Supporting Information

Asymmetric Pseudocapacitors Based on Interfacial Engineering of Vanadium Nitride Hybrids

Hailan Su¹, Tuzhi Xiong¹, Qirong Tan¹, Fang Yang¹, Paul B. S. Appadurai¹, Afeez A. Afuwape², M.-Sadeeq (Jie Tang) Balogun^{1,*} Yongchao Huang³, and Kunkun Guo^{1,*}

- ¹ College of Materials Science and Engineering, Hunan University, Changsha 410082, Hunan, China; suehai@hnu.edu.cn (H.S.); xiongtz@hnu.edu.cn (T.X.); tqr@hnu.edu.cn (Q.T.); yfang@hnu.edu.cn (F.Y.); Paul.blessington123@gmail.com (P.B.S.A.)
- ² College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, Hunan, China; <u>afuwape07@hnu.edu.cn</u>
- ³ Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China; huangych@gzhu.edu.cn
- * Correspondence: balogun@hnu.edu.cn (M.-S. (J.T.) B.); kunkunguo@hnu.edu.cn (K.G.)

Experimental Section Cont.

Synthesis of TiN/MnO₂ on CFC. Firstly, TiO₂ nanowires were grown on carbon cloth by a seed-assisted hydrothermal method. The carbon cloth (5.0×3.0 cm) was cleaned with ethanol and then dried at 60 °C. Then, the carbon cloth was immersed into a mixture of 0.43 mL TiCl₄ and 20 mL distilled water. After 2 min, the carbon cloth was blow-dried and heated on a hot-plate in the air at 300 °C, repeat this step three times, resulting in TiO₂ nanoparticles on the carbon cloth surface. 0.6 mL of titanium nbutoxide was added into a mixed solution of 20 mL concentrated hydrochloric acid (37 %) and 20 mL distilled water, and then stirred into a transparent solution. The obtained solution together with the above-mentioned carbon cloth was transferred into a 50 mL Teflon-lined stainless steel autoclave, and heated in an electric oven at 160 °C for 5 hours. After naturally cooled down to room temperature, the carbon cloth was thoroughly washed with DI water and dried. Subsequently, TiO₂ nanorods were conversed to TiN nanorods through thermal treatment at 800 °C in NH₃ (200 cc min⁻¹) for 1 h. MnO₂ was grown on a TiN substrate via electrodeposition method as following: the carbon cloth with TiN NWs (2.0 ×0.5 cm) was conducted in a threeelectrode cell with carbon cloth with TiN NWs as working electrode, Pt wire, and Ag/AgCl as counter electrode and reference electrode, respectively. The electrodeposition was carried out in a mixed solution of 0.1 M Mn(Ac)2 and 0.1 M Na₂SO₄ with 1.0 V constant potential for 90 s.

Figure S1. (a) XRD spectra of VO_x samples annealed at different temperatures ranging from 400-700 °C. (b). XRD spectra of MoS₂ hydrothermally grown on VN-500 at different hydrothermal duration of 3 h, 6 h and 9 h. Upon the increase in the hydrothermal period of MoS₂, the intensity of VN peaks gradually reduces, while those peaks intensity corresponding to hexagonal molybdenite-2H MoS₂ (JCPDS-#37-1492) increases accordingly (Figure S1b).

Figure S2. SEM images of (a, b) VM-500, (c, d) VN-600 and (e, f) VN-700.

Figure S3. Electrochemical properties of VN-500, VN-600 and VN-700.

Figure S4. SEM images of (a, b) VN500/3hMoS₂, (c, d) VN500/6hMoS₂ and (e, f) VN500/9hMoS₂. SEM images of the hybrid samples revealed some differences, with VN500/9hMoS₂ displaying MoS₂ nanosheets coated on the VN-500 nanowires (Figure S4e and S4f), and much more concentrated than those of VN500/3hMoS₂ (Figure S4a and S4b) and VN500/6hMoS₂ (Figure S4c and S4d).

Figure S5. Electrochemical properties of VN500/3hMoS₂, VN500/6hMoS₂ and VN500/9hMoS₂. Electrochemical properties displayed in Figure S5 also revealed that the performance of both VN500/6hMoS₂ and VN500/9hMoS₂ are very similar (VN500/9hMoS₂ slightly higher at low scan rates but VN500/6hMoS₂ show better performance at higher scan rate implying better rate performance) but significantly better than that of VN500/3hMoS₂. Hence, we select VN500/6hMoS₂ as the optimized VN/MoS₂ hybrid due to the economic factor of time and electricity consumed during hydrothermal to 9 h.

Figure S6. (a) XRD spectra, (b, c) SEM images and (d, e) TEM images of MoS₂.

