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Abstract: The controlled synthesis and surface engineering of inorganic nanomaterials hold great
promise for the design of functional nanoparticles for a variety of applications, such as drug delivery,
bioimaging, biosensing, and catalysis. However, owing to the inadequate and unstable mass/heat
transfer, conventional bulk synthesis methods often result in the poor uniformity of nanoparticles,
in terms of microstructure, morphology, and physicochemical properties. Microfluidic technologies
with advantageous features, such as precise fluid control and rapid microscale mixing, have
gathered the widespread attention of the research community for the fabrication and engineering
of nanomaterials, which effectively overcome the aforementioned shortcomings of conventional
bench methods. This review summarizes the latest research progress in the microfluidic fabrication
of different types of inorganic nanomaterials, including silica, metal, metal oxides, metal organic
frameworks, and quantum dots. In addition, the surface modification strategies of nonporous and
porous inorganic nanoparticles based on microfluidic method are also introduced. We also provide
the readers with an insight on the red blocks and prospects of microfluidic approaches, for designing
the next generation of inorganic nanomaterials.
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1. Introduction

Inorganic nanoparticles show prospect for an array of fields, such as imaging [1], optoelectronics [2],
catalysis [3], sensing [4], and drug delivery [5], owing to their unique physicochemical properties at
nanoscale. Despite significant progress in the synthesis and modification of inorganic nanomaterials,
much effort needs to be made to establish different strategies, to accurately and precisely control the
size of nanoparticles, as well as modulate their surface morphology and microstructure to meet specific
goals and achieve the required functions.

By taking into consideration the physical state, the conventional bulk synthesis of inorganic
nanomaterials can be classified into three methods: gas phase, liquid phase, and solid phase. Due to
the lack of the accurate control of the mixing and separation process of reactants, the nucleation,
growth, and agglomeration processes occur simultaneously in the conventional bulk synthesis method.
Consequently, the structural, physicochemical, and functional properties of inorganic nanoparticles
vary from batch-to-batch and nanostructures with the desired structure and features cannot be precisely
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achieved [6]. In addition, the insufficient mixing of reactants and unstable mass and heat transfer
result into polydispersed and heterogeneous nanoparticles, with different physicochemical properties
in the conventional bulk synthesis methods [7].

Microfluidics refers to the technology that integrates different fluids into a singular system in
a specific way in micro-scale and precisely manipulates the behavior of microscale fluids (10−9 to
10−8 L) [8]. It provides new methods for many scientific and technological fields, including chemical
synthesis, biochemical analysis, real-time monitoring of the chemical processes, disease diagnosis,
drug development, and environmental monitoring. Microfluidic technology also plays a pertinent role
in the synthesis and surface modification of inorganic nanomaterials. The electromechanical automation
program of the microfluidic system can be used to accurately control the key factors affecting the
structure and function of nanoparticles, such as total liquid flow, single-phase or multi-phase flow
ratio, hydraulic pressure, and micro-reaction temperature [9]. The microfluidic reactor with high heat
transfer efficiency can avoid the formation of large temperature gradients and can accurately control the
reaction temperature. Moreover, since the flow time of the reactants in the microchannel is related to
the channel length in the microfluidic synthesis, the reaction time or mixing time of different reactants
can be varied by adjusting the channel length [10].

According to the reacting phases, the microfluidic methods can be divided into two categories:
(1) single-phase continuous flow and (2) multiphase segmented flow [11]. The former one is
performed with one or more miscible solvents, and the reagents are mixed by diffusion in laminar
flow streams. Based on the structure of the channel, the single-phase continuous flow system includes
T-type structure [12,13], Y-type structure [14], flow-focusing microchannel [15,16], and confocal
microchannel [17]. On the other hand, the multiphase segmented flow is composed of at least two
immiscible fluids: one a dispersed phase and the other a continuous phase [18]. By the addition of a
new phase, the recirculation motion is triggered to cause the stretching and folding of the solution,
thereby improving the fluid mixing efficiency. Meanwhile, it reduces the residence time of the reaction
and overcomes the risk of channel blockage which may be caused by the direct contact between
the liquid and the microfluidic channel. Since the additional reagents are usually difficult to be
distributed uniformly into the already formed reaction droplets, it is difficult to realize the continuous
reaction process of different reagents. It has been noticed that both single-phase continuous flow and
multi-phase segmented flow microfluidic systems have the characteristics of the accurate manipulation
of reaction parameters, efficient heat and mass transfer, large reaction interface, and good compatibility
in real-time.

Due to the multiple characteristics and advantages of microfluidic technology as mentioned
above, it has been widely used for the synthesis and surface modification of inorganic nanomaterials,
such as silica nanoparticles [19], metal and metal/metal composite nanoparticles [20], quantum dots
(QDs) [21], and metal-organic frameworks (MOFs) [22]. Additionally, the particle size, size distribution,
and surface morphology/functionality of nanomaterials can be well controlled, and the batch-to-batch
reproducibility can be further improved. More importantly, complex shapes and structures can also
be realized by coupling multi-step synthesis and surface modification. In this review, the synthesis
and surface modification of various types of inorganic nanoparticles using the unique capabilities
of microfluidic devices have been systemically described. Meanwhile, their potential application in
different sectors, including theranostics, therapeutics delivery, biosensing, and catalysis has been also
briefly introduced.

2. Progress of Microfluidic Technology in the Synthesis of Inorganic Nanomaterials

Rapid nucleation followed by particle growth to the specific size without further nucleation can be
realized by regulating a series of factors in the micron-scale confined space, resulting in the production
of nanoparticles with much narrower particle size distribution than those obtained by bulk methods [23].
Different types of typical inorganic nanomaterials, such as silica-based nanomaterials, metal and
metal composite nanomaterials, QDs, and MOFs have been successfully synthesized by employing
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microfluidic devices. The structural characteristics of microfluidic device, reaction mechanism and the
application of each type of nanoparticle are presented in the following sections as well as summarized
in Table 1.

