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Abstract: A composite sensor consisting of two separate inorganic layers of Prussian blue (PB)
and the composite of cerium oxide nanoparticles (CeNPs) and graphene oxide (GO), is tested with
•OH radicals. The signals from the interaction between the composite layers and •OH radicals
are characterized using cyclic voltammetry (CV). The degradation of PB in the presence of H2O2

and •OH radicals is observed and its impact on the sensor efficiency is investigated. The results
show that the composite sensor differentiates between the solutions with and without •OH radicals
by the increase of oxidation current in the presence of •OH radicals. The redox response shows a
linear relation with the concentration of •OH radicals where the limit of detection, LOD, is found
at 60 µM (100 µM without the PB layer). When additional composite layers are applied on the
composite sensor to prevent the degradation of PB layer, the PB layer is still observed to be degraded.
Furthermore, the sensor conductivity is found to decrease with the additional layers of composite.
Although the CeNP/GO/PB composite sensor demonstrates high sensitivity with •OH radicals at low
concentrations, it can only be used once due to the degradation of PB.

Keywords: hydroxyl radicals; cerium oxide; Prussian blue; graphene oxide; composite sensor; cyclic
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1. Introduction

Hydroxyl radicals (•OH radicals) are one of the most reactive free radicals among reactive
oxygen species (ROS). In a human body, •OH radicals are produced as a by-product of cellular
respiration primarily in the mitochondria [1,2], the oxidation burst in phagocytic cells [3,4], and enzyme
reactions [5,6] for various cellular functions such as restoration of damaged DNA [7], activating vital
proteins [8,9], signaling pathways [10], and responding to external impacts [11]. The imbalance between
production and elimination of •OH radicals occurs due to the overproduction of ROS or oxidants
beyond the capability of the cell to facilitate an effective antioxidant response [12,13]. The excess of
•OH radicals could develop the oxidative stress condition in a human body leading to interference
of the normal function of cells [14] and damage of cellular components including DNAs [15,16],
and lipids [17,18]. Acceleration of aging, cancer, cardiovascular diseases, and neurodegenerative
diseases, such as Alzheimer’s disease and Parkinson’s disease, are a few examples of the negative
impacts from the oxidative stress [19–21]. The detection of •OH radicals, as a biomarker, therefore,
is a crucial step in the diagnosis of those severe diseases at initial stages.
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Unfortunately, it is exceptionally challenging to detect •OH radicals, and other ROS in general,
because they have extremely short lifetimes. In addition, due to their high chemical reactivity, they can
easily destroy or disrupt the sensing elements of detection devices preventing them from generating
and transducing trustful signals [22–24]. A sensor technology enabling a real-time detection of •OH
radicals with a high sensitivity and selectivity would be beneficial to medical diagnoses for such
diseases at early stages [25–27].

Several direct and indirect detection methods have been developed for •OH radicals. Electron
paramagnetic resonance spectroscopy (EPR) coupled with spin trapping is a common method for
a direct detection of •OH radicals [28,29]. This method requires high and constant concentrations
of •OH radicals to get a reliable result, which is often hardly achieved due to the short lifetime
and high reactivity of •OH radicals. An aliquot of sample should be taken from a source of •OH
radicals—for example—via a biopsy, and analyzed with EPR, and in this procedure, contents of •OH
radicals, may change significantly. Most of indirect methods are using a chemical derivatization with a
separation technique including high-performance liquid chromatography (HPLC) coupled with either
UV spectroscopy [30,31], mass spectrometry [32,33], fluorescence methods [34,35], or electrochemical
detection (ED) [36,37]. For instance, the HPLC-ED identifies and also quantifies •OH radicals by
measuring hydroxylation products from the reaction between •OH radicals and aromatic molecules [38].
Indirect methods require two-step procedure—reaction and separation—and just like the direct
methods, they also have to undergo the sampling procedure, during which the accuracy of the
measurement reduces.

