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Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; joanna.musial@student.ump.edu.pl

2 Chair and Department of Chemical Technology of Drugs, Faculty of Pharmacy, Poznan University of
Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland; rlkrakowiak@gmail.com (R.K.);
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Abstract: Titanium dioxide (TiO2) is a material of diverse applications commonly used as a food
additive or cosmetic ingredient. Its prevalence in products of everyday use, especially in nanosize,
raises concerns about safety. Current findings on the safety of titanium dioxide nanoparticles (TiO2

NPs) used as a food additive or a sunscreen compound are reviewed and systematized in this
publication. Although some studies state that TiO2 NPs are not harmful to humans through ingestion
or via dermal exposure, there is a considerable number of data that demonstrated their toxic effects in
animal models. The final agreement on the safety of this nanomaterial has not yet been reached among
researchers. There is also a lack of official, standardized guidelines for thorough characterization of
TiO2 NPs in food and cosmetic products, provided by international authorities. Recent advances in
the application of ‘green-synthesized’ TiO2 NPs, as well as comparative studies of the properties of
‘biogenic’ and ‘traditional’ nanoparticles, are presented. To conclude, perspectives and directions for
further studies on the toxicity of TiO2 NPs are proposed.
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1. Introduction

1.1. Properties and Applications of Titanium Dioxide

Titanium dioxide (TiO2, titania, titanium(IV) oxide) is a material with a plethora of practical and
possible applications. Commonly called ‘titanium white’, the fine white powder is mainly used as a
pigment because of its brightness and opacifying strength (hiding power). TiO2 is resistant to chemical
attack and displays excellent thermal stability, but most importantly, has the ability to both absorb and
scatter the UV light (thanks to its high refractive index). These properties render the titanium pigment
an irreplaceable ingredient in the production of paints, surface coatings, plastics, and paper [1]. The global
production of titanium dioxide worldwide is continuously rising [2].

Titanium dioxide comes in three distinct crystal polymorphs—anatase, rutile, and brookite. Rutile
is the most thermally stable polymorph, as both brookite and anatase are transformed into rutile
when exposed to a temperature above 800 ◦C. All crystal forms of TiO2 offer photoactive properties.
The differences in these properties can be characterized by different band gaps in TiO2 electron
structures. Anatase was found the most photoactive form, as the bandgap, in this case, is higher
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compared to other polymorphs [1,3,4]. Manufacturing of the nanoscaled TiO2 particles, where at
least one diameter is below 100 nm, has expanded the range of TiO2 utility (Figure 1). Titanium
dioxide in the form of nanoparticles (TiO2 NPs) has become a common additive in paints, plastics,
personal care products (cosmetics, sunscreens) and food—as the additive E171 [5,6]. Due to the
properties which stem only from significantly decreased particle size (comparing between macro- or
microparticles), titanium(IV) oxide nanoparticles are of great interest to many research groups [7].
In medical sciences, TiO2 was tested as a new effective drug carrier (for example, as TiO2 nanotubes) [8]
or in skin tissue engineering and wound dressing [9–11]. Nanoscale TiO2 particles also have interesting
photocatalytic properties, such as the ability to mediate photodegradation of pharmaceuticals, bacteria
inactivation, the photooxidative killing effect on cancer cells, energy storage, as well as air and
water purification [6,12]. Nowadays, TiO2 NPs are one of the most manufactured nanomaterials in
the world [5,13].
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Particles of size in the nanoscale have a higher surface-to-volume ratio, as compared to macro-
or micro-particles. This fact affects their properties, such as reactivity of surface area, the degree to
which the NPs aggregate, or bioavailability [14,15]. It is generally known that an increase in surface
area accelerates the dissolution processes. Higher dissolution rates and smaller size of particles
enhance their absorption through membranes [16], which leads to their deposition within tissues
and organs after oral administration, while the insoluble material is mostly excreted with feces [17].
However, TiO2 has very low dissolution rate when compared to other metallic nanoparticles [18].
Brun et al. demonstrated that there was no visible dissolution of TiO2 particles for as long as 24 h
after the uptake by human gut epithelial cells grown in in vitro monocultures [19]. As the dissolution
rates achieved by TiO2 are very low [20], the cytotoxic effects caused by TiO2-NPs are more closely
related to their size rather than due to metallic ions being released from the particles absorbed by
cells. Such assumption was confirmed in the study by Gurr et al., where they demonstrated that very
fine TiO2-NPs (<20 nm diameter) induced genotoxicity through oxidative stress in human bronchial
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epithelial cells, even without photoactivation of the nanomaterial [21]. Noteworthy, the same material
sized >200 nm showed no sign of genotoxicity without irradiation.

If a substance additionally accumulates in biological tissues, its increased uptake may lead to
adverse effects. This issue does not apply to larger forms of the same substance [14,22]. Upon introduction
to biological systems, nanoparticles are exposed to a complex mixture of molecules, forming a so-called
‘corona’. This layer constitutes the interface between the nanomaterial and the environment and is
often regarded as a biological identity of the particle. The corona plays a significant role in the
bioactivity of a nanomaterial. It has been shown to mediate cellular responses (uptake, accumulation,
intracellular localization, distribution and degradation) [23,24]. The protein corona (PC) is the most
extensively studied nano–bio interface type [25]. With regard to titanium dioxide nanoparticles,
Khan et al. recently assessed the impact of the surface chemistry on the behavior of the nanoparticle in
an in vitro study, using adenocarcinomic human alveolar basal epithelial (A549) cells. Uncoated TiO2

NPs were compared with particles modified with PVP, Dispex AA4040, and Pluronic F127. The results
revealed differences in terms of the tendency to form agglomerates, the rate of dissociation from corona
proteins, dispersion of the particles and their degradation. Dispex AA4040, and Pluronic F127 coatings
were found to influence the retention of PC and additionally exhibited an exchange between corona
and intracellular proteins [26]. As the biocorona of the TiO2 NP notably affects its biological fate and
therefore its potential toxicity, the studies on this interfacial layer should be included in the safety
assessment of the nano-TiO2 used as food and cosmetic additive. These issues will be discussed later
in this review.