2.1. Silica Nanomaterials

The silica nanoparticles with the narrow size distribution and uniform structure can be obtained
by microfluidic technology, due to the separation of nucleation and growth processes in the microfluidic
system. For instance, Jensen and coworkers reported the synthesis of silica nanospheres by using a
two-inlet type microfluidic chip (Figure 1a) [23]. In the synthetic process, the individual solutions
containing silica precursors and alkaline catalysts were injected into separate inlets of the microfluidic
chip. The results showed that the average particle size and particle size distribution could be controlled
by adjusting the flow rate and residence time of the liquid phase. Yet, in another elegant study, it was
demonstrated that the sequential injection of silica precursors into a micromixer and a capillary (1.3 mm
internal diameter) Tygon® pipe of variable length could result in the higher conversion rate of the
reagent and narrow particle size distribution for the silica nanoparticles, in comparison with that of
the bulk reactor system at a comparable reaction time (Figure 1b) [24]. However, it was found that
silica nanoparticles were inevitably deposited within the microchannel, resulting in a certain degree
of channel occlusion. It has been very recently demonstrated that the particle deposition within the
microchannels can be significantly reduced by using commercial ethylene tetrafluoroethylene (ETFE)
tubes (Figure 1c) [25], therefore enabling the continuous and scaled-up synthesis of silica nanoparticles.
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Figure 1. (a) Schematic illustration of microfluidic channels containing two liquid inlets (L1 and L2)
and one outlet (O) for the preparation of silica nanoparticles (reproduced from [23], with permission
from the American Chemical Society, 2004). (b) Experimental setup for the continuous synthesis of
nanoparticle (reproduced from [24], with permission from the Elsevier, 2011). (c) Schematic diagram of
microfluidic reactor systems with (S1) syringe for tetramethoxysilane (TMOS), (S2) syringe for 1 mM
HCl, (S3) syringe for polyethylenimine (PEI) polymer in Tris–HCl buffer solution, (M1) and (M2) PEEK
Y-shape mixers, (R1) reaction tube for hydrolysis, as well as (R2) reaction tube for silica precipitation
(reproduced from [25], with permission from Elsevier, 2011). (d) Simulation and experimental results
of reactants mixing in the spiral microchannel (reproduced from [26], with permission from Springer
Nature, 2017).



Nanomaterials 2020, 10, 1177 4 of 29

Table 1. Inorganic nanomaterials synthesized by microfluidics as well as their structural characteristics, yields, and applications.

Material Type Microfluidic Systems Size Shape Yield Applications References

SiO2 single-phase flow 164–321 nm solid sphere [23]

SiO2 single-phase flow 50–300 nm solid sphere [24]

SiO2 single-phase flow 53–176 nm solid sphere 62 ± 6% [25]

SiO2 single-phase flow 200–400 nm mesoporous (~2 nm) sphere [27]

SiO2 single-phase flow 50–650 nm hollow; mesoporous
sphere [28]

SiO2; SiO2-QDs/Fe3O4 single-phase flow 804 nm hollow sphere
cell imaging, dye

adsorption and drug
delivery.

[26]

SiO2 single-phase flow 100 nm/
15 µm hollow; mesoporous sheet

organics adsorption,
protein immobilization,
and drug encapsulation

[29]

SiO2; SiO2-Ag/Fe3O4 single-phase flow ~130/
1500 nm mesoporous (~3 nm) fiber gram-scale

doxorubicin (DOX)
loading; 4-nitrophenol

reduction
[30]

SiO2 single-phase flow 80 × 150 nm hollow; mesoporous
ellipsoid DOX loading [31]

Fe2O3@SiO2 single-phase flow 50–350 nm solid sphere; cube; rod; belt circulating tumor cell
screening [32]

SiO2@TiO2 multiphase flow ~250 nm solid sphere [33]

SiO2@Au multiphase flow 177–260 nm solid sphere [34]

SiO2–FITC multiphase flow 50–350 nm solid sphere [35]

SiO2–HDDA multiphase flow ~500 nm mesoporous patchy [36]

SiO2@Au multiphase flow 230 nm solid sphere [37]

SiO2–dextran multiphase flow 150–400 nm mesoporous sphere PTX, SFN, and MTX drug
loading [38]

SiO2@Fe2O3 multiphase flow ~100 nm solid sphere [39]

SiO2@Au multiphase flow ~175 nm solid sphere [40]

SiO2–PEGDA multiphase flow 100–150 nm (sectional
diameter) macroporous fiber [41]

SiO2–FITC multiphase flow 10–65 nm solid sphere [18]
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Table 1. Cont.

Material Type Microfluidic Systems Size Shape Yield Applications References

Au single-phase flow 15–24 nm solid sphere labelling [42]

Au single-phase flow 1–2.5 nm nanoplates glucose oxidation [43]

Au single-phase flow 3–50 nm nanorods [44]

Ni multiphase flow 60–114 nm solid sphere 11.5 g h−1
catalytic hydrogenation

of p-nitrophenol to
p-aminophenol

[45]

Ni; Ni/SiO2 multiphase flow 8.8–15.4 nm solid sphere >27 g d−1 catalytic hydrodeoxygenation
of guaiacol. [46]

Ag single-phase flow ~8 nm solid sphere [47]

Ag single-phase flow
edge length:

27–60 nm thickness:
11 nm

solid triangle LSPR sensing [48]

Ag single-phase flow 5–10 nm solid sphere 4-nitrophenol reduction [49]

Pd multiphase flow 2.3 ± 0.3 nm solid sphere ~10 L d−1 [50]

Pd multiphase flow ~4 nm nanorods 96.5% catalytic hydrogenation
of styrene [51]

Rh multiphase flow 3–8 nm multipods; cuboctahedra vapor-phase
cyclohexene hydrogenation [52]

Pt1Bi1; Pt1Bi2 single-phase flow ~17 nm; ~33.5 nm V-shaped nanorods; solid
sphere electrocatalysis [53]

AuPd single-phase flow 1–3 nm nanoclusters
catalytic aerobic

oxidation of benzyl
alcohol

[54]

AuPd single-phase flow 1–2 nm solid sphere CO oxidation [55]

Pt–Ni multiphase flow 6–12 nm octahedra 20–160 mg h−1 oxygen reduction
reaction catalysts [56]

Pd@Pt multiphase flow 12–20 nm core-shell; icosahedra oxygen reduction
reaction catalysts [57]

CdSe single-phase flow 2–4.5 nm solid sphere [58]

CdSe single-phase flow 3.6–5.4 nm solid sphere [59]

CdSe multiphase flow narrow size
distribution. solid sphere 40–70% [60]

CdSe/ZnS single-phase flow 2.8–4.9 nm core-shell; solid sphere [61]
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Table 1. Cont.

