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Figure S1. Experimental device. (a) Three-zone furnace tube used in this experiment (Lindberg/Blue
HTF55347C), (b) schematic of the experimental structure and position of the precursor, (¢) Area-coded
position and image of the sample under OM shooting.
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Figure S2. Deep learning is applied to construct a flowchart for the number detection system of the
optical MoS: layer. The gray, blue, orange, and green block colors correspond to (1) database, (2) offline
training, (3) model design, and (4) online service, respectively.
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Figure S3. Data labeling is assisted by the Raman spectroscopy instrument (MRI-1532A). This
instrument is mainly used to inject a 532 nm laser light into the sample. The photons in the laser will
collide with the molecules in the sample material, namely, E%g and A4. The peak difference of the
vibration mode is the signal of the main judgment layer of MoS2, and the two vibration modes have
a high dependence on the thickness of MoS2. We select two 30 umx30 um Raman mapping results in
the database and wait for ~45 min, especially in the ground truth mark, which is a considerable time.
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Visible Hyperspectral Imaging Algorithm

We use 24 color blocks as a common target and obtain corresponding RGB values and spectral
data through cameras and spectrum analyzers. As the camera processes CCD through image signal
processing and 3A (autofocus [AF], autoexposure [AE], and auto white balance [AWB]), the camera
image must be corrected to the actual physical phenomenon. The presented analysis is modified by
converting the RGB values and spectral data into an XYZ gamut space and performing color-adaptive
transformation and multivariate linear regression analysis to obtain a camera correction matrix. The
spectral data are then subjected to principal component analysis, and the first twelve groups of
principal components are compared with the corrected XYZ values for multivariate linear regression
analysis. Finally, the transformation matrix is obtained.
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Figure S4. Flowchart of visible hyperspectral image algorithm.
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Figure S5. In the blue area, the data in the offline training section of Figure 2 are used. The ground
truth and our label data are set as the training and validation sets, respectively. The rest of the VIS-
HIS feature data are used as the test set. The green area is the predicted result of new pending data in

the (4) online service architecture in Figure S2.
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Figure S6. At 40x magnification, the accuracy (ACC) and loss of the convergence process in (a) DNN,
(b) 1ID-CNN, and (c) 3D-CNN; confusion matrix results of the validation set in (d) DNN, (e) 1D-CNN,

and (f) 3D-CNN.
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Figure S7. At 100x magnification, the accuracy (ACC) and loss of the convergence process in (a) DNN,
(b) 1D-CNN, and (c) 3D-CNN; confusion matrix results of the validation set in (d) DNN, (e) 1D-CNN,

and (f) 3D-CNN.
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Figure S8. OM image and prediction results of the new pending data at 10x magnification.
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Figure S9. At 40x magnification, (a) and (e) are the OM images of train data and new pending data,

respectively. The predicted results of the three models are the false-color composite predicted by (b)
DNN, (c) 1D-CNN, and (d) 3D-CNN in the training data, and DNN and 1D-CNN can be observed. In
the CNN, impurities in the single layer are undetected. New pending data predict the color
classification image (false-color composite) by (f) DNN, (g) 1D-CNN, and (h) 3D-CNN and can
observe errors in a single layer in DNN and 1D-CNN. The result of misclassification of impurity
classification.
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Figure S10. OM image and prediction results of the new pending data at 40x magnification.
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Figure S11. At 100x magnification, (a) and (e) are the OM images of the training (train data) and new
test (new pending data) sets. (b) DNN, (c) 1D-CNN, and (d) 3D-CNN indicate the prediction results
of the color classification image (false-color composite) in the training data. (f) DNN, (g) 1D-CNN,
and (h) 3D-CNN reflect the prediction results of the color classification image (false-color composite)
in the new pending data, from DNN and 1D-CNN in the single layer with the wrong double-layer
classification misjudgment results.
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Figure S12. OM image and prediction results of the new pending data at 100x magnification.
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Distribution of Light Intensity in Angular Illumination Asymmetry