1.2. Effect of TiO2 NPs Shape on Their Toxicity

So far, only a few studies have focused on the effect of the shape of the titania nanoparticles
on their toxicity, mainly inhalation based, and much is yet to study on the subject. Allegri et al.
compared the toxicity of TiO2 P25 nanoparticles with TiO2 nanofibers towards alveolar carcinoma
epithelial cells [27]. The study concluded that although the nanoparticles exhibited a significant
toxic effect, the nanofibers revealed a stronger impact on the tested cell viability and hemolysis.
Worth noting is the fact that the TiO2 nanofibers caused more severe changes than P25 when either
dose or surface area are taken into account. Additionally, nanofibers induced similar inflammatory
response as crocidolite, a known cancer-inducing mineral. Such results correlate well with the study
by Porter et al. in which mice exposed to different titania nanoparticles by inhalation showed more
significant lung damage and inflammation in the case of nanobelt-shaped particles when compared
to nanospheres [28]. These effects were linked to the length of the particles, as longer nanobelts
induced a stronger response. Similar results, pinpointing the anatase nanobelts as more hazardous after
inhalation compared to P25 nanospheres and anatase nanospheres, were also reported [29]. In another
study, it was found that differently shaped anatase nanoparticles (nanotubes, nanocubes, nanospheres)
caused similar effects when dosing was based on the surface area of the materials [30]. However,
the nanotubes were associated with the alveolar proteinosis and occurrence of the inflammatory
response. On the other hand, titania nanotubes were found to be more cytotoxic than P25 only
at the concentration of 2.5 µg/mL when tested on cardiomyocytes in vitro [31], with much higher
internalization (by diffusion and endocytosis) into the cells. A comparison of P25 and food grade
titania with TiO2-based bipyramids, rods and platelets indicated that only the food grade titania
and platelets were genotoxic to human epithelial cells in vitro [32]. TiO2 nanorods demonstrated a
dose-dependent toxicity in alveolar adenocarcinoma cells in vitro but were not compared to differently
shaped TiO2 nanoparticles [33]. In the same study, the rats that inhaled the nanorods were found to
exhibit tissue damage, acute and chronic lung inflammation, and increased levels of titanium were
measured not only in lungs but also in the bloodstream. Simon et al. attempted to find a relationship
between toxicity and shape of the used titania nanoparticles [34]. In this study however, it was found
that different nanoparticles were decreasing cell viability in a different manner, depending on the cell
line used. Human umbilical vein endothelial cells (HUVEC cells) were affected by P25 spheres, sol-gel
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based isotropic nanoparticles and nanosheets, with no effect observed when nanoneedles were used.
HEKn cells were most affected by nanosheets and in a smaller manner by P25 spheres, sol-gel based
isotropic nanoparticles and nanosheets. Interestingly, HeLa cell proliferation was decreased slightly
at high doses of sol-gel based isotropic nanoparticles and nanosheets but not by P25 nanospheres
or nanoneedles.

All these cited studies indicate that the shape of the particles plays an important role in the
toxicity of the titania nanoparticles. The biological effects observed for various TiO2 NPs are enhanced
by the elongated form (tubes or fibers). Their increased internalization to the cells results in higher
accumulation, which in turn explains its hampered clearance from the lungs.

1.3. The Role of Oxidative Stress in the Toxicity of Nanoparticles

There is a plethora of studies that associate cyto- and geno-toxicity with their photocatalytic
activity [4,13]. As mentioned before, TiO2 NPs can both scatter and absorb the UV radiation. UV light
absorption is possible due to the semiconducting properties of TiO2 (Figure 2). The electrons from the
valence band are promoted to the conduction band which photogenerates holes in the valence band.
These holes and electrons can recombine or migrate to the NP surface where different redox processes
take place, which causes reactive oxygen species (ROS) production.
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Figure 2. Bandgap in a semiconducting material. A valence band electron (e−) is excited to the
conduction band upon light absorption (of ≥ bandgap energy) and leaves a hole in the valence band
(h+) (according to [4,13]).

The valence band holes react mainly with the moisture on the surface of particles, which results
in the production of hydroxyl radicals. However, the conduction band electrons can interact with
oxygen molecules (also present on the surface of particles) or be captured at TiIV sites, and later react
with oxygen. As a consequence, it leads to the formation of hydrogen peroxide and superoxide anion
radicals (Figure 3). All of the products mentioned above, such as hydroxyl radical, hydrogen peroxide,
and superoxide anion radical, constitute a group of reactive oxygen species, which may impair the cell
function [4,13,35].



Nanomaterials 2020, 10, 1110 5 of 23

Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 23 

 

HeLa cell proliferation was decreased slightly at high doses of sol-gel based isotropic nanoparticles 
and nanosheets but not by P25 nanospheres or nanoneedles. 

All these cited studies indicate that the shape of the particles plays an important role in the 
toxicity of the titania nanoparticles. The biological effects observed for various TiO2 NPs are 
enhanced by the elongated form (tubes or fibers). Their increased internalization to the cells results 
in higher accumulation, which in turn explains its hampered clearance from the lungs. 

1.3. The Role of Oxidative Stress in The Toxicity of Nanoparticles 

There is a plethora of studies that associate cyto- and geno-toxicity with their photocatalytic 
activity [4,13]. As mentioned before, TiO2 NPs can both scatter and absorb the UV radiation. UV light 
absorption is possible due to the semiconducting properties of TiO2 (Figure 2). The electrons from 
the valence band are promoted to the conduction band which photogenerates holes in the valence 
band. These holes and electrons can recombine or migrate to the NP surface where different redox 
processes take place, which causes reactive oxygen species (ROS) production. 

 
Figure 2. Bandgap in a semiconducting material. A valence band electron (e−) is excited to the 
conduction band upon light absorption (of ≥ bandgap energy) and leaves a hole in the valence band 
(h+) (according to [4,13]). 

The valence band holes react mainly with the moisture on the surface of particles, which results 
in the production of hydroxyl radicals. However, the conduction band electrons can interact with 
oxygen molecules (also present on the surface of particles) or be captured at TiIV sites, and later react 
with oxygen. As a consequence, it leads to the formation of hydrogen peroxide and superoxide 
anion radicals (Figure 3). All of the products mentioned above, such as hydroxyl radical, hydrogen 
peroxide, and superoxide anion radical, constitute a group of reactive oxygen species, which may 
impair the cell function [4,13,35]. 

 
Figure 3. Photo-excitation of TiO2 and generation of reactive oxygen species (according to [4,13]).