In the current study, a real-time composite sensor for detecting •OH radicals has been developed
by depositing two separate inorganic layers on a screen printed glassy carbon electrode (GCE).
A GCE is selected because of its low cost and good compatibility with most materials. The first
layer applied to the working GCE is a Prussian blue (PB) as an electrocatalyst to mediate the redox
reactions. It is hypothesized that PB can increase the conductivity and sensitivity of the composite
sensor at low concentrations of •OH radicals. The sensitivity of sensor is an important factor in
the detection of free radicals because it is necessary to be able to analyze even a small abnormal
increase of •OH radicals at an onset of oxidative stress-related diseases. The first layer of PB is
formed on a GCE by the electrochemical deposition, in which PB particles are deposited on the surface
of electrode by the electrostatic self-assembly [39]. The second layer of the sensor is a composite
mixture of CeO2 nanoparticles (CeNPs) with graphene oxide (GO), a CeNP/GO composite. CeNPs
are employed as a sensing element with the active sites for the reaction with •OH radicals [40,41].
The detection of •OH radicals occurs as Ce3+ on a CeNP reacts with •OH radicals and turns into
Ce4+. In the oxidation-reduction cycle, a CeNP alternates between the oxidation states of Ce4+ and
Ce3+ [42], and therefore, the reaction with •OH radicals can be monitored by transmitting the electrical
signals [40,43,44].

It is hypothesized that the use of CeNP provides the sensor with the desired selectivity towards
•OH radicals. Also, the reversible reaction of the cerium oxide with •OH radicals enables the sensor to
be reusable and capable of real-time detection. As for GO, it is hypothesized that GO enhances the
electron transfer rate on the sensor surface when combined with CeNPs due to its intrinsic properties
such as high surface area and high conductivity [45]. The electrochemical reduction is implemented to
fully exploit the intrinsic conductivity of GO. Several groups have proved that the conductivity of
GO significantly increased after being treated with electrochemical reduction [46]. To characterize the
presumed sensitivity, reusability, and capability of real-time detection, cyclic voltammetry (CV) was
used. To the best of our knowledge, this is a first real-time electrochemical sensor with the integration
of PB and CeNP for the detection of •OH radicals in an aqueous system.



Nanomaterials 2020, 10, 1136 3 of 17

2. Materials and Methods

2.1. Materials

Cerium(IV) oxide nanopowder, graphene oxide, potassium hexacyanoferrate(II) trihydrate
(98.5–102.0%), potassium hexacyanoferrate(III) (>99%), iron(III) chloride (97%), iron(II) sulfate
heptahydrate (≥99%), potassium chloride (≥99%), and hydrogen peroxide (30% w/w) were obtained
from Sigma-Aldrich (St. Louis, MO, USA). Screen printed carbon electrodes (GCE) (Pine Instruments,
Grove City, PA, USA) were used as a sensor base with a 2 mm-working electrode. The counter electrode
and the reference electrode were carbon and Ag/AgCl, respectively. The sizes of CeNPs and the presence
of CeNPs in the composites were investigated by using a scanning transmission electron microscope,
STEM Hitachi HD-2300A (Tokyo, Japan). The bare and modified electrode were recorded using a field
emission scanning electron microscopy, SEM Hitachi S-4800 (Tokyo, Japan). The composition of the
CeNP/GO composite was confirmed by using a Rigaku Ultima III X-ray diffractometer with small
angle X-ray scattering (SAXS). Cyclic voltammetry (CV) was performed using a Gamry Reference
600 potentiostat (Gamry Instruments, Warminster, PA, USA).

2.2. Synthesis of CeNP/GO Composite

Both CeNPs and GO (50 mg each) were added into 100 mL of deionized water. The mixing
solution was then placed into an ultra-sonication bath for one hour. Following sonication, the mixing
solution was stirred for two hours to form a composite. The homogeneous mixing solution was then
transferred to a centrifuge tube and centrifuged at 12,000 rpm for 30 min to receive the precipitated
solid from the liquid portion of the mixing solution. The composite sample was then collected and
dried at 60 ◦C for 12 h [47]. Once dried, the solid was grounded to a fine powder and kept in a
desiccator at room temperature. The final CeNP/GO composite was confirmed by SAXS and STEM.