Material Type Microfluidic Systems Size Shape Yield Applications References

CdSe/CdS/ZnS; CdS/ZnS;
CdSeS/ZnS single-phase flow ~1–5 nm core-shell; solid sphere [62]

InP single-phase flow ~5 nm solid sphere [63]

InP single-phase flow 4 nm solid sphere [64]

InP single-phase flow 2.7 nm solid sphere 63.1 g d−1 [65]

InP/ZnS single-phase flow 2.8–3.9 nm core-shell; solid sphere white-light-emitting
diode [66]

InP/
ZnS; InP/
ZnSe; InP/
CdS; InAs/

InP

single-phase flow 4.1–4.9 nm core-shell; solid sphere [67]

PbS multiphase flow 2–5 nm solid sphere 2.4–2.5 g h−1 photovoltaic device [68]

PbS; PbSe multiphase flow 3.8–4.5 nm solid sphere fabrication of Schottky
solar cells [69]

ZIF-8 single-phase flow 150–465 nm

larger particles with a
polygonal shape; smaller

particles with roughly
spherical shape

[70]
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Besides, mesoporous silica nanoparticles (MSNs) with tunable structures and morphologies have
been synthesized by using microfluidic technology [26–31,71]. Zhang and coworkers synthesized MSNs
with different morphologies by injecting liquid phases containing silica precursors and surfactants into
two separate inlets in a spiral microfluidic chip (Figure 1d) [26]. The MSNs with different morphologies
can be used for cell imaging, dye adsorption and drug delivery. Due to the effect of the transverse dean
flow (resulted by the vortices occurring from fluid flow in curved channels), the two reactive liquid
phases can be quickly and fully mixed. Consequently, the hollow silica nanospheres were obtained in
a short time by optimizing the flow rates and mixing time of the reactants.

In addition to the spherical nanoparticles, non-spherical silica nanomaterials, including hollow
ellipsoids, fibers, flowers, tablets, and triangles have been synthesized and proven to exhibit
good biological behavior, which included high cell binding efficiency, transmembrane penetration,
and long-term in vivo circulation [72–77]. However, there are still many outstanding challenges
that need to be addressed to achieve the stable and controllable synthesis of non-spherical silica
nanomaterials by using the conventional bulk synthesis approach. In contrast, in the microfluidic
droplet-assisted synthesis of silica nanoparticles, the deformation or disassembly of each individual
droplet can be well controlled through the design of complex microscale shape of the chip, resulting in
the synthesis of non-spherical silica nanoparticles with different morphologies. For example, the aspect
ratio of silica nanorods can be easily controlled by varying the ratio of the droplet volume to the
cylindrical microchannel diameter [78]. Meanwhile, a series of the other non-spherical shaped silica
materials, such as doughnut [79], raspberry [80], filbert [81], and disk [82] have also been obtained by
microfluidic droplet-assisted synthesis.

In addition, the microfluidic template method has been exploited to synthesize non-spherical
mesoporous silica nanomaterials. Mesoporous silica fibers were prepared by injecting
cetyltrimethylammonium bromide (CTAB)/diluted ammonia solution and diluted tetraethyl
orthosilicate (TEOS) into the two inlets of the microfluidic chip, which could be used for DOX
drug loading and 4-nitrophenol reduction [30]. The aspect ratio and diameter of silica fiber could be
adjusted by changing the flow rate and the concentration of reactants. Besides, in the same microfluidic
device, two-dimensional mesoporous silica nanowires with a hollow sandwich-like bilayer structure
and a water-ripple-like wrinkled surface were prepared by using CTAB/tetrabutylammonium iodide
(TBAI) mixed surfactant as a template [47]. Yet, in another study, the anisotropic hollow ellipsoid-like
mesoporous silica nanomaterials were produced within a few seconds by the rapid mixing of
the pre-synthesized ellipsoidal MSNs and phosphate buffered saline (PBS) as an etching agent in
microfluidic devices [31]. In contrast, the conventional bulk synthesis approach requires approximately
a full day for chemical etching to obtain the similar type of hollow structures. The chemical etching
strategies based on microfluidic devices can also be feasible for the synthesis of the other type of
anisotropic silica nanomaterials, with hollow structures such as cubes, rods, and bands [32].

Microfluidic methods can also be used for the preparation of silica-based core-shell
nanocomposites [33,34,37–40,83–85]. Cabuil et al. carried out three-step reactions, including grafting,
mixing, and coating, in a series of microfluidic devices to obtain multistage core-shell Fe2O3-SiO2

composites with fluorescence and magnetic properties, for in vivo fluorescence imaging and magnetic
resonance imaging (MRI) (Figure 2a) [86]. Similarly, SiO2-Au-Fe2O3 nanostructures with fluorescence,
plasma, and superparamagnetic functions were synthesized by two series glass microreators, containing
two inlets and one outlet that can operate independently or in synergy (Figure 2b) [87].
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Figure 2. (a) Scheme for the continuous synthesis of core-shell structured Fe2O3-SiO2 nanoparticles
(reproduced from [86], with permission from the Royal Society of Chemistry, 2009). (b) A two-
step microfluidics-based synthesis procedure for the assembly of multifunctional SiO2-Au-Fe2O3

nanoparticles (reproduced from [87], with permission from the American Chemical Society, 2013).
(c) Micrographs of the droplets and the mechanism of the synthesis of core–shell structured particles
(reproduced from [85], with permission from the Royal Society of Chemistry, 2011). (d) Experimental
process and set-up for the continuous synthesis of SiO2-Au nanoshells (reproduced from [88],
with permission from the Royal Society of Chemistry, 2012).

Microfluidic technology can also be used to prepare silica-based hybrids with specific structure
and desired properties, by accurately controlling the emulsification process to produce monodispersed
compound droplets within the microchannel [40,85]. For instance, Luo and coworkers synthesized
core-shell structured SiO2@TiO2 hybrids, by using a one-step emulsification process in a coaxial
microfluidic system (Figure 2c) [85]. Meanwhile, core-shell structured SiO2-Au nanoparticles were
synthesized by using a simple and scalable microstructure mixer (Figure 2d) [88]. Similarly, silica
nanocomposites modified by gold nanoparticles have been synthesized by using a central collision
microreactor [89]. Moreover, TiO2-SiO2, Fe3O4-SiO2-Pt, and Co3O4-SiO2 nanoparticles have also been
fabricated by microfluidic technology [31,90–92].

Recently, Hao and coworkers demonstrated the design and microfluidic fabrication of the silica
nanoparticles with different morphologies (e.g., hollow spheres [26], nanoflowers (Figure 3a) [93],
and fibers (Figure 3b) [30] containing different functional agents (e.g., fluorescent dyes, proteins, QDs,
magnetic nanoparticles, and silver nanoparticles)). More recently, this group has also successfully
coated the surface of magnetic nanoparticles with the silica shell layer through a spiral microreactor,
to obtain core-shell structured Fe2O3-SiO2 nanocomposites with different shapes (Figure 3c) [32].
They indicated that the thickness of the outer shell can be well adjusted by changing the flow rate of
the TEOS solution.
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Figure 3. (a) Schematic illustration for the microfluidic synthesis of silica nanoflowers (reproduced
from [93], with permission from the Royal Society of Chemistry, 2018). (b) Experimental setup for
the microfluidic synthesis of silica fibers (reproduced from [30], with permission from the American
Chemical Society, 2018). (c) Microfluidic synthesis of Fe2O3-SiO2 nanomaterials for circulating tumor
cell screening (reproduced from [32], with permission from the Royal Society of Chemistry, 2018).