Initially, we only take OM images of sapphire substrates (Figures S13a,d,g) for three different
magnification rates of 10x, 40, and 100x. Then, we convert the RGB color space of the OM image to
the HSV color space. As the RGB channels are related to the color brightness, the color information
cannot be effectively separated from the brightness. From the color science-related course, the HSV
is suitable for image brightness and the separation of the color information, as shown in Figures
S13b,e,h). We obtain the V channel (lightness) to express the light intensity distribution of the image.
Then, we further observe from the RGB scatter plot that the uneven light intensity pixels are roughly
linearly distributed, as shown in Figures S13¢f,i. Thus, we use singular value decomposition for
linearity. The distributed pixels are linearly fitted. This step is intended to generalize the color space
of the OM image of the sapphire substrate within a defined linear range.
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Figure S13. Optical microscope light intensity distribution analysis. (a,d,g) OM images of sapphire
substrate taken at 10x, 40x, and 100x magnification rates (50, 15, and 10 um in the lower right corner,
respectively). (b,e,h) V channels in the HSV color space of the microscope image (lightness) light
intensity distribution. (¢ f,i) Scatter plots of each pixel point RGB channel in the OM image.
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Analysis of the Prediction Results of Laser Drilling Substrate Pretreatment

The color classification image can only display the final classification result. We cannot
determine the index of the model’s confidence in the prediction of each classification layer and
category. Therefore, we visually observe the prediction probability between each classification
category, as shown in Figures S14a—c. The substrate, single layer, double layer, triple layer, multilayer
and pollutant/impurity prediction probability distribution of one of the 10x, 40x, and 100x
magnification training databases are presented. The confidence value predicted for each classification
type is maintained at a certain level, which can explain the fact that the micro-state features are
blurred or the impurities are further difficult to identify because the prediction probability is low, but
the phenomenon is mainly caused by spatial resolution.
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mapping with a wavelength of 625 nm (d) PL mapping with a wavelength of 667 nm. (e) The blue

measurement in (d) indicates the PL measurement result of the test piece.
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Analysis of the Growth of MoS: through Laser Borehole Measurement by HRTEM

Figure S18a shows the OM image after growing MoS:. The red line marks the FIB sampling
position, and Figure S18b presents the cross-sectional TEM image of the selected area of Figure 518a.
Figure S18c displays a magnified TEM image at the red arrow in Figure S18b. The box portion is
magnified at a high rate and converted to SAED. Figure 518d exhibits the red box in Figure S18c. At
the HRTEM image, the position is the growth of the multilayer MoS.. Figure S18e shows the HRTEM
image of the orange box at Figure S18c. The sampling position is in the mixture layer. Figure S18f
presents the yellow box of Figure S18c. At the HRTEM image, the position is selected at the junction
of the mixed area and sapphire substrate. The two-layer MoS: grows clearly in the image. Figure S18g
displays the SAED diagram of Figure S18d. The angle of view is [001]. The lattice array of the
multilayer MoS2 can be seen. On the basis of the distance between the layers, the hexagonal crystal
structure of MoSz, and the lattice constant, a =0.318 nm, ¢ =1.299 nm, and the plane distance between
the MoS: layers is 6.2 A, which is close to that of the 2-H Mo$S: crystal plane (6.5 A) [65], as shown in
Figure S18h. In the SAED diagram Figure S18e, the angle of the photograph is [001], and its lattice
arrangement is confusing, but the lattice points looming in four directions may be an array of MoOs
lattices [64]. Figure S18i shows the SAED diagram of Figure S18f. The viewing angle is still [001], and
the selected region is the intersection of the mixed region and sapphire substrate at the double layer
of the HRTEM, because the lattice at the boundary may be around the boundary of the boundary.
However, from the center point, the angle of view of [001] can be obtained and the crystal plane
distance of approximately 6.4 A can be calculated [65]
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Figure S18. (a) is the OM image after growing MoSz, (b) is the cross-sectional TEM image of the
selected area of (a), (c) is the magnified TEM image of the red arrow of (b). (d) is the HRTEM image
at the red box in (c). (e) is the HRTEM image at the orange box in (c), and (f) is the HRTEM image at
the yellow box in (c). (g) is the SAED diagram of (d), (h) is the SAED diagram of (e), and (i) is the
SAED diagram of (f).