2.3. Deposition of PB on a GCE

The deposition of PB on a GCE was reported in previous literatures [48,49]. Briefly, before any PB
was immobilized on a working electrode, a GCE was cleaned with 0.1 N sulfuric acid using CV to
eliminate impurities on the surface of electrode. After that, two solutions were prepared to deposit PB
on the working electrode. The first solution was made of 2 mM of potassium ferricyanide, K3[Fe(CN)6];
0.1 M potassium chloride, KCl; and 0.1 M hydrochloric acid, HCl. The second solution contained
2 mM iron(III) chloride, FeCl3, at pH of 2. The both solutions were mixed with an equal volume of
40 mL, and the mixture was referred as a PB growing solution. CV was performed in the potential
range from 0.3 to 0.8 V with 40 mV/s of scan rate for 15 cycles. After the color of working electrode
turned into light blue, PB was stabilized by executing CV in the activating solution of 0.1 M KCl and
0.1 M HCl with the potential range of −0.05 V to 0.35 V at a scan rate of 40 mV/s for 10 cycles. Once
the activation was completed, the electrode was dried at 80 ◦C for one hour. The PB deposition was
assured by performing CV in the range of −0.8 V to 0.8 V with 100 mV/s in a 0.1 M phosphate buffer
solution (PBS, pH 7.2) containing 5 mM of [Fe(CN)6]3−/4− and 0.1 M KCl.

2.4. Preparation of the CeNP/GO Composite on the PB-Modified GCE

The 10 mg of CeNP/GO composite powder was suspended in 10 mL of deionized water.
The solution was then sonicated for one hour to obtain a homogenous solution. The CeNP/GO
composite solution was applied to the PB-modified glassy carbon working electrode by delivering
10 µL with a pipette and dried in an oven at 60 ◦C for one hour. After drying, the CeNP/GO composite
was reduced by CV through the electrochemical reduction with the potential range from 1.7 to −1.7 V
at 40 mV/s for 12 cycles to improve overall composite conductivity [45]. Then, the CeNP/GO composite
layer on top of the PB layer was rinsed with distilled water and dried again under nitrogen gas. CV was
used to confirm the presence of composite layer on top of the PB-modified glassy carbon working
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electrode with the potential range between −0.8 V to 0.8 V at a scan rate of 100 mV/s in the same CV
solution used in 2.3.

2.5. Detection of •OH Radicals by CeNP/GO/PB on a GCE

To test the composite sensor, •OH radicals were generated using the Fenton reaction. 10 mM of
H2O2 solution was mixed with 10 mM solution of FeSO4·7H2O with an equal volume to perform the
Fenton reaction. The H2O2 solution was covered with aluminum foil to prevent the oxidation from UV
light exposure for the duration of the experiment. CV was implemented to test the sensor during the
Fenton reaction. The first cycle in CV was run in the H2O2 solution. After that, the test was paused
and an equal volume of the FeSO4·7H2O solution was added to the H2O2 solution to begin the Fenton
reaction. CV was continuously used to detect the current change of the sensor during the Fenton
reaction with the potential range of −0.6–0.4 V at 100 mV/s. After the Fenton reaction terminated
within 15 min, the sensor was transferred to the same CV solution used in 2.3 and CV was run to check
for the degradation of PB and composite layers on the surface of electrode.

After testing, the sensors are washed with distilled water and dried under nitrogen gas for next
tests. The same test procedure was repeated for a sensor multiple times to investigate the reusability of
sensor. Both the reduction and oxidation responses (i.e., redox response) in the cyclic voltammogram
were used to calculate the redox response (∆A) of the sensor due to the redox reaction between the
CeNP/GO composite and •OH radicals. The redox response in terms of the current change (∆A) was
calculated using the procedure described in Figure 1, in which ∆A is taken from the difference between
the currents at the oxidation and reduction peaks. The CV curve for H2O2 shows no significant redox
peaks, which proves that there is no considerable redox reaction between the CeNP/GO modified
electrode and H2O2. Figure 2a summarizes the synthesis of the CeNP/GO/PB modified electrode and
the detection of •OH radicals in the Fenton solution. The design concept of the sensor is also shown in
Figure 2b.
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Figure 2. (a) Schematic of the construction and test processes for the composite sensor, (b) the
mechanism of detection of hydroxyl radicals in the sensor design.