2.2. Metal and Metal Composite Nanomaterials

Metal or metal composite nanomaterials are widely used in catalysis [55], sensing [94], tumor
therapy [95], energy technology [96], and several other fields, owing to their excellent physical and
chemical properties. The heat and mass transfer processes play a decisive role in the nucleation and
growth of metal nanoparticles. With an increase in the size of the reactor or the concentration of
reagents, the heat transfer and mixing efficiency of the solution system becomes complicated and
difficult to be accurately controlled. Precipitation is one of the most commonly used conventional
bulk synthesis methods to obtain metal or metal composite nanomaterials [97]. In order to obtain
particles with the small size and narrow size distribution, the reaction system needs to have high
supersaturation; however, due to the limitation of heat and mass transfer, the high supersaturation of
the whole system cannot be maintained during spontaneous nucleation. Therefore, it is cumbersome
to obtain large quantities of metal or metal composite nanomaterials with high quality, narrow
size distribution, and monodispersity. Compared with the conventional bulk synthesis approaches,
the high specific surface area of the microfluidic channel renders microfluidic systems amenable
for optimal heat and mass transfer [98]. The high heat transfer ability can reduce the temperature
fluctuations, which may be caused by the endothermic or exothermic reactions. Concomitantly, the high
mass transfer efficiency can shorten the reaction time and improve the yield, thus leading to a higher
batch-to-batch reproducibility and high production efficiency.
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2.2.1. Microfluidic Synthesis of Metal Nanoparticles

The physical and chemical properties of metal nanomaterials are closely related to their microscopic
particle size and morphology. Boutonner and coworkers pioneered the microfluidic synthesis of metal
nanoclusters, including platinum, palladium, rhenium, and iridium in 1982 [99]. Subsequently, many
researchers have synthesized various types of metal nanomaterials by using microfluidic technology,
including gold, nickel, silver, and other metal nanoparticles.

Gold nanoparticles are widely used in various fields, such as disease diagnostics [100–102],
photothermal therapy [103–105], drug delivery [106,107], and optical applications [108]. Recently,
different types of synthetic strategies based on microfluidic technology have been reported for the
structural manipulation and functionalization of gold nanoparticles. Gold nano-leaflets with ultra-thin
folded structures were synthesized at room temperature by using a three-channel microfluidic chip [43].
In this microfluidic synthesis, cetyltrimethylammonium chloride (CTAC) and sodium borohydride
(NaBH4) were used as protective and reducing agents, respectively. The gold nanosheets with thickness
ranging from less than 1 to several nanometers could be obtained by adjusting the flow rate.

Multi-functional gold nanoparticles can also be fabricated in a microfluidic device. Functionalized
gold nanoparticles have been synthesized by Santamaria and coworkers [44]. Different stages
of the reaction process, including the activation of precursors, formation and growth of seeds,
and the coating of polyethylene glycol (PEG) on gold nanoparticles, were integrated in a continuous
single-phase microfluidic system, fully realizing the automated synthesis and functionalization of
gold nanoparticles. Huang and coworkers synthesized shape-controllable tetrathiafulvalene (TTF)-Au
composite nanoparticles, by employing a three-dimensional microfluidic chip [109]. As the flow
rate of acetonitrile buffer was increased, the TTF-Au hybrids exhibiting different morphologies were
achieved, which included branching aggregates consisting of irregularly-aligned polyhedral crystals,
multilayered structures consisting of thin and flat layers, two-dimensional dendritic nanostructures,
and coral-like aggregates consisting of fibers.

High-quality and scale-up production of nickel nanoparticles is critical to the industrial
development, because these nanoparticles have important applications in catalysis and magnetic
materials [110,111]. Zhang and coworkers employed a high performance liquid chromatography
(HPLC) pump to inject the mixture of nickel chloride (NiCl2), hydrazine hydrate, and sodium hydroxide
in an oil bath-heated capillary-type mixer, to obtain crystalline nickel nanoparticles with an average
particle size of 80 nm and particles size distribution in the range of 60–114 nm (Figure 4a) [45].
The obtained nickel nanoparticles possess great application prospects for the catalytic hydrogenation
of p-nitrophenol to p-aminophenol. The yield of this reaction is about 11.5 g h−1, which is much higher
than that of conventional bulk methods. Yet, in another elegant study, a single-phase flow type
microfluidic reactor was used to synthesize nanocrystalline nickel particles, and the flow rate of
the precursor solution was measured by using an analytical balance in real time (Figure 4b) [46].
The computer control system was used to adjust the driving pressure of the precursor solution through
the feedback loop, to ensure a constant flow rate during the operation of the microfluidic equipment.
The mixture of nickel acetate (Ni(acac)2), oleylamine, trioctylphosphine, and 1-octadecene precursors
could nucleate rapidly after entering into the microfluidic chamber at 220 ◦C. The average diameter of
nickel nanoparticles and the yield were found to be 11.1 ± 3.1 nm and 62%, respectively. Moreover,
it was estimated that more than 27 g of nickel nanoparticles could be produced in one day.
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Figure 4. (a) Schematic illustration of the micro-reaction process for synthesis of crystalline nickel
nanoparticles using an oil bath-heated capillary-type mixer (reproduced from [45], with permission
from the Elsevier, 2012). (b) Reactor system for the continuous flow production of nickel nanoparticles
(reproduced from [46], with permission from the American Chemical Society, 2017).

Silver nanomaterials are well-known for their interesting properties and wide applicability
in catalysis [112], optics [113], and biomedicine [114,115]. Due to a strong correlation between the
structure of silver nanoparticles and their properties, the controlled fabrication of such nanoparticles has
recently attracted the intensive attention of researchers worldwide. Silver nanoparticles were
synthesized through a single-flow tubular type microreactor by using silver pentafluoropropionate
as a precursor (Figure 5a) [47]. Similarly, anisotropic silver nanoparticles were prepared by the
reduction of silver nitrate with NaBH4 in a microfluidic reactor, consisting of three different types
of micromixers [48]. Moreover, Guo and coworkers constructed a microfluidic platform for the
continuous-flow chemoselective polymerization, to synthesize polyester-modified silver nanoparticles
(Figure 5b) [116].

Similarly, silver nanoparticles of different sizes (≤5 ± 0.8, 6.5 ± 1.2, 6.8 ± 1.2, 7.7 ± 1.4, 8.0 ± 1.5,
and 9.3 ± 1.8 nm) were prepared by using a step-by-step reaction strategy in microfluidic technology
(Figure 5c) [49]. The Dean number of the reactor determined the size and polydispersity of the
nanoparticles. The higher Dean number (>6) produces smaller-sized silver nanoparticles (<6 nm),
while the lower Dean number produces larger silver nanoparticles (>8 nm) with higher dispersity.
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Figure 5. (a) Experimental setup for the synthesis of silver nanoparticles in a tubular-shaped
microreactor and TEM images of silver nanoparticles (reproduced from [47], with permission from
the American Chemical Society, 2004). (b) Chemoselective polymerization platform for the synthesis
of polyester-modified silver nanoparticles (reproduced from [116], with permission from the Elsevier,
2018). (c) Experimental setup for fabrication of silver nanoparticles by using microfluidic step-by-step
reaction strategy in a microfluidic chamber (reproduced from [49], with permission from the Royal
Society of Chemistry, 2018).

