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Abstract: In this paper, fabrication of a new material is reported, the so-called Aero-Ga2O3 or
Aerogallox, which represents an ultra-porous and ultra-lightweight three-dimensional architecture
made from interconnected microtubes of gallium oxide with nanometer thin walls. The material is
fabricated using epitaxial growth of an ultrathin layer of gallium nitride on zinc oxide microtetrapods
followed by decomposition of sacrificial ZnO and oxidation of GaN which according to the results of
X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS) characterizations, is transformed
gradually in β-Ga2O3 with almost stoichiometric composition. The investigations show that the
developed ultra-porous Aerogallox exhibits extremely low reflectivity and high transmissivity in
an ultrabroadband electromagnetic spectrum ranging from X-band (8–12 GHz) to several terahertz
which opens possibilities for quite new applications of gallium oxide, previously not anticipated.

Keywords: aero-Ga2O3; ultra-porous nanomaterial; extremely low reflectivity; electromagnetically
transparent nanomaterial; X-band and terahertz frequencies

1. Introduction

The materials transparent for a certain electromagnetic bandwidth are key components for many
industries such as aeronautic, space, telecommunications, etc. [1,2]. They are called radomes and are
configured in the form of various enclosures depending on the applications; their role is to protect
antennas from various agents such as rain, snow, dust, heat, etc. The radomes can be seen, for example,
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in any airport or on top of high buildings. The new wireless communication systems imply that very
high frequencies will be used such as 0.1 THz for 5 G and 10 THz for 6 G [3]. There are materials which
are transparent in the THz region, such as high resistivity (HR) semiconductors (silicon, boron nitride,
gallium arsenide, germanium) or dielectrics (quartz, sapphire, fused silica, diamonds). However, for
Internet of Things (IoTs) applications [4], which are the backbone of 5G and 6G communications, very
small and lightweight enclosures are required to protect antennas, since the dimensions of antennas
are reduced to tens of microns and even lower, comparable to the dimensions of a human hair. Thus,
the existing materials for radomes at airports, telecommunications and in many other applications
could not be directly reused for tiny IoT due to the requirements of dimensions and weight and there
is a real need to find new transparent materials for the applications involved.

The wide bandgap β-Ga2O3 semiconductor is studied intensively for power electronics [5].
Please note that along with β-Ga2O3, there are other Ga2O3 polymorphs, all with a small index of
refraction (less than 2) [6], indicating that gallium oxide could be a promising candidate for use in
transparent electronics. However, little is known about RF properties of Ga2O3 since only a few
results on Ga2O3 transistors are reported (see [7] and the references therein). Taking into account
that three-dimensional architectures consisting of networks of low-dimensional structures prove
to be among the multifunctional materials most promising for new applications in electronics and
biomedicine [8,9], we developed an ultra-porous architecture made from interconnected microtubes
of β-Ga2O3 with nanometer thin walls, carried out its structural characterization and experimentally
demonstrated that the new ultra-lightweight nanomaterial, called aero-Ga2O3 or Aerogallox, is highly
transparent and exhibits extremely low reflectivity in the X-band and THz region, up to 3 THz, thus
disclosing a novel application of Ga2O3 previously not anticipated.

2. Materials and Methods

The technological route for the fabrication of aero-Ga2O3 is as follows. Initially the aero-GaN was
obtained by growing an ultra-thin layer of GaN on sacrificial ZnO templates [10]. The ZnO templates
represented networks of interpenetrated ZnO microtetrapods obtained using the flame transport
synthesis approach, as previously described in ref. [11]. GaN was grown in a hydride vapor phase
epitaxy (HVPE) horizontal reactor containing distinct source and reaction zones. Metallic gallium as
well as ammonia (NH3, 99.99%, EG No. 231-653.3), hydrogen chloride (HCl, 99.9995%) and hydrogen
(H2, 99.999%) acquired from Geschaftsbereich Linde Gas, Germany, were used as source materials and
carrier gases during the growth process. In the source zone, at high temperature (T = 850 ◦C) the GaCl
is formed as a result of chemical reactions between gaseous HCl and liquid Ga. The gaseous GaCl and
NH3 reacted with each other in the react zone, where initially the temperature was kept at 600 ◦C for
10 min to initiate nucleation of GaN on the surface of ZnO microtetrapods, and then increased up to
Tg = 850 ◦C for 10 min to produce GaN layer. In the process of GaN growth, the HCl, NH3 and H2 flow
rates were equal to 15, 600 and 3600 smL/min, respectively. In the process of HVPE growth of GaN, the
ZnO sacrificial template is being decomposed due to corrosive atmosphere at high temperature leading
to the formation of microtubular structures representing aero-GaN [10]. Previously, we demonstrated
the high crystalline quality of the resulting GaN microtubes as well as the existence of ZnO traces (at
the level of about 2%) on the inner surface of GaN microtube walls [10,12]. At the final step of the
technological route, the aero-GaN is subjected to annealing in air at 950 ◦C for 60 min and, as a result,
is transformed into aero-Ga2O3 or Aerogallox.