3. Results and Discussion

3.1. Synthesis and Characterization of the CeNP/GO Composite

The composite was synthesized by a low-temperature solution process. The XRD patterns of
GO, CeNPs, and the CeNP/GO composite are showed in Figure 3a–c, respectively. Figure 3b shows
the crystalline structure of CeNPs with the refractive indexes at 28.4◦ (111), 32.9◦ (200), 47.3◦ (220),
56.1◦ (311), 58.8◦ (222), 69.3◦ (400), 76.5◦ (331), and 78.9◦ (420), which consistent with the standard
cubic structure of CeO2 (JCPDS 65-2975) [50,51]. As for the XRD pattern of the CeNP/GO composite,
Figure 3c demonstrates the crystalline structure of CeNPs which confirms the presence of CeNPs in
the composite. It is worth mentioning that the refractive index of the CeNP/GO composite spikes
with a sharper peak in comparison to that of CeNPs, which is attributed to a highly ordered CeNP
crystallinity in the composite. On the other hand, it is observed that the characteristic XRD pattern of
GO around 25◦ significantly reduces in the CeNP/GO composite, which is thought to be due to the
disorder of stacking of graphene oxide sheets in the composite.

The morphologies of CeNPs and the CeNP/GO composite were investigated using STEM.
Figure 3d,e show the bright field TEM images of CeNPs and CeNP/GO composite, respectively.
In Figure 3d, the CeNPs have an average size from 15 nm to 60 nm with a consistent cubic shape.
For the CeNP/GO composite, which is exhibited in Figure 3e, the CeNPs are homogeneously dispersed
all over the GO sheets. Thus, it is confirmed that the low-temperature solution process can be
successfully used to prepare the CeNP/GO composite.
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3.2. Characterization of the PB Layer Deposited on a GCE

The CV results for a bare GCE and the PB modified GCE are shown in Figure 4a,b. Once the
electrochemical deposition was performed, two distinct redox peaks appear in the cyclic voltammogram
for the PB modified electrode as shown in Figure 4b. These two redox peaks, which are found at 0.1 V
and 0.6 V, represent the reduced form (Prussian white) and the oxidized form (Berlin green) of PB,
respectively. Furthermore, the PB modified GCE shows a higher conductivity in comparison to the
bare GCE. The increase of sensor conductivity is explained with an intrinsic characteristic of PB as an
electrocatalyst. PB is well-known for its redox catalysis that increases a rate of electron transfer in a
redox reaction between an electrode surface and electrolyte in a solution [52,53]. The addition of a PB
layer on the electrode surface as an interlayer between the electrode and the CeNP/GO composite layer
can facilitate the electron transfer resulting in an increase in the sensor conductivity [54,55].

Additionally, SEM was used to investigate the morphologies of the deposited PB layer on a GCE.
Figure 4c,d are SEM images of a bare GCE and the PB modified GCE, respectively. Figure 4c shows an
uneven surface of glassy carbon electrode. After the electrochemical deposition of PB, a homogenous
PB layer across the electrode surface was formed as shown in Figure 4d. Thus, it is confirmed that,
from the CV and SEM results, the electrochemical deposition is successfully used to deposit a PB layer
on the electrode surface.
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Figure 4. CV results of (a) a bare screen printed carbon electrode (GCE), and (b) PB deposited on a
GCE in a 0.1 M phosphate buffer solution (PBS, pH7.2) containing 5 mM of [Fe(CN)6]3−/4− and 0.1 M
KCl with 100 mV/s of scan rate. SEM images of (c) a bare GCE and (d) PB deposited on a GCE.

