
a function of reaction temperature and the Rct of ZCO-12h (1.008 Ω) is lower than that of ZCO-6h
(2.932 Ω); this indicates that ZCO-12h has excellent ionic conductivity and a fast charge–transfer
rate [48,49]. Besides, ZCO-12h exhibits a fast ion transmission in the electrolyte and a capacitive
performance because of the lower diffusion resistance indicated by the ideal straight line at the
low-frequency region (lower than ZCO-6h).

Figure 9. Nyquist plot for ZCO-6h and ZCO-12h. These profiles are fitted to an equivalent electronic
circuit (inset) and the obtained parameter values are summarized in the inset table.

4. Conclusions

The 3D-hierarchical peony-like ZnCo2O4 structures with 2D-nanoflakes were effectively synthesized
via the hydrothermal method. SEM analysis revealed that the prepared structures consist of a rough,
porous surface, assembled with numerous nanoflakes and composed of nanolamella, which affords
the highest specific capacitance of 421.05 F·g−1 (31.52 C·g−1) 1 A g−1 (for ZCO-12h). Furthermore,
the maximum capacitance (88% retention for ZCO-12h) was attained after 2000 continuous charge–
discharge cycles, signifies the better-cycled life of the prepared electrode martial.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/6/1206/s1,
Figure S1: XPS survey spectra for (a) ZCO-6 h and (b) ZCO-12 h, Figure S2: CV curves at various scan rates for
ZCO-6 h (a), ZCO-12 h (b), and Figure S3: CD curves at various current densities for ZCO-6 h (a), ZCO-12 h (b).
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