Precious metal nanoparticles, such as palladium and rhodium, can also be synthesized by
microfluidic technology. Corbos et al. synthesized palladium nanoparticles in a single-channel flow
reactor with a high production rate of about 10 L of nanoparticles suspension per day [50]. The designed
reactor can separate nucleation and growth processes through an ingeniously designed microfluidic
chip. The first reactor section provides the requisite intensified mixing for rapid nanoparticle nucleation,
while the second section of the reactor allows the nucleated nanoparticles to age and grow to the
particle of the desired diameter. Meanwhile, it avoids the reflux risk of hydrogen produced by the
decomposition of NaBH4 (Figure 6a). The blockage of the channel has been reduced, as the fluorinated
oil and nitrogen completely isolate the water phase from the channel wall. Moreover, the diameter of
the microfluidic channel in the second stage of reaction is larger than that of the first stage, which helps
to reduce the pumping pressure and achieve a higher production of nanoparticles.

A multiphase segmented flow microfluidic system has also been used to fabricate palladium
nanoparticles (Figure 6b) [51]. It was established that the reaction temperature, dissolved oxygen,
and potassium bromide (KBr) played important roles in controlling the morphology of palladium
nanoparticles. Interestingly, isotropic nanospheres or anisotropic nanorods could be obtained by
judiciously adjusting the residence time and flow rate. A two-phase flow microfluidic system was also
employed to prepare rhodium nanoparticles. Different morphologies of nanoparticles were realized by
varying the temperature and residence time (Figure 6c) [52]. At low temperature (120 ◦C) and short
residence time (4.6 min), most of the nanoparticles exhibited multipod-like morphology. In contrast,
most of nanoparticles were of cuboctahedral-shape at higher temperature (150 ◦C) and prolonged
residence time (35 min). The reactor was made of (polytetrafluoroethylene) PTFE tubing, which could
withstand a high temperature (260 ◦C).
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Figure 6. (a) Schematic illustration of the triphasic segmented flow reactor for the synthesis of
ultra-small palladium nanoparticle (reproduced from [50], with permission from the Royal Society of
Chemistry, 2017). (b) Schematic illustration of the segmented flow generated in the mixing zone of
a hydrophilic microfluidic reactor (reproduced from [51], with permission from the Wiley-VCH Verlag
GmbH & Co, 2016). (c) Schematic illustration of the two-phase flow microfluidic system for fabrication
of rhodium tetrapod product (reproduced from [52], with permission from the American Chemical
Society, 2017).

2.2.2. Microfluidic Synthesis of Metal Composite Nanoparticles

The preparation of intermetallic compounds with uniform size and high purity usually
requires high temperature and pressure in the conventional bulk approach, which is relatively
more challenging as compared to single metal nanomaterials [117–119]. Guo and coworkers pioneered
a new type of single-phase microfluidic reaction system to afford the synthesis of intermetallic
compounds (Figure 7a) [53]. The microfluidic reaction device employed nitrogen to drive the
precursor solution containing chloroplatinic acid (H2PtCl6), bismuth nitrate (Bi(NO3)3), and ethylene
glycol into the channels. It was demonstrated that the phase and morphology of nanoparticles
can be tuned by increasing the heating. Typically, V-shaped Pt1Bi1 nanostructures with an arm
diameter of approximately 17 nm were obtained at 260 ◦C. On the other hand, spherical-shaped
Pt1Bi2 nanostructures with an average diameter of 33.5 nm were synthesized at 360 ◦C. Meanwhile,
bimetallic Au-Pd nanoclusters were prepared by using a single-phase multilayer flow mixing device
for the catalytic aerobic oxidation of benzyl alcohol (Figure 7b) [54]. The rapid diffusion mixing
between laminar flows was found to be beneficial for the synthesis of bimetallic nanostructures with
smaller average particle size (1–3 nm). Likewise, a series of gold- and palladium-based nanoparticles,
including Au, Au7Pd3, Au5Pd5, Au3Pd7, and Pd, were synthesized by varying the composition of
metal precursors (Figure 7c) [55]. The obtained nanoparticles showed smaller size and narrow particle
size distribution. The size of Au7Pd3 and Au3Pd7 nanoparticles were found to be 1.4 ± 0.5 nm and
1.6 ± 0.8 nm, respectively.
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Figure 7. (a) Schematic representation of the microfluidic reactor system for the fabrication of Pt-Bi
nanoparticles (reproduced from [53], with permission from the American Chemical Society, 2015).
(b) Schematic illustration of the microfluidic mixing device for the synthesis of pure and bimetallic
nanoparticles (reproduced from [54], with permission from the American Chemical Society, 2014).
(c) Schematic illustration of the microfluidic setup for synthesis of polyvinyl pyrrolidone (PVP)-stabilized
monometallic and bimetallic nanoparticles (reproduced from [55], with permission from the American
Chemical Society, 2018).

In addition to the single-phase microfluidic reaction system as mentioned above, the multiphase
microfluidic reaction system has also been widely used for the synthesis of metal composites. In a
recent study, octahedral-shaped Pt-Ni nanoparticles were fabricated by using a two-phase microfluidic
reaction system [56]. Precursor solutions, including platinum(II) acetylacetonate (Pt(acac)2), Ni(acac)2

and tungsten hexacarbonyl (W(CO)6) were afforded in a mixture of oleic acid, oleylamine and benzyl
ether and preheated to 70 ◦C before introduction into the microfluidic reaction system heated at 230 ◦C.
In this process, W(CO)6 decomposes to immediately release carbon monoxide (CO) gas, which may
(1) separate the liquid phase into uniformly distributed discrete droplets and (2) act as a reducing agent
for the synthesis of Pt-Ni nanoparticles. In addition, by using air as a continuous phase and sodium
tetrachloropalladate (II) (Na2PdCl4) and PVP dispersed diethylene glycol solution as a dispersed
phase, the palladium icosahedra nanoparticles coated with platinum monolayer were obtained [57].
These core-shell type Pt-Pd nanomaterials can significantly improve the catalytic activity of platinum
while being used as an oxygen reduction reaction catalyst.