3.3. Characterization of CeNP/GO/PB on a GCE

The composite layer was deposited on an electrode surface using the drop casting method.
The chemisorption interaction is responsible for the attachment of the CeNP/GO composite with the
PB modified electrode. CV was employed to verify the deposition of CeNP/GO composite on top of
the PB modified electrode. As shown in Figure 5, two redox peaks of PB turn into one redox peak
of the CeNP/GO composite modified sensor. Furthermore, the electrode conductivity increases after
applying the CeNP/GO composite layer on top of the PB modified electrode, which is attributed to the
highly conductive GO in the composite. The potential change (∆Ep) of the oxidation and reduction
peaks also decreases for the composite modified sensor. The shift of redox peaks either to positive or
negative potential indicates the reversibility of redox reaction at the electrode surface as a peak-to-peak
separation (∆Ep). The ∆Ep’s of a bare and the composite on the PB modified electrode are 980 mV and
170 mV, respectively. This result indicates that PB in the composite tremendously enhances the electron
transfer for the redox reaction at the surface of electrode, which results in the significant reduction of
∆Ep. Furthermore, SEM images were used to confirm the presence of CeNP/GO composite layer on top
of the PB modified electrode. As demonstrated in Figure 5d,e, the surface morphology of PB modified
GCE is completely different from the image taken after depositing CeNP/GO composite on the PB layer.
Figure 5e shows the homogeneous dispersion of CeNP/GO composite on top of the PB modified GCE.
Therefore, it is concluded that the CeNP/GO composite layer was successfully deposited on the PB
modified electrode, and it showed a higher conductivity and required a lower potential to operate than
the bare and PB modified electrodes.
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5 mM of [Fe(CN)6]3−/4− and 0.1 M KCl with 100 mV/s of scan rate. SEM images of (d) PB deposited on
a GCE and (e) CeNP/GO/PB modified GCE.

3.4. Electrochemical Reduction of the CeNP/GO Composite

As mentioned earlier, the electrochemical reduction can improve the intrinsic conductivity of GO.
Figure 6 shows the cyclic voltammogram for the CeNP/GO composite modified electrode before and
after the electrochemical reduction. It is found that, the conductivity of CeNP/GO composite modified
electrode significantly increases after treatment with the electrochemical reduction. The increase in the
conductivity of the CeNP/GO composite modified electrode is due to the elimination of oxygen groups
on GO by electrochemical reduction.
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Figure 6. CV responses of the CeNP/GO composite before and after the electrochemical reduction in a
0.1 M phosphate buffer solution (PBS, pH 7.2) containing 5 mM of [Fe(CN)6]3−/4− and 0.1 M KCl with
100 mV/s of scan rate.

3.5. Tests for •OH Radical Detection

3.5.1. CV for •OH Radical Detection

As mention before, a CeNP has the dual oxidation states as Ce3+ and Ce4+ on the surface of
particle. Several works have verified that the Ce3+ oxidation state on the surface of CeNP is responsible
for the oxidation reaction with high selectivity toward •OH radicals [40,41]. Our hypothesis is that
CeNPs possessing the Ce3+ oxidation state can be used as sensing element for •OH radicals via the
oxidation reaction. Figure 7 shows the cyclic voltammograms of three different layers of the CeNP/GO
composite sensor with (Figure 7a–c) and without the PB deposition (Figure 7d–f) in the presence of
H2O2 and •OH radicals. Regardless of PB layer and additional composite layer(s), the CeNP/GO
composite sensor shows the increase of oxidation current peak around 0.2 V in the presence of •OH
radicals; in contrast, there is no oxidation current peak from the bare electrode. The composite shows
greater reactivity with •OH than with H2O2 as Figure 7a shows, for example, that the redox response
(∆A) for •OH is 87 ± 6.2 µA while the ∆A for H2O2 is 37 ± 0.5 µA. Therefore, it proves our hypothesis
that CeNPs can be used as a sensing element and the Ce3+oxidation state on the surface of CeNP is the
reactive site for •OH radicals.

