Supplementary Information

Calculating the surface area of the Pd nanoparticles:

The total surface area of the catalysts used in the catalytic reaction $\left(S_{T}(P d)_{\text {Nano }}\right)$ was calculated based on the number of Pd atoms per nanoparticles and median radius ($r_{\text {nano }}$) of the Pd nanoparticles.

Nanoparticles of Pd are considered as a compact sphere of radius $r_{n a n o}$. The surface area of total nanoparticles:

$$
S_{T}(P d)_{\text {Nano }}=S(P d)_{\text {Nano }}(P d)_{\text {Nano }}
$$

With $S(P d)_{\text {Nano }}$ the surface area of a $P d$ nano and $(P d)_{\text {Nano }}$ The number of nanoparticles:

$$
\begin{aligned}
& S(P d)_{\text {Nano }}=4 \pi r_{\text {nano }}{ }^{2} \\
& (P d)_{\text {Nano }}=\frac{(P d)_{\text {Atom }}}{n(P d)_{\text {Atom }}}
\end{aligned}
$$

$n(P d)_{\text {Atom }}$ are the number of Pd atoms per nanoparticles and $(P d)_{A t o m}$ are the total amount of Pd atoms for a solution of known concentration [Pd]:

$$
(P d)_{\text {Atom }}=[P d] \times N A
$$

With $N A$ the Avogadro constant (NA $=6.02214076 \times 10^{23} \mathrm{~mol}^{-1}$)
Each crystalline lattice containing 4 Pd atoms, so the number of Pd atoms per nanoparticles:

$$
n(P d)_{\text {Atom }}=4 \frac{V_{\text {sphere }}}{V_{\text {lattice }}}
$$

With $V_{\text {lattice }}$ the crystalline lattice volume:

$$
n(P d)_{\text {Atom }}=\frac{16 \pi r_{\text {nano }}^{3}}{3 V_{\text {lattice }}}
$$

General preparation of the Pd nanoparticles:

In a 10 mL vial, 2 mL of distilled water, $80 \mu \mathrm{~L}$ of a water solution of $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(20 \mathrm{mM})$ and 180 $\mu \mathrm{L}$ of bisphosphonic acid solution in water (40 mM HMBP aromatic) are mixed. Then $40 \mu \mathrm{~L}$ of a solution of sodium ascorbate ($17.6 \mathrm{mg} \mathrm{mL}^{-1}$) were added and the mixture was heated on a microwave apparatus (Monowave 300, Anton Paar GmbH, Graz, Austria) for 30 min at $80^{\circ} \mathrm{C}$ using a ruby thermometer (step 1: heat as fast as possible to $100^{\circ} \mathrm{C}$ and step 2: hold at $100^{\circ} \mathrm{C}$ for 30 min with the stirring speed being 1200 rpm for both steps).

Simulation of Langmuir-Hinshelwood equation:

The concentration of 4-nitrophenol as the function of reaction time ($C_{4-\text {-Nipexp }}$) was simulated by a numerical solution of equation 1 by one Matlab routine. This Matlab routine was used to calculate the theoretical 4-nitrophenol concentration ($C_{4 \text {-Nip,ther }}$) as the function of reaction time for given values of the true rate constant k and the Langmuir-Hinshelwood parameters K_{4}-Nip and $\mathrm{K}_{\mathrm{BH}}{ }^{-}$. These values are changed and calculation was repeated until the agreement of the experimental concentration of 4-nitrophenol to theoretical values obtained from equation 1.

MatLab Routine:

```
function [t,X]=main
global X time y ;
v=load('Exp1.txt')
time=v(:,1);
y=v(:,2);
%K_4Nip0 =5800;
%K_BH40= 2.3;
k0 = 0.015;
M0=[ k0 ]
fminsearch(@param,M0);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [S] = param(Mp)
global K_4Nip K_BH4 k n time y
k = Mp(1);
%K_4Nip = Mp(2);
%K_BH4 = Mp(3);
% The initial C_4-Nip value (mol/L)
Xo = [7.38*10^-5];
[t,X] = ode45(@fun,time,Xo);
ysim=X(:,1);
S=0;
for j=1:length(y)
S=S+(y(j)-ysim(j))^2;
end
S
K_4Nipa=K_4Nip
K_BH4a=K_BH4
ka=k
na=n
figure(1)
%plot the results
plot(time,y,'--',t,X(:,1))
legend('C4-Nip,exp','C4-Nip,ther');
ylabel('C4-Nip(mol/L)');
xlabel('time(s)');
dlmwrite('sol.dat',[t,X],' ');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [dx_dt]= fun(t,x)
global K_4Nip K_BH4 k n
C_BH4=1.5*10^-2;
K_BH4=1.5;
```

```
a = K_BH4*C_BH4;
%k= 0.0053;
S=0.002453465;
n = 1;
b=4200;
K_4Nip=b
kS=k*S;
if }x(1)>=
dx_dt(1)=-((kS *}(a\mp@subsup{)}{}{*}(\mp@subsup{b}{}{*}x(1)\mp@subsup{)}{}{\wedge}n)/(1+a+((\mp@subsup{b}{}{*}x(1)\mp@subsup{)}{}{\wedge}n)\mp@subsup{)}{}{\wedge}2)
end
if }x(1)<
dx_dt(1)=0;
x(1)=0;
end
dx_dt = (dx_dt)';
end
```