2.2.3. Microfluidic Synthesis of QDs

QDs are a class of semiconductor nanocrystals with photocatalytic [120,121], photoelectric
conversion [122], and electrical properties [123], which possess wide-spread applications. Currently,
there are two main synthetic methods for the synthesis of QDs: (1) vapor-phase epitaxial growth
method and (2) liquid-phase method [124]. The vapor-phase epitaxial growth requires complex
synthesis and it is also difficult to isolate QDs from the substrate [125]. It has also been elucidated that
the function of QDs can be improved by ligand exchange in the liquid phase method; however, the slow
mixing rate of precursor solution, low productivity, and poor reproducibility limit the application of
this method for the scale-up production of QDs [126]. In contrast to the conventional bulk method,
microfluidic technology has advantages of high mass and heat transfer rate, accurate and controllable
reaction conditions, and low consumption of raw materials, which make it an ideal method for the
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scale-up synthesis of QDs [127]. Consequently, various types of QDs have been explored based on
microfluidic technology in recent years.

Cadmium-based QDs are promising candidates for tunable photoluminescence and high quantum
yield [128]. Nakamura and group reported the preparation of cadmium nanocrystals by infusing
cadmium acetate precursor solution into an oil bath-heated quartz glass capillary (Figure 8a) [58].
The particle size of the synthesized nanoparticles was found to be 2–4.5 nm and the absorption
peak was observed in the range of 450–600 nm. In addition, cadmium selenide (CdSe) nanocrystals
were synthesized by using a continuous phase microfluidic device (Figure 8b) [59]. A series of
CdSe nanocrystals with different luminescence colors was synthesized by controlling the ratio of the
precursors and reaction temperature. In another study, the gas was used as a buffer layer to separate
precursor droplets, to shorten the reaction time and precisely control the particle size of CdSe QDs
(Figure 8c) [60].
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Figure 8. (a) Diagram of the flow reactor for the synthesis of CdSe nanoparticles (reproduced from [58],
with permission from the Royal Society of Chemistry, 2002). (b) Schematic illustration of the capillary
reactor for synthesis of CdSe nanocrystals (reproduced from [59], with permission from the Wiley-VCH
Verlag GmbH & Co, 2003). (c) Schematic illustration of the reactor with heating zone and injected with
gas for the synthesis of CdSe QDs (reproduced from [60], with permission from the Wiley-VCH Verlag
GmbH & Co, 2005).

In addition, core-shell structures composed of two or more semiconductor materials, such as
CdSe/ZnS QDs, can also be fabricated by microfluidic technology. A two-step microfluidic method has
been adopted to afford core-shell CdSe@ZnS nanoparticles. The precursor solution was pumped
into the first reactor to obtain the CdSe core, which was then followed by the mixing of CdSe
core and ZnS precursor solution in the second reactor (Y-type microfluidic chip) to coat the
ZnS layer on CdSe core [129]. To endow the CdSe@ZnS nanocrystals with the luminescence
properties (fluorescence quantum yield of about 50% and full width at half-maximum of about
32 nm), the microfluidic device was upgraded [61]. Consequently, QDs with complex structures,
such as core-shell multi-layer CdSe@CdS@ZnS nanocrystals were prepared by employing a multi-step
sequential reaction, which showed a higher quantum yield (60%) as compared to CdSe@ZnS [62].

Indium phosphate (InP) QDs with low cytotoxicity are considered as potential substitutes for
Cd-based QDs, which show a great potential for versatile biomedical applications [130]. Nightingale
and coworkers reported the synthesis of InP QDs based on a two-in/one-out y-shaped reactor,
which provided precise control over the reaction temperature, the reaction time, and the flow rates
(Figure 9a) [63]. Jensen and coworkers developed a microfluidic reactor, in which three stages of reaction,
such as, mixing, aging, and sequential injection, can be automatically performed (Figure 9b) [64].
The high pressure/temperature conditions of the microfluidic system can significantly shorten the
synthesis time (2 min) of InP QDs and improved the uniformity of the particle size. Yet, in another
seminal study, four types of InP/ZnS QDs with different colors (turquoise, yellow, orange, and red) were
obtained by optimizing the flow rate and temperature in a microfluidic device [66]. The corresponding
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quantum yield of turquoise, yellow, orange, and red colored InP QDs was measured and found to be
20%, 42%, 34%, and 37%, respectively. Moreover, different types of QDs, including InP/ZnS, InP/ZnSe,
InP/CdS, and InAs/InP were synthesized by employing a microfluidic chip reactor with sub-channels
(Figure 9c) [67]. The results showed that the InP/CdS QDs with different shell thickness can be obtained,
resulting in the obvious variation of the photoluminescence spectrum (Figure 9d).
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Figure 9. (a) Schematic illustration of single-capillary and Y-shaped microfluidic devices for the
synthesis of InP QDs (reproduced from [63], with permission from the Wiley-VCH Verlag GmbH & Co,
2009). (b) Schematic illustration of the microfluidic reactor having three functions, including mixing,
aging, and sequential injection (reproduced from [64], with permission from the Wiley-VCH Verlag
GmbH & Co, 2011). (c) Illustration of a multistage microfluidic platform for the synthesis of core-shell
InP/ZnS QDs. (d) Emission spectra of the InP/CdS QDs (reproduced from [67], with permission from
the Wiley-VCH Verlag GmbH & Co, 2018).

The other types of QDs have also been synthesized by microfluidic technology, such as
lead sulfide (PbS), lead selenide (PbSe), copper indium sulfide/zinc sulfide (CuInS2/ZnS),
silver indium zinc sulfide/zinc sulfide (Ag-In-Zn-S/ZnS), and copper indium zinc sulfide/zinc sulfide
(Cu-In-Zn-S/ZnS) [131]. Bakr et al. obtained high-quality QDs by separating the nucleation and
growth processes in a two-stage microfluidic reactor system [68]. Compared with the single-stage flow
reactor and the conventional bulk synthesis, QDs obtained by the two-stage flow reactor showed high
fluorescence quantum yield (about 50.6%). Importantly, the microfluidic technology can also be
integrated with the on-line fluorescence detection for real-time evaluation of the synthesis process [69].
DeMello and coworkers developed a robust microfluidic platform, which can inhibit the secondary
nucleation and lead to the synthesis of copper indium sulfide/zinc sulfide (CuInS2/ZnS) QDs. The optical
detection system was installed in the microfluidic device, to monitor the reaction parameters before
and after the formation of the shells [120].

2.2.4. Microfluidic Synthesis of MOFs

As a kind of porous organic-inorganic hybrid materials and composed of metal clusters
or ions, MOFs are widely used in hydrogen storage [132], gas adsorption and separation [133],
drug delivery [134], MRI contrast agents [135], biochemical sensors [136], and catalysts [137]. However,
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the development of MOFs is generally limited by their uncontrollable shape and particle size [22].
Microfluidic technology has been considered as a new avenue to solve the above problems.