Regarding the molecular mechanisms of the in vivo toxicity of NPs in general, the oxidative stress
plays the most crucial role. For example, Nel et al., in their study, presented a direct relationship
between the surface area, ROS-generating capability, and proinflammatory effects of nanoparticles in
the lung [22]. ROS generated by mitochondria in cells are normally quickly neutralized by antioxidant
substances. However, an excessive generation of oxidants, such as ROS, causes an imbalance between
oxidants and antioxidant processes, which is called oxidative stress [14,15,22,36]. Oxidative stress
has been proven to contribute to many types of human chronic diseases, such as cancer, as well as
inflammatory, neurodegenerative or cardiovascular diseases [37]. According to Aillon et al., the organs
that are the most exposed to oxidative stress are the liver and spleen, due to the accumulation of NPs
capable of generating ROS. In this regard, high blood flow and slow clearance make kidneys and lungs
very vulnerable to oxidative stress [14].

Taking into consideration these properties and the prevalence of TiO2 NPs in the products of
everyday use, the recently emerging concerns seem to be understandable. Although a considerable
amount of literature on the toxicity of TiO2 NPs is available nowadays—including excellent reviews
by Skocaj et al. [38] and Shakeel et al. [39]—there is still much uncertainty, as some findings are
inconsistent. Moreover, it is difficult to establish the intake levels of TiO2 NPs, as they depend on the
type of the product consumed or used, its formulation, route of exposure, and the rate of consumption
or usage of the product by a person [40]. The purpose of this paper is to review recent reports on the
toxicity of titanium dioxide nanoparticles as food and cosmetic additives, to systematize these findings,
and to point out perspectives for their further development.

2. Routes of Exposure and Toxicity of TiO2 NPs

It is now a well-established fact, based on a variety of studies, that there are four main routes
of exposure to titanium dioxide nanoparticles in humans: ingestion, pulmonary absorption (mainly
through inhalation), dermal exposure and injection (Figure 4) [39].

Researchers agree that the ingestion, inhalation, and injection of TiO2 NPs lead to their systemic
disposal. However, in case of dermal exposure, the findings are inconsistent. The following section of
this paper attempts to indicate the main uncertainties related to the toxicity of TiO2 NPs as additives in
food and cosmetic products, which are in the review of current chemical and toxicological studies.
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2.1. Ingestion—TiO2 NPs as a Food Additive (E171)

In the food industry, TiO2 has been applied as an additive to enhance the white color of certain
products, such as sweets or milk-based products [6,41,42]. In 2012, Weir et al. measured and compared
the amount of titanium in common food products [6]. The obtained data, normalized to the titanium
per serving, proved that the highest titanium contents could be found in chewing gums, candies,
powdered sugar toppings, or products with white icing. The difference in TiO2 consumption between
women and men in the United States was negligible. However, the difference in consumption between
children and adults was found significant. Children are susceptible to consume up to four times more
TiO2 per kilogram of body weight (kgbw) than an adult person. This fact can be simply explained by
their consumer preferences, generally based on the taste in sweet snacks, among which many contain
E171. Therefore, exposure to TiO2 depends also on dietary habits [6].

As the daily exposure to E171 may reach several hundreds of milligrams of which a considerable
part appears in the nano range (about 36%) [6], there are concerns that a long-term exposition to
this substance may lead to harmful effects in the human body. In response to this growing public
worldwide health problem, the European Food Safety Authority (EFSA) published a ‘Re-evaluation of
titanium dioxide (E171) as a food additive’, based on documentation on usage levels and safety of
titanium dioxide provided by various international associations, councils and committees. The EFSA
panel concluded that both the absorption and the bioavailability of orally administered micro- and
nano-TiO2 is low. Most of the TiO2 ingested dose is eliminated unchanged in the feces, except for
a tiny amount (not exceeding 0.1%), which is absorbed by the gut-associated lymphoid tissue and
distributed to various organs. The panel stated that the micro- and nano-sized particles are unlikely to
cause a genotoxic hazard in vivo [43]. However, a year later, a study conducted by Bettini et al. [44]
proved that orally administered food-grade TiO2 containing nanoscale particles impaired immune
homeostasis and induced carcinogenesis in rats. Based on this publication, the French ANSES (Agency
for Food, Environmental and Occupational Health) published their opinion on TiO2 NPs [45], in which
the necessity of conducting thorough research on the possible dangers connected with the usage of
E171 was underlined. France is the first country to ban using the E171 food additive because of the
possible harmful effects on humans and a lack of scientific data to confirm its safety. The restrictions
became effective in 2020 [46].
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The genotoxic potential of E171 has already been proven in several studies. In 2016, Proquin et al. [47]
used an in vitro model with human Caco-2 and HCT116 cells to research the potentially toxic effects of
E171, containing fractions of micro- and nano-particles (MPs and NPs, respectively). Their findings
proved the highest capability to induce ROS generation in a cell-free environment for E171 (defined
as a mixture of 39% TiO2 NPs and 61% MPs), followed by NPs and MPs. However, in a cellular
environment, only MPs revealed the capacity to produce ROS, which, as they suggested, can lead to a
proinflammatory response. On the other hand, the NPs did not stimulate ROS production, which was
explained by the fact that following internalization, they react with cellular structures blocking ROS
formation. This study also provided evidence for single-strand DNA breaks in Caco-2 cells induced by
all E171, NPs, and MPs. The researchers suggested that the E171 was more toxic to Caco-2 cells than NPs
or MPs alone. Harmful effects of TiO2 NPs were also confirmed by Grissa et al. [48]. The assumption
of this study was to simulate long-term, low dose ingestion of E171 in humans. For this purpose,
anatase NPs (5–12 nm in size) were administered intragastrically to Wistar rats for 60 days. As a
result of the performed study, there were noted changes in the hematopoietic parameters, as well as a
genotoxic effect of TiO2 NPs in vivo at 100 and 200 mg/kgbw. On the other hand, the particles that
were used in this study were generally smaller than those found commonly in foodstuffs [6], and the
crystalline phase of anatase is known to be much more toxic than rutile. In a study by Talamini et al.,
a material exhibiting foodstuff-grade particle size distribution was used [49]. The researchers studied
a repeated 3-week oral administration of E171 to mice (E171 suspension dripping into the mouth of
mice, 5 mg/kgbw for 3 days per week). The results were related not only to toxic outcomes, such as
an inflammatory response and increased superoxide production in the digestive tract, but also to the
deposition of TiO2 in the internal organs, especially in the liver and large intestine, where a three-fold
increase in TiO2 NPs was noted [49].