Figure S7. CV curves of (a) VN, (b) MoS₂ and (c) VN/MoS₂. (d) Rate performance of VN and VN/MoS₂ electrodes.

Figure S8. Galvanostatic charge/discharge profiles of (a) VN, (b) MoS₂ and (c) VN/MoS₂ electrodes.

Figure S9. (a) CV curves and (b) XRD spectra of VN/MoS₂ electrodes before and after cyclic stability test.

Figure S10. (a) *iR* drop, and (b, c) Nyquist plot of VN, MoS₂ and VN/MoS₂ electrodes.

Figure S11. Pseudocapacitive Charge Storage Mechanism. (a) CV curves of VN and VN/MoS₂ electrodes at a scan rate of 5 mV s⁻¹. CV curves showing the capacitive and diffusion-controlled contributions at 5 mV s⁻¹ of (b) VN, (c) MoS₂ and (d) VN/MoS₂.

Figure S12. Electrochemical properties of TiN/MnO₂. (a) CV curves at different scan rates, (b) Galvanostatic charge/discharge profiles at a different current densities, (c) Nyquist plot and (d) Rate performance as a function of scan rates.

Figure S13. CV curves of (a) VN/MoS₂//TiN/MnO₂, (b) VN//TiN/MnO₂ and (c) MoS₂//TiN/MnO₂ at different scan rates.

Figure S14. Galvanostatic charge–discharge curves of the (a) VN//TiN/MnO₂, (b) MoS₂//TiN/MnO₂ and (c) VN/MoS₂//TiN/MnO₂-SSAPC devices obtained at different current densities up to voltage window of 2.0 V.

Electrodes	Electrolyte	Areal Capacitance (mF cm ⁻²)	Rate Performance (mF cm ⁻²)
VN/MoS ₂	5 M LiCl	3187.30	1294.30
(This work)	5 W LICI	@ 2.0 mA cm ⁻²	@ 40.0 mA cm ⁻²
VN nanowires	5 M L ;Cl	447.28	175.36
(This work)	5 WI LICI	@ 2.0 mA cm ⁻²	@ 40.0 mA cm ⁻²
Mesoporous	Hapor	178.0	≈ 75
VN/CNT [1]	1131 04	@ 1.1 mA cm ⁻²	@ 11.0 mA cm ⁻²
VNQDs/PC		1124.0	209
hybrid [2]		@ 4 mA cm ⁻²	@ 17.0 mA cm ⁻²
MVN@NC	6 M KOH	282.0	200
NWs film [3]		@ 1.44 mA cm ⁻²	@ 30.0 mA cm ⁻²
VN/CNTF [4]		564.0	361
		@ 1.0 mA cm ⁻²	@ 10.0 mA cm ⁻²
		238.2	24.7
viv umi mins [5]		@ 5 mV s ⁻¹	@ 100 mV s ⁻¹

Table S1. Comparison of the areal capacitance of VN-based electrodes in different electrolytes.

		Maximum	Maximum
Devices	Electrolyte	Energy Density	Power Density (W cm-
		(mWh cm ⁻³)	3)
VN/MoS2//TiN/MnO2		2.24	0.60
This work	LICI/F VA	@ 6.0 mA cm ⁻²	@ 40.0 mA cm ⁻²
VN//TiN/MnO2		0.240	0.92
This work	LICI/I VA	@ 6.0 mA cm ⁻²	@ 40.0 mA cm ⁻²
		0.54	0.43
	1131 O4/1 V A	@ 0.025 mA cm ⁻³	@ 0.5 mA cm ⁻³
VN//VO _x [5]	LiCl/PVA	0.61 mWh cm ⁻³	0.85 W cm ⁻³
VN//VN Nanofiber [6]	LiCl/PVA	0.89 m Wh cm ⁻³	0.016 m W cm ⁻³
		0.97	2.72
	Γ ν Α/ΓΑΑ5/ΝΟΠ	@ 0.051 mA cm ⁻³	@ 0.408 mA cm ⁻³
		$0.092 \text{ cm Wh m}^{-2} @$	0.45 W cm ⁻²
	INd2504	0.5 mA cm ⁻²	@ 10 mA cm ⁻²
MaN@P CE//PuQa@CE [0]	H2SO4/PVA	2.36 @ 4.0 mA cm ⁻²	0.17
Moner-Cr//RuO2@Cr [7]			@ 16.0 mA cm ⁻²
		0.61	0.42
rezin@Gin5//Tim@Gin5[10]	LICI/I VA	@ 2.0 A g ⁻¹	@ 16.0 A g ⁻¹
	HSO	2.54	0.232
W2N@1-Cr//11y@Cr[11]	112504	@ 4.0 mA cm ⁻²	@ 20.0 mA cm ⁻²
T:NI//T:N@MnCe[12]		0.55	1.53
	LICI/I VA	@ 1.0 mA cm ⁻²	@ 8.0 mA cm ⁻²
H MpO_//BCO [12]		0.25	1.43
H-MINO2//KGO [15]	LICI/F VA	@ 2.0 mA cm ⁻²	@ 12.0 mA cm ⁻²
3DHPC-NiCo2S4//3DHPC-		1.71	0.06
Fe2O3 [14]	ΓVΑ	@ 2.0 A g ⁻¹	@ 10.0 A g ⁻¹

Table S2. Comparison of the VN-based and other related PVA-based solid-state supercapacitor devices.