Mae and coworkers reported the successful fabrication of zeolitic imidazolate framework-8 (ZIF-8)
nanocrystals at room temperature, by using T-type microfluidic equipment (Figure 10a) [70]. The results
demonstrated that the particle size and morphology of nanocrystals could be controlled by varying
the ratio of dimethylimidazole to zinc ions (Figure 10b,c). Besides, different types of MOF-based
nanostructures, including Zn4O(1,4-benzenedicarboxylate)3 (MOF-5), metal–organic framework-3
(IRMOF-3), and UiO-66 (Zr-BDC MOF), have been synthesized in a T-shaped microchip string, by using
organic solvents containing ligands and metal precursors as a dispersed phase and silicone oil as a
continuous phase (Figure 10d) [138]. Meanwhile, the core-shell structured Fe3O4@ZIF-8 nanoparticles
were obtained by using Fe3O4 as a precursor (Figure 10e). Since microfluidics can also be used to
fabricate nanofibers, Zhao and coworkers performed microfluidic spinning to fabricate core-shell type
microfibers, by employing alginate/saline gel as a shell component and copper-vitamin or zinc-vitamin
mixture as a core component [139]. The obtained microfibers are long, thin, and flexible, which can be
widely used for biomedical applications. To further leverage the potential of microfluidic technology
and to preserve the bioactivity of enzymes, ZIF-8 nanoparticles (particle size: ~500 nm) containing
enzymes were synthesized by employing a microfluidic gradient mixing approach. It was demonstrated
that by continuously varying the concentration of ZIF-8 precursor in the gradient mixing, the surface
morphology and microstructure of ZIF-8 could be modulated, which enhanced the activity of the
loaded enzymes, as compared to the nonporous ZIF-8 synthesized by conventional bulk method [140].
As a proof-of-principle, glucose oxidase (GOx) loaded ZIF-8 was synthesized by using microfluidic
method, which preserved the activity of the enzyme for up to ~98% (the highest record of enzymatic
activity for the GOx@MOF composites).
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Figure 10. (a) Experimental setup for the synthesis of ZIF-8 nanoparticles by using a T-type micromixer.
SEM images of ZIF-8 nanoparticles obtained at flow rates of (b) 1 mL min−1 and (c) 30 mL min−1

(reproduced from [70], with permission from the Elsevier, 2013). (d) Schematic representation of
the general micro-chemical process for MOFs. (e) Scanning electron microscopy (SEM) image of
Fe3O4@ZIF-8 nanoparticles (reproduced from [138], with permission from the American Chemical
Society, 2013).

3. Progress of Microfluidic Technology for the Surface Modification of Inorganic Nanomaterials

Surface modification has emerged as an effective means to improve the performances of
nanoparticles in terms of the dispersibility, surface activity, functionality, and biocompatibility [141–145].
There are numerous methods for the surface modification of nanomaterials, including
chemical/electrostatic coating [146], chemical conjugation [147], deposition [148], and microcapsule
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formation [149]. Unfortunately, traditional surface modification methods often lack accuracy,
controllability and repeatability. In contrast, microfluidic technology can be accurately used to
realize controllable surface properties of nanomaterials, which is inevitably beneficial for the translation
of inorganic nanoparticles to the market. The research on the surface modification of inorganic
nanoparticles is mainly divided into two categories: (1) the modification of solid nanoparticles and
(2) the modification of porous nanoparticles, which are outlined in the following sections.

3.1. Surface Modification of Solid Particles

Different solid nanoparticles including metal, metal oxide and QDs have been modified by
using microfluidic approaches for an array of biomedical applications. For example, the surface of
Fe3O4 nanoparticles (size, ~10 nm) was decorated with gold nanoparticles (size, ~4 nm) by using
a microfluidic device (Figure 11a) [95]. Neither organic solvents nor surfactants were used in the
synthesis, which makes them amenable for clinical applications. Karnik and coworkers realized the
self-assembly of monodispersed lipid polymers and QD nanoparticles in a single mixing step, by using
microfluidics flow focusing technology (Figure 11b) [150]. The rapid mixing in the microfluidics
system led to the formation of QDs@lipid nanoparticles with relatively narrow size distribution.
The physical and chemical properties of the prepared composite nanoparticles, such as the particle
size (35–180 nm) and the Zeta potential (−10 mV to +20 mV), can be controlled by simply varying
the composition and concentration of the precursor solution. Microfluidic technology can also afford
functional nanomaterials. In a recent study, hydrophobic iron oxide nanoparticles (IONPs) were
encapsulated into liposomes (Figure 11c) [151]. The average number of the encapsulated IONPs
was approximately 40 times higher than that of the hybrid particles synthesized by the bulk method.
These hybrid nanoparticles could be used as MRI contrast agents for liver imaging. More importantly,
other types of inorganic nanoparticles, such as gold and QDs, could also be introduced into liposomes by
employing similar microfluidic approach. For instance, both IONPs and paclitaxel were encapsulated
into poly(L-lactide-co-glycolide) (PLGA) nanoparticles by using the microfluidic method [152].
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Figure 11. (a) Schematic illustration for the synthesis process of Fe3O4-Au nanoparticles, by using
natural-rubber microdevice (reproduced from [95], with permission from the Royal Society of Chemistry,
2015). (b) Schematic illustration of the QD-liposome formation in the Tesla mixer (reproduced from [150],
with permission from the American Chemical Society, 2010). (c) Schematic illustration of the rapid
mixing of lipids and IONPs in microfluidic device (reproduced from [151], with permission from the
Royal Society of Chemistry, 2017). (d) Microfluidic electroporation-facilitated the synthesis of cell
membrane coated magnetic nanoparticles for enhanced imaging-guided cancer therapy (reproduced
from [153], with permission from the American Chemical Society, 2017).
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Since cell membrane-cloaked nanoparticles possess prolonged circulation in vivo, as well as tumor
tissue accumulation potential, microfluidic technology has also been investigated to fabricate these
types of nanostructures. In a seminal study, Liu and coworkers employed electric pulses to promote
the penetration of magnetic nanoparticles into red blood cell membrane-derived vesicles (RBC vesicles)
during the microfluidic synthesis, which has highly shortened the reaction time as compared to the
conventional extrusion method (Figure 11d) [153]. The obtained nanoparticles have the potential to
be used as MRI contrast agents and beacons for the photothermal therapy, to afford imaging-guided
cancer therapy.

3.2. Surface Modification of Porous Materials

Porous inorganic nanomaterials have gathered considerable research interest in biomedical sector
owning to their rich and adjustable nanoporous structure, high specific surface area, and improved
physicochemical properties [154–157]. The porous microstructure provides an indispensable platform
for the loading of antitumor therapeutics or other functional agents for tumor therapy [158,159].
In contrast, currently employed porous drug delivery systems generally face several shortcomings,
including premature drug leakage and complicated surface modification chemistries [160,161].
Consequently, it is imperative to develop an efficient surface modification strategy to overcome
the aforementioned shortcomings.