Oral exposure to TiO2 NPs is associated not only with the ingestion of E171, but also with the
consumption of pharmaceuticals. TiO2 is a common pharmaceutical excipient, mostly used as a white
pigment, but in its nanoform, it can also be an effective carrier of antibiotics, which additionally
enhances or prolongs the action of the drug [50–52]. Evidence for genotoxic effects of nano-TiO2 drug
carrier administered orally was recently provided by Mottola et al., who researched the influence
of nano-TiO2 and lincomycin coexposure on human amniocytes. The results of this in vitro study
demonstrate that the exposure to TiO2 NPs induced an increase in DNA strand breaks, a loss of
DNA stability and apoptosis, as well as reduced cells viability, whereas the exposure to lincomycin
itself had no toxic/genotoxic effects on amniotic cells. The authors suggested that the underlying
molecular mechanism of the DNA damage may be the production of ROS by the NPs, notably the •OH
radical [50,53]. To date, researchers usually associate the genotoxicity of TiO2 NPs with the formation
of oxidants [54–59].

Toothpaste is another source of TiO2 (also in a nanoform) which may be ingested. Therefore, it is
not surprising that attention has now turned to this personal care product. The review of scientific data
on this subject, which was carried out by national and international agencies, led to a prohibition of
E171 usage in food production [60,61]. Usually the amount of toothpaste used is small, so the ingestion
of TiO2 NPs is possible only in case of unwanted swallowing. Thus, taking into consideration the low
absorption of TiO2 administered orally, the appearance of toxic effects is rather unlikely [43].

As mentioned earlier, nanomaterials can interact with molecules, which are present in biological
fluids, for example, bacterial lipopolysaccharide (LPS), which is a proinflammatory compound present
in the gastrointestinal tract. Bianchi et al. indicated that LPS included in the biocorona of the titania
P25 particle displays enhanced proinflammatory effects [62]. The biological fate of nanomaterials
should be also evaluated with regard to food ingredient effects. As an example, model food ingredients,
bovine serum albumin and sucrose were able to stabilize TiO2 NPs and induced a decrease in their
agglomerate sizes [63]. It has been also shown that the adsorption of proteins on the food grade
TiO2 nanoparticles is inhibited in the presence of oxalate, a dicarboxylic acid, or phosphates [64].
As TiO2 NPs are largely utilized in dairy-based products, Cao et al. focused on their interactions with
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milk proteins. The researchers observed dissociation of casein micelles and formation of NP-protein
complexes. It was suggested that this interaction may have altered the shielding of the peptide bonds.
Therefore, it could be supposed that the amount of undigested protein, which may reach the colon and
affect the intestinal microflora, would be significantly changed [65].

2.2. Local Effects of Tio2 NPs on the Intestinal Barrier and Changes in the Gut Microbiota

The safety assessment of the food-grade nano-TiO2 should be also regarded from the perspective
of the local effects that may appear. This issue should not be omitted, because even if the TiO2 NPs
may not provoke toxic effects due to their penetration, local damages in the gastrointestinal tract may
disrupt the essential nutrient absorption. An overview of studies from the last six years shows a
consensus among researchers on the detrimental effects caused by TiO2 NPs, both in vitro and in vivo.
In 2014, Botelho et al. conducted a study on human gastric epithelial cells and stated that titania NPs
provoked tumor-like phenotypes. Briefly, they observed an increase in the proliferation of the cells
and a decrease in their apoptosis. They also detected increased glutathione levels, which is a sign of
oxidative stress-mediated toxicity, as well as DNA lesions [66]. Urrutia-Ortega et al. observed that
intragastric E171 exposure increased tumor progression markers (COX2, Ki67 and β-catenin included)
and enhanced tumor formation in the distant colon in a murine model [67]. They noted that TiO2 did
not induce tumor formation itself, but led to dysplastic changes in colonic epithelium and a decrease in
goblet cells. Moreover, they concluded that the exposure to E171 may worsen pre-existing intestinal
disorders. This was confirmed by Ruiz et al., who noticed an aggravation of acute colitis in a mouse
model following oral gavage, as well as accumulation of titania crystals in the spleen. Moreover,
the in vitro experiments proved that the particles were taken up by the human epithelial cells and
macrophages and activated the NLRP3 inflammasome. Additionally, after the assessment of titanium
levels in blood samples from human volunteers, they discovered increased titanium levels in samples
from patients with ulcerative colitis, compared with healthy donors and patients with inflammatory
bowel disease [68]. An important conclusion in this case is that the exposure to E171 is strongly
contraindicated in patients with pre-existing inflammatory conditions or an impaired intestinal barrier
function. A few recent experiments on a well-established cell line Caco-2 support former studies,
indicating detrimental effects on the intestinal epithelium layer. Taken together, the results point out
that exposure to TiO2 NPs has the following local effects:

• induces an inflammatory response [69–72];
• increases the release of mucins and the expression of some efflux pumps [69];
• increases ROS generation [70];
• induces morphological changes or decreases the number of intestinal microvilli, which in turn

decreases the surface area needed for optimal nutrients absorption [70,72,73];
• leads to their internalization and entrapment by Caco-2 monolayers [71].

Another interesting explanation for the local toxicity of TiO2 NPs has been recently suggested
by Yao et al., who remarked that it may be caused by an imbalance between the Th1 and Th2 cells,
resulting in the tight junction barrier damage [73].