The aero-GaN and aero-Ga2O3 thin films crystal structure and phases were investigated using a
Bruker AXS D8 Advance X-ray diffractometer (XRD, Bruker Italia S.r.l., Milano, Italy) in a standard
θ–2θ Bragg–Brentano configuration with a monochromatic Cu Kα1 (λ = 0.15406 Å) radiation. A
40 kV beam voltage and 40 mA beam current were used. For acquisition a linear position-sensitive
semiconductor detector (LYNXEYE, Bruker Italia S.r.l., Milan, Italia) in 0D-mode was used, beam
optics were Göbel mirror, 6 mm slit, Soller 2.5◦; detector optics were 6 mm slit, Soller 2.5◦. Diffraction



Nanomaterials 2020, 10, 1047 3 of 10

pattern data were collected between 20◦ and 50◦ with step lengths of 0.025◦, the sample was measured
in powder form.

The chemical composition at surfaces was studied by means of X-ray Photoemission Spectroscopy,
XPS (AXIS ULTRA, DLD Kratos Analytical, Manchester, UK) equipped with a monochromatic Al
Kα source (hν = 1486.6 eV) operating at 150 W (h—Planck’s constant, ν—frequency). Spectra were
recorded from a 100 × 100 µm2 analysis area and at 160 eV (survey) pass energy, whereas core level
spectra were recorded using pass energy of 20 eV. Operating pressure was 6 × 10−7 Pa. Prior to the
measurement, the surfaces were sputtered using an Ar+ beam operated at 2 keV and 0.84 µA for
2 min. Surface charging was compensated using low energy (~5 eV) electrons and adjusted using the
charge balance plate on the instrument. Three different spots were analyzed for each sample. All the
spectra were processed with CasaXPS (ver. 2.3.20). Spectra were calibrated setting hydrocarbon C1s at
285.0 eV. The surface composition was evaluated from the survey spectra, after a Tougaard U3-type
background subtraction, using relative sensitivity factors provided by the manufacturer. Peak fitting
was performed with no preliminary smoothing. Symmetric Gaussian–Lorentzian (70% Gaussian and
30% Lorentzian) product functions were used to approximate the line shapes of the fitting components.

For the microwaves and terahertz characterizations of the material, bulk samples were prepared
in the form of rectangular pellets (20 mm × 10 mm × 2 mm). The freestanding samples were exposed
to electromagnetic radiation. The microwave characterization of the aero-Ga2O3 pellets was carried
out by means of a VNA (Vector Network Analyzer) connected to a WR90 waveguide-based set-up
suitable for measurements in the X-band (i.e., 8.2–12.4 GHz) [13]. A schematics of the waveguide is
presented in Figure 1, where a = 22.86 mm and b = 10.16 mm. Since the dimensions of the cavity are
a bit larger than the aero-Ga2O3 pellet, we made use of a supporting flange to fix the sample in the
cavity, as to avoid electromagnetic radiation due to imperfect coupling between the two waveguides,
hence affecting the reliability of the performed measurements.
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Figure 1. Microwave experimental set-up for X-band characterization of the aero-Ga2O3.

For terahertz measurements the samples were fixed on metallic holders covering 6 mm aperture,
the radiation passing through the sample in free space. Samples with different densities from 70 to 110
mg/cm3 of aero-Ga2O3 were investigated. Room-temperature terahertz spectra of complex dielectric
permittivity ε*(ν) = ε’(ν) + iε”(ν) were measured in the range ν = 10–100 cm–1 in a quasi-optical
arrangement (in an open space with no waveguides used) with the help of commercial time-domain
spectrometer TeraView TPS 3000 (TeraView, Cambridge, UK). The spectra of the real and imaginary
parts of dielectric permittivity are determined in the transmission geometry via measurements of
the complex transmission coefficient (amplitude and phase) of the plane-parallel samples; standard
expressions for electrodynamics of a plane-parallel layer are used [14]. In addition, the spectra of
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transmission coefficients of the same samples were measured at frequencies up to 7000 cm−1 using a
standard Fourier-transform spectrometer Bruker Vertex 80v.

3. Results and Discussion

3.1. Structural Characterization of Aero-Ga2O3

Figure 2 depicts scanning electron microscope (SEM) images of interpenetrated networks of ZnO
microtetrapods (a), aero-GaN (b) and the obtained aero-Ga2O3 (c). The inset pictures are the respective
photos of the pellets of 20 mm × 10 mm × 2 mm (L ×W × H), where one can easily distinguish the
change in color of the material after each technological step (white, yellow, white).
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Figure 2. SEM images of (a) initial ZnO template, (b) intermediate aero-GaN, and (c) resulted
aero-Ga2O3 nanomaterial. The inset pictures represent the photographs of the pellet samples of ZnO,
GaN, and Ga2O3 respectively.