Mesoporous silica and porous silicon (PSi) nanoparticles have been hot spots for disease diagnosis
and drug delivery for a long time [38,158]. The release kinetics of therapeutic molecules from
porous nanoparticles can be controlled by coating stimuli-responsive (e.g., light, heat, temperature, pH,
and redox) polymers on the particle surface [162,163]. In these settings, Zhang and coworkers deposited
polystyrene sulfonate (PSS) on chemotherapeutic drugs encapsulating MSN by using microfluidic
technology (Figure 12a) [164]. The PSS can completely block the open pores of the MSNs and prevent
the premature leakage of chemotherapeutic drugs during blood circulation. Moreover, the protonation
of PSS occurs in the weakly acidic microenvironment of tumor to accelerate the drug release from
MSNs, therefore leading to the tumor-specific drug delivery. Santos’ team has elegantly reported that
the surface modification of PSi nanoparticles with dextran-based polymers via the one-step microfluidic
self-assembly method, which significantly reduced particle size distribution, improved the surface
smoothness, and enhanced the cytocompatibility [38]. More recently, the same group synthesized a
reactive oxygen species (ROS)-responsive 4-(hydroxymethyl)-phenylboronic acid pinacol ester/oxidized
dextran copolymer (POD) and coated it on the atorvastatin-loaded PSi nanoparticles for diabetic
wound healing (Figure 12b) [165]. The degradation of the POD was accelerated by the hydrogen
peroxide (H2O2) to trigger the release of atorvastatin, which was maintained for more than 24 h.
Moreover, the multifunctional oxidized dextran nanocarriers consisting of drug-loaded PSi and gold
nanoparticles have been synthesized by using a similar approach, which can be used for controlled drug
delivery and X-ray computed tomography (CT) imaging for liver failure theranostics (Figure 12c) [166].
Santos et al. have also deposited pH-responsive spermine-modified acetalated dextran (SpAcDx)
on the surface of pre-synthesized zinc-doped copper oxide (Zn-CuO) nanoparticles by microfluidic
technology for tumor microenvironment-responsive therapy (Figure 12d) [167]. The targeting ligand
VD1142 was grafted on a SpAcDx shell to specifically recognize the over-expressed transmembrane
protein, carbonic anhydrase IX, in cancer cells. The in vitro results showed that SpAcDx coating shields
the Zn-CuO nanoparticles during blood circulation. On the other hand, the SpAcDx coating was
collapsed upon entering into the tumor cells, resulting in the exposure of nano-pierces of Zn-CuO
nanoparticles that caused severe damage to the endoplasmic reticulum and mitochondria.
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Figure 12. (a) Schematic illustration for the synthesis of DOX@MSN-PTX and the microfluidic fabrication
of DOX@MSN-PTX@PSS (reproduced from [164], with permission from the American Chemical Society,
2020). (b) Schematic illustration for the construction of glucose-responsive delivery system and the
orchestrated cascade for diabetic wound care (reproduced from [165], with permission from the
Royal Society of Chemistry, 2019). (c) Schematic illustration of synthesis procedure of multifunctional
nanoparticles by microfluidics (reproduced from [166], with permission from the Wiley-VCH Verlag
GmbH & Co, 2018). (d) Schematic illustration of the microfluidic synthesis of SpAcDx-coated Zn-CuO
nanoparticles, and their specific tumor targeting and anti-proliferative effect (reproduced from [167],
with permission from the Wiley-VCH Verlag GmbH & Co, 2017).

4. Conclusions and Future Outlook

Microfluidic platforms have shown promising potential to design a myriad of inorganic
nanomaterials with an improved trait of physico-chemical properties. Rapid and efficient mixing,
as well as simplicity and reversibility, pose microfluidics as an ideal platform for the cost-effective
mass production of inorganic nanomaterials with narrow size distribution and high monodispersity
than that of the bulk method. Likewise, the application of microfluidic technology for the synthesis of
core-shell nanostructures avoids complicated coating and purification steps, in marked contrast to the
conventional methods, which encompass separate steps for the nucleation, growth, and modification.

In recent years, although the progress has been made in the synthesis of various types of inorganic
nanoparticles (including silica, metal and metal/composite nanoparticles, QDs, MOFs, etc.) and their
applications in a wide range of fields; the development of the microfluidic-based synthetic strategy
for inorganic nanoparticles is still at its infancy. In order to further promote the rapid development
of this technology, several issues need to be carefully addressed, which include, but are not limited
to: (1) a comprehensive understanding of the synthesis mechanism of inorganic nanoparticles.
At present, the formation processes of inorganic nanomaterials as well as the correlation between
particle morphology/structure and reaction conditions in microfluidic scale are not yet fully understood.
We look forward to more in-depth investigations of the differences in basic principles between the bulk
and microfluidic synthesis. (2) There is few research studies on the effect of liquid evaporation caused
by high temperature on the synthesis process of nanomaterials in microfluidic system, which need
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to be further studied. (3) Increase of the yield of inorganic nanoparticles. One of the advantages of
microfluidic technology is that it can accurately process a trace amount of samples, thereby reducing
the reagent cost while avoiding the wastage of precious chemicals. However, due to the small channel
size and the high hydraulic pressure of the microfluidic device, the current maximum productivity of
this technology is only about in grams per hour. In order to meet industrial demands, it is pertinent to
develop effective stackable microreactor systems and industrial-scale fluid control devices to achieve a
manufacturing efficiency for up to kilograms per hour or even higher. (4) Modulation of the morphology
of inorganic nanoparticle. Anisotropic nanoparticles or nanoparticles with different layers have received
enormous interest of the scientific community, partly due to their unique morphology and diverse
potential applications. However, most of the nanoparticles prepared by using microfluidics are of
symmetrical shape. The controllable synthesis of complex shaped nanoparticles based on microfluidic
technology has yet to be achieved, and considerable efforts should be made in this field in the near
future. (5) Industrial design and development of microfluidic devices. Currently, the manufacturing
process of the microfluidic device is very expensive, complicated, and tedious. Companies including
Lonza, Corning, and Syrris have conducted groundbreaking research to manufacture robust and
flexible microreactors, which provide useful guidance for the industrial development of microfluidics.
However, there is still a long way to go to achieve cost-effective yet robust microfluidic devices.

Taken together, microfluidic technology is a promising approach for overcoming the current
challenges in the synthesis and modification of inorganic nanomaterials and realizing the well-controlled,
cost-effective and reproducible synthesis of inorganic nanoparticles. In the future, with the rapid
development of the multi-scale material design, sol-gel chemistry, microfabrication, and microfluidic
technology, an array of functional inorganic nanoparticles, with different sizes, shapes, and properties
are expected to be realized to meet the growing demand in different fields.
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