The CeNP/GO composite was catalyzed with PB to improve the conductivity and sensitivity of
the sensor with low detection limits. The redox response (∆A) of three different layers of a composite
with and without PB to •OH radicals is presented in Figure 8. As expected, the PB modified composite
sensor delivers a significant increase in the ∆A to •OH radicals compared to the composite sensor
without the PB modification. Therefore, this experimental result confirms that the PB layer can be used
as an electrocatalyst in this composite sensor configuration.
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Figure 7. CV responses of (a,d) the single layer of CeNP/GO composite with and without the PB
modification, (b,e) double layers of CeNP/GO composite with and without the PB modification,
(c,f) triple layers of CeNP/GO composite with and without the PB modification, and (g) a bare screen
printed carbon electrode (GCE) in the solution contains 10 mM of H2O2 and •OH radicals with the
potential range from −0.6 V to 0.4 V, 100 mV/s.

It was found, however, that the PB layer degraded after contacting with H2O2 or •OH radicals.
In order to prevent the degradation of PB layer, additional layers of the CeNP/GO composite were
deposited on top of the PB layer. It was thought that the extra layers of the composite deposited on
top of the PB layer would prevent the degradation of PB layer. As shown in Figure 8, the addition of
composite layers is found to reduce the ∆A of the composite sensor in the presence of •OH radicals.
This could be due to the additional layer(s) enhances agglomeration of the nanoparticles that results in
the reduction of active sites and the decrease in the ∆A. Moreover, the increased layer thickness with
the additional composite layer(s) results in a longer distance for electrons to transfer from active sites
at the composite surface to the PB layer, leading to the reduction of the ∆A.
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3.5.2. Composite Sensor Response to Different •OH Radical Concentrations

The single layer of composite modified sensors with and without the PB deposition were used
to detect •OH radicals in the concentration range from 0.1 to 10 mM as shown in Figure 9. Both the
modified composite sensors show linear relationships between the ∆A and different concentrations of
•OH radicals with R-square (R2) values equal to 0.93 and 0.89 for with and without the PB deposition,
respectively. A higher R2 value of composite sensor with the PB deposition could be yielded from the
electrocatalytic property of PB, which improves both conductivity and sensitivity as hypothesized
before. Furthermore, the CeNP/GO composite modified sensors with the PB deposition shows a higher
∆A for all tested •OH radical concentrations than that without a PB layer in Figures 7 and 8. The limits
of detection (LOD) of the composite sensor, calculated by the equation, (3.3 × SD)/b [56], where SD
and b represent the standard deviation and a slope of the regression line, are 60 and 100 µM with
and without the PB modification, respectively. The electrocatalytic effect of PB is the main factor
contributing to a better sensor performance in terms of ∆A and LOD of the composite sensor. The LOD
of this CeNP/GO composite sensor with the PB deposition are found to be comparable to other sensors,
which are in the range of 1–100 µM [37,57–59].
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3.6. Effects of PB Degradation on Sensor Performance

PB turns out to be an important layer to improve the sensor conductivity and sensitivity.
As mentioned before, however, PB is found to be degraded by oxidizing species, H2O2 and •OH
radicals. Since PB is used as the electrocatalyst to improve the electron transfer for redox reactions,
the degradation of PB surely impacts the ∆A of this composite sensor. Cyclic voltammograms of three
different composite layers with the PB deposition before and after running in the Fenton reaction are
showed in Figure 10. The ∆A of all composites with single, double, and triple layers are observed to
decrease after performing the detection of •OH radicals regardless of the thickness of layer. To confirm
the reduction of ∆A in Figure 10 results from the PB degradation, SEM images of the PB layers before
and after the Fenton reaction are shown in Figure 11. Figure 11a shows the homogenous structure of
PB layer, whereas a damaged rough surface of PB layer is shown after exposure to •OH radicals in the
Fenton reaction in Figure 11b.

In Figure 12, the percent decreases of the sensor conductivities are estimated as 22.1%, 19.4%,
and 23.2% for the single, double, and triple composite sensors with the PB deposition, respectively.
On the other hand, the composite sensors without the PB deposition show the 7.2%, 7.8%, and 8.8%
decreases in sensor conductivity for the single, double, and triple composite layers. From Figure 12,
all the composite sensors of three different layers with the PB deposition show approximately three
times more degradation compared to those without the PB deposition. From experimental results in
Figures 10–12, it is concluded that the decrease of ∆A mainly results from the degradation of PB layer
on the composite sensor. In addition, the different thicknesses of composite layer(s) (single, double,
and triple) show no effect on the protection of PB from degradation.
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after exposing to •OH radicals.
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4. Conclusions 