As far as proper intestinal function is concerned, the importance of the gut microbiota cannot be
ignored. The human gut microbiome is a complex ecosystem and its imbalance may lead to pathogenesis
or progression of a large spectrum of diseases [74]. Recent studies, both in vitro and in vivo, provide an
insight into the influence of nano-TiO2 on the gut microbiota. Dudefoi et al. employed a defined human
gut bacterial community, microbial ecosystem therapeutic-1 (MET-1) to evaluate the impact of two
food-grade TiO2 additives. MET-1 contains 33 bacterial strains which can be cultured as an ecosystem.
The researchers did not observe a significant alteration of the human gut microbiota, however, they were
concerned about the cumulative effects of chronic ingestion of the nanoscale titania [75]. A limited
impact on microbial communities has also been observed by Agans et al. [76]. Alterations in intestinal
microbiota composition were noted by Radziwill-Bienkowska et al. [77]. They presented the data on the
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changes occurring in response to some factors such as intestinal disorders, diet variations and microbial
challenges. In turn, Pinget et al. performed an in vivo study in mice and confirmed that food grade
TiO2 had minimal influence on the gut microbiota composition. In addition, they found that it can still
significantly impair the gut homeostasis. The impact of TiO2 included colonic inflammation, increased
inflammatory response and altered release of bacterial metabolites [78]. Chen et al. also associated the
disorders of gut microbiota with an inflammatory response and suggested that the oxidative stress may
contribute to the underlying mechanism [79]. Overall, further investigation is needed to determine the
effects of chronic exposure to the food-grade TiO2, particularly in vulnerable subpopulations.

2.3. Dermal Exposure—TiO2 NPs as a Sunscreen Compound

Sunscreens are another type of commonly used personal care products with a relatively high
content of TiO2 NPs. Formulations with nanoscale TiO2 are useful in terms of light scattering and UV
absorption. Moreover, when applied on the skin, they look more transparent, which is a desirable
property for many consumers [13,80]. Although TiO2 NPs in sunscreens have already been studied for
nearly two decades [81], some questions and uncertainties remain still unresolved, and regulation of
the usage and safety of TiO2 NPs in these products is needed [82].

As mentioned before, smaller particles are more effective in terms of light scattering and absorption.
However, the small size also increases possible absorption through the skin. It has not yet been
determined which size of titania nanoparticles in sunscreen provides the best protection against
UV radiation. Because the ozone layer almost entirely absorbs the UV-C radiation, skin should be
protected in the UV-B (290–320 nm) and UV-A (320–400 nm) regions. More insight into this topic
was given by Popov et al., who tested TiO2 NPs of six different sizes for their ability to stop the
307–311 nm light [83]. The study performed on six healthy volunteers with the so-called tape-stripping
technique was applied keeping a proper timeline in order to assess the in-depth distribution of the
fine TiO2 particles. Scattering and absorption coefficients for a medium containing TiO2 particles of
different volume concentrations were calculated using Monte Carlo simulations. The Monte Carlo
method was also developed to simulate UV-B propagation within the horny layer containing the
embedded TiO2 particles. The results obtained in their study indicated that TiO2 NPs of 62 nm
diameter revealed the optimal protective properties. Interestingly, the diameter of 62 nm was neither
the smallest nor the largest one tested. Additionally, the researchers experimented on the concentration
of TiO2 in subsequent layers of the stratum corneum, which revealed that titania could be found even
15 µm deep [83].

To assure effective protection against UV radiation, it is essential to determine not only the size
of TiO2 particles, but also their shape. To date, several studies have conducted a thorough analysis
of TiO2 particles extracted from a sunscreen formulations [84–86]. Interesting results were recently
reported by Ilić et al., who evaluated the in vitro effect of TiO2 nanomaterials of three morphologies
on human keratinocytes (HaCaT). They discovered that nanowires and nanoplates were significantly
more effective in protecting human skin cells from UV-B induced damage. It can be concluded that
TiO2 NPs can be designed specifically in order to enhance the quality and efficacy of a sunscreen
product [87].

It is essential to thoroughly control the sunscreen formulations in order to verify the size of
the NPs, their size distribution, aggregation rate, and the concentration of the NPs. According to
the opinion of the Scientific Committee on Consumer Safety of the European Commission (SCCS),
TiO2 NPs used in sunscreens up to a concentration of 25% can be considered to not pose any risk of
adverse effects in humans after application on healthy, intact or sunburnt skin [88,89]. The parameters
of NPs ought to be thoroughly controlled to ensure complete safety of usage for every sunscreen
product. Although a few national and international institutions have proposed recommendations
for labeling sunscreen products and testing their effectiveness [89–93], there is still a lack of official
guidelines for a thorough characterization of TiO2 NPs in sunscreen formulations, which would set the
standards for the quality control methods. Recently, the U.S. Food and Drug Administration (FDA) has
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issued a rule in order to update the regulatory requirements and put into effect the final monograph
for over-the-counter sunscreen drug products. This rule applies to sunscreens marketed without
FDA-approved applications. The FDA proposes to mark two ingredients, TiO2 and ZnO, as ‘generally
recognized as safe and effective’ [94].

Recent literature highlights some modern techniques of the physicochemical characterization
of nanosized TiO2, which could be implemented in common industrial practice through official
guidelines [80,95,96]. Contado and Pagnoni presented flow field-flow fractionation (FlFFF) combined
with inductively coupled plasma-atomic emission spectrometer (ICP-AES) as a relatively simple,
low-cost, yet powerful tool for determining the TiO2 content and particle-mass size distribution
(PSD) in sunscreen lotions [96]. A recent study by Bocca et al. used ICP-MS (inductively coupled
plasma-mass spectrometry) and its modification SP ICP-MS (single particle inductively coupled
plasma-mass spectrometry) to determine and compare the concentration and particle size distribution
of TiO2 NPs in commercial sunscreens [80]. In that study, ICP-MS was used both as a direct technique,
SP ICP-MS, and as a detector combined with the asymmetric flow-field flow fractionation (AF4-FFF),
for preseparation, on-line coupled to the multi-angle light scattering (MALS). The results of that study
indicated that the concentration of TiO2 NPs in creamy applications did not exceed the SCCS limit
of 25%, and therefore, their usage can be considered safe [80]. Despite this, in 2001, Serpone et al.
cast doubt upon the biological safety of the TiO2-containing sunscreens [81]. In the presence of fine TiO2

particles, they observed their harmful effects on DNA after illuminating supercoiled plasmids with
simulated sunlight. The researchers also tried to fabricate photocatalytically inactive TiO2 specimens
by modifying the particle surface. It should also be noted that the deleterious effects of TiO2 on DNA
were possible due to the penetration of these NPs through the cell membranes. This issue remains
a matter of argument. Thus far, several studies have reported that the TiO2 NPs do not cross the
stratum corneum (SC), the outermost epidermal layer, and that the number of the particles passing
through the SC is insignificant. SC is generally an effective barrier against the transfer of chemicals
through the skin. It consists of dead cells incapable of active transport of substances. It has been
already shown that after a two-hour exposure to sunscreens containing TiO2 and ZnO NPs, their levels
in human viable epidermal layers were too low to be tested [97]. Thus, these results confirmed that the
penetration through the SC is unlikely. Another study, in which sunscreen formulations containing
5% TiO2 (coated and noncoated NPs) were applied topically to Yucatan minipigs, also reported no
significant penetration through normal, unharmed skin [98].