References

- Xiao, X.; Peng, X.; Jin, H.; Li, T.; Zhang, C.; Gao, B.; Hu, B.; Huo, K.; Zhou, J. Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. *Adv. Mater.* 2013, 25, 5091-5097.
- Yang, Y.; Zhao, L.; Shen, K.; Liu, Y.; Zhao, X.; Wu, Y.; Wang, Y.; Ran, F. Ultrasmall vanadium nitride quantum dots embedded in porous carbon as high performance electrode materials for capacitive energy storage. *J. Power Sources* 2016, 333, 61-71.
- Achour, A.; Lucio-Porto, R.; Solaymani, S.; Islam, M.; Ahmad, I.; Brousse, T. Reactive sputtering of vanadium nitride thin films as pseudo-capacitor electrodes for high areal capacitance and cyclic stability. *J. Mater. Sci.: Mater. Electron.* 2018, 29, 13125-13131.
- Guo, J.; Zhang, Q.; Sun, J.; Li, C.; Zhao, J.; Zhou, Z.; He, B.; Wang, X.; Man, P.; Li, Q., *et al.* Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fibershaped asymmetric supercapacitors. *J. Power Sources* 2018, *382*, 122-127.
- Lu, X.; Yu, M.; Zhai, T.; Wang, G.; Xie, S.; Liu, T.; Liang, C.; Tong, Y.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. *Nano Lett.* 2013, *13*, 2628-2633.
- Zhang, D.; Li, J.; Su, Z.; Hu, S.; Li, H.; Yan, Y. Electrospun polyporous VN nanofibers for symmetric all-solid-state supercapacitors. *J. Adv. Ceram.* 2018, *7*, 246-255.

- 7. Gao, B.; Li, X.; Guo, X.; Zhang, X.; Peng, X.; Wang, L.; Fu, J.; Chu, P.K.; Huo, K. Nitrogen-doped carbon encapsulated mesoporous vanadium nitride nanowires as self-supported electrodes for flexible all-solid-state supercapacitors. *Adv. Mater. Interfaces* 2015, *2*, 1500211.
- 8. Zhang, Y.; Wang, X.; Zheng, J.; Hu, T.; Liu, X.; Meng, C. Facile synthesis of highsurface vanadium nitride/vanadium sesquioxide/amorphous carbon composite with porous structures as electrode materials for high performance symmetric supercapacitors. *Appl. Surf. Sci.* **2019**, *471*, 842-851.
- Dubal, D.P.; Abdel-Azeim, S.; Chodankar, N.R.; Han, Y.-K. Molybdenum nitride nanocrystals anchored on phosphorus-incorporated carbon fabric as a negative electrode for high-performance asymmetric pseudocapacitor. *iScience* 2019, 16, 50-62.
- Zhu, C.; Yang, P.; Chao, D.; Wang, X.; Zhang, X.; Chen, S.; Tay, B.K.; Huang, H.;
 Zhang, H.; Mai, W., *et al.* All metal nitrides solid-state asymmetric supercapacitors. *Adv. Mater.* 2015, *27*, 4566-4571.
- 11. Dubal, D.P.; Chodankar, N.R.; Qiao, S. Tungsten nitride nanodots embedded phosphorous modified carbon fabric as flexible and robust electrode for asymmetric pseudocapacitor. *Small* **2019**, *15*, 1804104.
- Liu, Y.; Xiao, R.; Qiu, Y.; Fang, Y.; Zhang, P. Flexible advanced asymmetric supercapacitors based on titanium nitride-based nanowire electrodes. *Electrochim. Acta* 2016, 213, 393-399.
- 13. Zhai, T.; Xie, S.; Yu, M.; Fang, P.; Liang, C.; Lu, X.; Tong, Y. Oxygen vacancies

enhancing capacitive properties of MnO₂ nanorods for wearable asymmetric supercapacitors. *Nano Energy* **2014**, *8*, 255-263.

14. Fan, H.; Liu, W.; Shen, W. Honeycomb-like composite structure for advanced solid state asymmetric supercapacitors. *Chem. Eng. J.* **2017**, *326*, 518-527.