The CeNP/GO composite deposited on the PB modified GCE is successfully synthesized by the 
electrochemical deposition and the drop casting method. The one layer of CeNP/GO composite 
sensor shows its sensitivity with •OH radicals as it produces the current increase of 87 ± 6.2 µA in 
CV when contacts with •OH radicals, whereas the current increases by 37 ± 0.5 µA with H2O2. The 
composite sensors with and without PB modification show the linear relationships of redox response 
with •OH radical concentrations from 0.1 to 10 mM with the LOD as 60 and 100 µM, respectively. 
The PB layer is found to be a crucial factor as an electrocatalyst to improve the sensor efficiency in 
terms of the redox response and the LOD. Unfortunately, PB layer is found to degrade when exposed 
to •OH radicals or H2O2. The thicker composite layers show no effect on protecting the degradation 
of PB. Moreover, the thicker composite layers produce lower current responses. The optimum sensor 
configuration for •OH radical detection is the PB modified electrode with one layer of CeNP/GO 
composite. This work presents the promising results on the integration of PB and CeNP to develop 
the electrochemical sensor for the detection of •OH radicals. Moreover, the PB degradation by •OH 
radicals is confirmed in this study. 

Author Contributions: All authors have read and agree to the published version of the manuscript. 
Conceptualization, D.-S.K. and S.D.; Methodology, S.D., E.F.H., and J.E.R.; Validation, S.D., S.K., and D.-S.K.; 
Formal analysis, S.D. and D.-S.K.; Investigation, S.D., D.-S.K., E.F.H., and J.E.R.; Resources, D.-S.K.; Data 
curation, S.D., E.F.H., and J.E.R.; Writing—original draft preparation, S.D.; Writing—review and editing, D.-S.K. 
and S.K.; Visualization, S.D.; Supervision, D.-S.K.; Project administration, D.-S.K.; Funding acquisition, D.-S.K. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Liu, Y.; Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 
2013, 339, 1210–1213. 

2. Prescott, C.; Bottle, S.E. Biological relevance of free radicals and nitroxides. Cell Biochem. Biophys. 2017, 75, 
227–240. 

3. Repine, J.E.; Eaton, J.W.; Anders, M.W.; Hoidal, J.R.; Fox, R.B. Generation of hydroxyl radical by enzymes, 
chemicals, and human phagocytes in vitro. Detection with the anti-inflammatory agent, dimethyl 
sulfoxide. J. Clin. Investig. 1979, 64, 1642–1651. 

Single layer Dobble layer Triple layer
0

5

10

15

20

25

30

D
eg

ra
da

tio
n 

(%
)

 With PB deposition
 Without PB deposition

Figure 12. Degradation of three different composite layers on the PB modified GCE before and after
running in the Fenton reaction.

4. Conclusions

The CeNP/GO composite deposited on the PB modified GCE is successfully synthesized by the
electrochemical deposition and the drop casting method. The one layer of CeNP/GO composite sensor
shows its sensitivity with •OH radicals as it produces the current increase of 87 ± 6.2 µA in CV when
contacts with •OH radicals, whereas the current increases by 37 ± 0.5 µA with H2O2. The composite
sensors with and without PB modification show the linear relationships of redox response with •OH
radical concentrations from 0.1 to 10 mM with the LOD as 60 and 100 µM, respectively. The PB layer is
found to be a crucial factor as an electrocatalyst to improve the sensor efficiency in terms of the redox
response and the LOD. Unfortunately, PB layer is found to degrade when exposed to •OH radicals or
H2O2. The thicker composite layers show no effect on protecting the degradation of PB. Moreover,
the thicker composite layers produce lower current responses. The optimum sensor configuration for
•OH radical detection is the PB modified electrode with one layer of CeNP/GO composite. This work
presents the promising results on the integration of PB and CeNP to develop the electrochemical sensor
for the detection of •OH radicals. Moreover, the PB degradation by •OH radicals is confirmed in
this study.
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