In contrast to the findings mentioned above, some researchers claim that nanosized TiO2 can
penetrate the skin and induce tissue damages, even in major organs. An in vitro and in vivo study
by Wu et al. demonstrated that TiO2 NPs do not pass through the SC of isolated porcine skin after
24 h exposure, but after 30 days of topical application, the NPs were found in deeper layers of the
epidermis [99]. Moreover, subchronic (60 days) dermal exposure in hairless mice proved that TiO2 NPs
could not only penetrate through the SC but also reach different tissues and induce pathological lesions,
among which the most severe ones were displayed in the skin and liver. The authors also detected an
elevated malondialdehyde level and a decreased superoxide dismutase level, which proved that these
NPs induce oxidative stress processes. In conclusion, they also stated that TiO2 NPs topically applied
on skin for a prolonged time can induce skin aging [99]. A very recent experiment by Pelclova et al.
confirmed that TiO2 NPs could penetrate skin [100]. Detectable levels of nano-TiO2 were found in
blood and urine of the human volunteers up to one week after using the sunscreen formulation.
Furthermore, it was found that although the TiO2-based sunscreens prevented sunburns, they did not
decrease the systemic oxidative stress, as evaluated by the tested biomarkers.

The results of various dermal exposure studies, both confirming and disproving the penetration
of TiO2 NPs through the SC, are summed up in Table 1.
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Table 1. Examples of in vitro and in vivo studies to assess dermal exposure to TiO2 NPs in animals and humans.

References
Year

Properties of the Formulation (Type of
Emulsion, Size, Structure of TiO2 NPs) Type of Study Penetration through the SC?

Observations

Pelclova et al. [100]
2019

43 nm, oil-free formulation, crystalline structure
not specified in vivo, human participants

Yes
Absorption of TiO2 NPs through human

skin—detectable levels in blood and urine

Zhang et al. [101]
2019

15–40 nm, for in vivo study nano-TiO2 solution
was dripped on the skin of the mice

in vitro—HUVEC,
in vivo—Balb/c mice

not indicated
in vitro—increase in ROS and sICAM-1 levels,

a decrease in cell viability;
in vivo—increase in ROS-dependent markers

concentration in mouse serum
Protective effects of vitamin E demonstrated

Crosera et al. [102]
2015

38 nm, suspension of commercial TiO2
nanopowder dispersed in synthetic sweat

in vitro, human abdominal skin (intact and
damaged by needle-abrasion technique)

No
No penetration of TiO2 NPs in either intact or

damaged skin

Xie et al. [103]
2015

20 nm, rod-shaped rutile-type TiO2 NPs
radiolabeled solution (1 mg/mL)

in vitro, rat skin: intact and slightly
damaged with sodium lauryl sulphate

(SLS) solution

No
No penetration of TiO2 NPs in either intact or

damaged skin, both in vitro and in vivo

Miquel-Jeanjean et al. [104]
2012

20–30 nm × 50–150 nm, needle-shaped particles,
water-in-oil commercial emulsion

in vitro, four specimens of domestic pig ear
skin: intact, damaged (stripped), irradiated,

damaged and irradiated

No
TiO2 NPs remained in the uppermost layers of

the SC, even if the skin barrier function was
impaired

Monteiro-Riviere et al. [105]
2011

10 × 50 nm, mean agglomerates 200 nm; o/w and
w/o commercial formulations; rutile

in vitro—skin in flow-through diffusion cells;
in vivo—weanling white Yorkshire pig skin

Minimal penetration of TiO2 NPs into the upper
epidermal layers:

in vitro—epidermal penetration, minimal
transdermal absorption;

in vivo—Ti within the epidermis and superficial
dermis, no transdermal absorption detected;

UV-B sunburned skin slightly enhanced the SC
penetration

Sadrieh et al. [98]
2010

Sunscreen formulation with:
uncoated NPs (anatase and rutile): 30–50 nm,
coated NPs (rutile): 20–30 nm in diameter and

50–150 in length,
submicron particles (rutile): 300–500 nm

in vivo, Yucatan minipig skin
No

No structural abnormalities in the skin cells
observed

Filipe et al. [97]
2009

Sunscreen (hydrophobic) formulation with:
TiO2: not indicated

TiO2 and ZnO: not indicated
Coated rutile TiO2 material: 20 nm

in vivo, human participants
No

Levels of TiO2 NPs too low for detection
beneath the SC, no toxic effects
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Table 1. Cont.

References
Year

Properties of the Formulation (Type of
Emulsion, Size, Structure of TiO2 NPs) Type of Study Penetration through the SC?

Observations

Senzui et al. [106]
2009

Rutile TiO2 NPs, noncoated and coated; 35, 10 ×
100, and 250 nm; 10% cyclopentasiloxane

suspension

in vitro, Yucatan micropig skin: intact,
stripped and hairless

No
No penetration through viable skin, however,

TiO2 particles penetrated relatively deeply into
the skin, possibly via empty hair follicle

Wu et al. [99]
2009

TiO2 powders suspensions:
anatase: 4 and 10 nm,
rutile: 25, 60, 90 nm,

anatase/rutile: 21 nm (P25)

in vitro—porcine skin,
in vivo—hairless mice

Yes
Toxic effects after subchronic exposure

Gontier et al. [107]
2008

Formulations:
carbomergel with Degussa P25 (mixture of rutile

and anatase, NPs of average size 21 nm,
uncoated, approximately spherical platelets),

hydrophobic basisgel with Eusolex T-200 (rutile,
20 × 100 nm, coated with Al2O3 and SiO2,

lanceolate shape),
polyacrylategel with Eusolex T-2000,

a commercial sunscreen

Samples of:
porcine skin;

human skin (dorsal region and buttocks);
human skin grafted to SCID-mice

No
Porcine skin: TiO2 NPs found only on the

surface of the outermost SC layer;
human skin: penetration of NPs only into 10 µm

layer of the SC;
human skin grafted to SCID-mice: TiO2 NPs

attached to the corneocytes

Mavon et al. [108]
2007

Formulation: w/o emulsion containing 3% TiO2
NPs with a mean diameter of 20 nm

in vitro—abdominal/face skin from
human donors,

in vivo—upper arms skin of human donors

No
No TiO2 NPs detected in the follicle, viable

epidermis or dermis. TiO2 NPs accumulation in
the uppermost layers of the SC (also in

opened infundibulum)

Pinheiro et al. [109]
2007 Commercial sunscreen formulation samples of human skin: healthy and

psoriatic, from sacral-lumbal region

No
In normal skin, TiO2 NPs were retained at the
outermost layers of SC, in psoriatic skin, the

penetration was slightly facilitated, but in both
types of skin, the NPs did not reach living

cell layers

Abbreviations: sICAM-1—soluble intercellular adhesion molecule-1; HUVEC—human umbilical vein endothelial cells; ROS—reactive oxygen species; NPs—nanoparticles;
SC—stratum corneum.
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A considerable amount of studies have also examined the influence of TiO2 NPs on human
cell lines in in vitro experiments. For the human keratinocyte cell line HaCaT (human adult low
calcium high-temperature keratinocytes), following exposure to TiO2 NPs, decreased cell viability and
induction of the cell cycle arrest have been demonstrated [110]. Rutile TiO2 NPs with <100 nm particle
size were also tested on a human metastatic melanoma cell line, where a reduction in cell metabolic
activity and cytotoxic response were observed. Especially interesting was a study of the influence
of nano-TiO2 on the expression of mRNA of the ABCB5 transmembrane protein. The researchers
presented that the studied nanomaterial might influence cell invasiveness and aggressiveness as
the protein ABCB5 is closely linked to tumorigenicity, progression, and disease recurrence of some
human malignancies [111].

The debate continues also on the potential penetration of titania NPs through damaged skin.
Sunscreens are often applied on skin which is already sunburnt, dried out by UV irradiation, affected
by beauty procedures (e.g., hair removal) or irritated by environmental factors (wind, salt and sand).
In general, it should be noted that any changes in the composition of lipids caused by skin damages
may impair the barrier function of the skin and therefore facilitate the penetration of NPs [4,112].
To date, the results of most comparative studies, both for commercial sunscreen formulations and
nano-TiO2 suspensions, indicate that slight skin damages do not enhance its permeability [102–106].
However, it has to be emphasized that sunscreens definitely should not be applied on mechanically
injured skin or an open wound. Besides, many authors have remarked that sunscreens are often used
in sprayable forms, and this way of application may cause potential health risks in another manner—by
inhaling TiO2 NPs. A variety of sunscreens is available in such a form. This issue concerns emulsions
or oil sprays, foams, as well as mists. Sprayable forms have become increasingly common among
consumers because of their ease of use. Inhalation exposure to TiO2 has been evaluated in several
epidemiological analyses [113–118]. In these studies, as well as in case reports on human exposure to
inhaled TiO2 [119,120], it has conclusively been shown that there is no positive correlation between
the occurrence of carcinogenic effects and the occupational exposure to titania. However, it has to be
emphasized that most of these studies provided no indication on the size of TiO2 particles.

Taking this into consideration, the International Agency for Research on Cancer (IARC) stated that
the exposure to titanium dioxide is not directly associated with an increased cancer risk. Nevertheless,
after assessment of the data derived from animal model studies, the IARC decided that there exists
sufficient evidence to claim carcinogenicity of titanium dioxide to animals [1]. However, these data
must be interpreted with caution, as various methodological approaches were adopted. Experiments
concerned both the micro- and the nano-form of titanium dioxide. What is more, the results cannot be
easily extrapolated to humans, because concentrations employed in some cases exceeded maximum
human exposure. Overall, the IARC includes TiO2 in the group of substances which are possibly
carcinogenic to humans (Group 2B). The ongoing discussion about the potential deposition and toxic
effects of the nanoparticles caused by their inhalation needs to be resolved. Currently, the IARC advises
against using sprayable sunscreen products. It should also be remarked that children are particularly
susceptible to an unintended inhalation of TiO2 NPs since many sunscreen formulations for children
come in the form of a spray or a foam, as these methods render the formulation easier to dispense
and spread.

Recently, the attention of researchers studying TiO2 toxicity in sunscreens has turned to the surface
and the entourage of TiO2 nanoparticles. For example, Y2O3-decorated TiO2 nanoparticles were
found to display enhanced UV attenuation and reduced photoactivity and consequently, cytotoxicity,
compared with a commercial TiO2 sample. The authors suggested the inclusion of these materials into
sunscreen products [121]. In another study, coating of TiO2 NPs with dihydroxyphenyl benzimidazole
carboxylic acid (Oxisol) not only led to photolytic activity reduction, but also boosted its antioxidant
effects and stabilization of the formulation [122]. By modifying the surface of TiO2 NPs, it is also possible
to improve the appearance of a sunscreen formulation, as formulations containing TiO2 NPs modified
with a complexing compound, p-toluene sulfonic acid, were found to be more transparent [123].
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The aforementioned issue of the protein corona should also be considered regarding the safety
of nano-TiO2 as a sunscreen formulation compound. Serum proteins around the surface of the NP
may undergo oxidation, even upon low generation of ROS, which provokes an oxidative stress
response [124]. Future development of sunscreen ingredients should therefore comprise a proper
design of their chemical surface. Furthermore, Sanches et al. stated that different contents of proteins,
as well as other molecules (such as calcium or phosphorus) present in the biological medium, conceal
TiO2 NPs and may influence their uptake and distribution [125]. An important remark is that a
thorough analysis of TiO2 nanomaterial for sunscreen products should be performed also with regard
to the nano–bio interactions. Additionally, Filipe et al. suggest that ROS or lipid peroxidation products
appearing on the surface of the skin are prone to diffuse underneath the SC and subsequently lead
to oxidative damage [97]. Moreover, ROS generated by nano-TiO2 may affect the transformation of
other commonly used compounds of sunscreen formulations, including parabens, and increase their
bioavailability and toxicity [126]. Several studies postulated that extreme stability and very poor
aqueous solubility of TiO2 [127] could render its insolubility in sunscreens, making it biologically
inert [13]. Nevertheless, some sunscreen formulations contain hydroxyacids (for example, citric or
salicylic acid) which have the ability to chelate TiIV, leading to its dissolution [13].

Regarding dermal exposure of TiO2 NPs on human skin, it should be underlined that cream
formulations containing these nanoparticles also reveal an impact on human cutaneous bacteria strains.
Interestingly, this influence highly depends on the surface properties of NPs, mostly changes in polarity
and charge, but also on the timescale of emulsions aging [128].

3. ’Green’ TiO2 NPs—Safer Perspective for the Future?

Numerous studies have already demonstrated that various metallic and metallic oxide NPs may
be fabricated in compliance with green chemistry assumptions. ‘Green synthesis’ is often preferred
over traditional methods for its many advantages, such as effectiveness, eco-friendliness, ease of
characterization, fewer chances of failure, fast performance, and low cost [129]. It has been suggested
that the materials used to fabricate the NPs greatly influence their morphology and physicochemical
properties, which may have an impact on their further utilization [129]. ‘Green synthesized’ NPs,
often called ‘biogenic NPs’ are generally considered safe, and in some cases, they display better
properties to those synthesized with ‘traditional’ methods [130–132]. Currently, several methods have
been developed for the synthesis of green NPs. Some of those technologies include the use of vitamins,
like vitamin B2 or ascorbic acid, as well as enzymes from various plant extracts. They are in accordance
with bio-based methods, which may involve the use of plants, bacteria, fungi or algae [129].

A considerable amount of studies has already described the green synthesis of TiO2 NPs and their
characterization. Different approaches towards fabrication techniques of biogenic TiO2 NPs have been
demonstrated and summed up in recent reviews and are beyond the scope of this paper [133,134].
However, compared with the amount of publications on various synthesis methods for ‘green’ TiO2

NPs, a relatively small body of literature touches upon their properties and compares their effectiveness
with chemically derived TiO2 NPs [135–137]. For instance, there were published studies pointing out
their antimicrobial activity. TiO2 NPs prepared with the use of Hibiscus rosa sinensis flower extract
displayed not only significant activity against pathogenic bacteria but also acted more effectively
than those synthesized by chemical synthesis [134]. In another study, ‘green’ TiO2 NPs, obtained
by rapid synthesis using Moringa oleifera aqueous leaf extract, were found to exhibit significant
wound healing activity in rats when compared with standard antibiotic drug for treatment of local
infections [137]. A different approach was undertaken by Yu et al., who used lignosulfonate (LS),
a natural macromolecular sun-blocker, to modify the surface of TiO2 NPs and therefore enhance the
UV-blocking efficiency of the nanoparticles. Sunscreens containing TiO2@LS nanocomposites exhibited
30–60% higher SPF values than creams with the same dosage of nanograde TiO2 [138].
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Taken together, these findings recommend the employment of ‘green’ TiO2 NPs for dermal
applications. Continued efforts are needed to implement the use of safe and eco-friendly TiO2 NPs
into sun-blocking formulations.

4. Conclusions and Perspectives

This paper has raised important questions on the current state of knowledge on the toxicity
of titanium dioxide nanoparticles—a chemical compound commonly used in various everyday
applications. In general, current findings seem to be inconsistent and highlight the necessity of
establishing safety recommendations for TiO2 in its nanoform, regarding its applications as a food
additive and cosmetic ingredient (Table 2).

Table 2. Conclusions on the review of the literature regarding the safety of titanium(IV)
oxide nanoparticles.

Type of Usage/Application of
TiO2 NPs Conclusions

The absorption of TiO2 from the
digestive tract.

Generally considered as extremely
low.

Safety of the long-term dietary
exposure to TiO2 NPs.

Still uncertain: potential toxic
effects may concern the absorption,
distribution, and accumulation of

TiO2 NPs.
Potential risks caused by TiO2

NPs.
Genotoxicity, inflammatory

response, carcinogenesis.

Food additive E171
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sunscreen ingredient. Despite the EFSA statement that the absorption of TiO2 after oral administration
is extremely low [43], the usage of this ingredient, especially in nanoform, raises questions concerning
its complete safety. This is because nanoparticles are generally more soluble and have a better ability
to pass through the intestinal wall than larger particles, which in turn may lead to unwanted, harmful
effects. It is still not sure if the food-grade TiO2 is involved in inducing toxic (e.g., proinflammatory or
carcinogenic) processes in humans. Therefore, it is essential to conduct more studies on the toxicity of
TiO2 NPs, taking into consideration the newest data. It is suggested that the further usage of E171
should be reconsidered, as it offers neither nutritional value nor extended shelf life. If the manufacturers
persist in using E171, maximum daily intake levels ought to lead.

Referring to the application of TiO2 NPs as a sunscreen component, probably the most significant
uncertainty concerns the penetration of these nanoparticles through the outermost layer of the skin,
the stratum corneum, and their potential further passage to the bloodstream, which may result in
their appearance in biological fluids. A few in vivo studies demonstrate the induction of oxidative
stress processes and pathological lesions in different organs, such as the liver. Although the European
Commission and FDA provided recommendations for testing and labeling of sunscreens, there is still a
lack of official, standardized, binding guidelines for the manufacturers.

We suggest that in the penetration studies of TiO2 NPs in UV-filters, scientists should always
take into consideration the type of formulation (cream/lotion/oil and type of the emulsion), way of
application (cream/spray), the size of NPs and their surface properties. Further studies are necessary
to determine whether TiO2 NPs passage through the SC and underlying parts of the skin leads to their
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presence in the bloodstream and the distribution to various organs (Table 3). In recent years, there has
been an increasing amount of literature published on the surface modifications of various NPs. It seems
that changing surface properties might be the key to obtain TiO2 NPs which are biologically inert but
effective in terms of UV-blocking. The proper coating might decrease the penetration rate from the
skin, as well as the absorption rate from the digestive tract. Noteworthy, developing green synthesis
methods may also lead to the improvement of TiO2 NPs properties, as well as their stability.

Table 3. Most probable perspectives in future studies regarding the safety of titanium(IV) oxide
nanoparticles in everyday products.

Type of Usage/Application of TiO2 NPs Perspectives
Conducting a thorough safety assessment of E171

(especially its nanofraction).
Developing surface modification methods (e.g., to

decrease the absorption rate) as well as green
synthesis technologies.

Food additive E171
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