Figure 3 illustrates the XRD spectra of aero-GaN (Figure 3a) used for the preparation of aero-Ga2O3,
the mixture phase of GaN and Ga2O3 (Figure 3b) that was obtained by thermal treatment of aero-GaN
at T = 800 ◦C in air for 1 h, and the completely transformed aero-Ga2O3 (Figure 3c) obtained after 1 h of
treatment at 950◦C of aero-GaN samples. The XRD reflections at 32.25◦, 36.8◦ and 48.12◦ were assigned
to wurtzite GaN planes (010), (011) and (012), respectively, while the reflections at 30.3◦, 31.7◦, 33.5◦,
35.3◦, 38.4◦, 43.2◦, 45.9◦ and 48.9◦ were assigned to beta phase of monoclinic Ga2O3 planes (−110), (002),
(−1−11), (1−11), (202), (600), (1−12) and (−510), respectively. Comparing the different patterns, the
qualitative trend of GaN oxidative phase change occurring at different stages of the thermal synthesis
processes can be appreciated. While both nitride and oxide phases co-exist after the thermal step at
T = 800◦C in air for 1 h (both reflection peaks sets for wurtzite GaN and monoclinic Ga2O3 are found in
the diffraction pattern), only reflections from the oxide remain after annealing at T = 950◦C. Formation
of monoclinic Ga2O3 in thin structures was already observed for annealing temperatures as low as
750 ◦C [15].

Figure 4 shows the principal results of β-Ga2O3 surface chemical analysis by means of XPS. Survey
spectra (Figure 4a) show that the main elements left in the sample after annealing are Ga and O with
low level of C and Zn present as impurities. Observed gallium main emission lines are Ga 2p (shown
in Figure 4b), Ga 3p and Ga 3d (not shown) and several Auger lines in the 400–600 eV regions. All
Ga doublets show energy shifts with respect to metallic gallium binding energy (BE), consistent with
literature reported values for β-Ga2O3 [16,17]. Data show that O 1s peak (Figure 4c) need to be resolved
using two components. The main component BE at 530.98 eV can be attributed to Ga-O bonding in
the oxide while the higher BE contribution at 533.17 eV can be assigned to O-vacancies sites and/or
Ga suboxides [18–20]. This peak presence is related to the Ar ions sputtering process used to clean
the sample surface in order to remove adventitious carbon contamination. Presence of reduced Ga
can be seen also in the low energy satellite peak (at BE 19.16 eV) of Ga 3d (not shown). However,
sputter cleaning of the sample was necessary for reliable estimation of atomic concentrations; before
Ar+ bombardment C atoms surface concentration was estimated to be around 11% while after cleaning
dropped down to 2%. Measured Ga/O ratio is thus 0.62 with an estimated relative error of 6.21%
(stoichiometric value 0.67). The presence of Zn 2p doublet (Figure 4d) suggests some residual (<1 at. %)
of metallic impurities left from the sacrificial ZnO matrix used in the fabrication process. It is to
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be noted that the chemical composition study using energy dispersive X-ray analysis disclosed the
stoichiometric composition of the Ga2O3 nanoarchitecture, at the same time traces of Zinc at the level
of about 1.5 at. % were shown.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 11 
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Figure 4. (a) XPS survey spectra of β-Ga2O3 powder with attribution of the principal emission lines,
table in the inset shows the derived atomic abundancies. (b–d) High resolution XSP spectra with
resolved peak components and normalized residuals, of the Ga 2p (b), O 1s (c) and Zn 2p (d) regions.
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3.2. Characterization of Aero-Ga2O3 at Microwaves.

The S-parameters at the two ports of the VNA were measured to provide the reflection (S11/S22) and
transmission (S12/S21) coefficients at/between the two ports, respectively. The measured S-parameters
of the Aerogallox sample (Figure 2c) with the density of 110 mg/cm3 are depicted in Figure 5.
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Figure 5. Microwave measurements in X-band for the two cases: (a) without the aero-Ga2O3 pellet and
(b) with the aero-Ga2O3 pellet, in terms of reflection (left vertical axis, solid black and blue curves) and
transmission (right vertical axis, solid red and pink curves).

In Figure 5a,b we show only S11 and S21, since S22 is identical with S11, and S12 with S21 thanks to
reciprocity and symmetry of the scattering matrix (typical for passive components). One can notice
that the reflection coefficient is better than −10 dB all over the band of interest, whereas the insertion
loss has a maximum value better than −0.12 dB in both cases without and with aero-Ga2O3. In other
words, the presence of the aero-Ga2O3 inside the cavity between the two X-band waveguides does
not affect at all the transmission of the microwave signal, which means the aero-Ga2O3 is completely
(within our accuracy) electromagnetically transparent in the X-band.

3.3. Characterization of Aero-Ga2O3 in the Terahertz Region

Two samples of Aerogallox with different densities were studied—the low density equals to 70
mg/cm3 and the high density was 110 mg/cm3. Comparative analyses with aero-GaN samples with
the density of 15 mg/cm3 were performed. Broad-band terahertz-infrared transmissivity spectra for
two samples with low and high densities are shown in Figure 6a. As expected, more dense samples
have lower transmissivity. A decrease in the transmission coefficient for frequencies growing up to
200 cm−1 is caused by intensive absorption between 200 and 800 cm−1 (see inset in Figure 6a). Our
attempts to extract information about absorption mechanisms in this range by measuring the spectra
of reflection coefficient failed due to very low intensity reflected by the samples, i.e., extremely small
value of reflectivity, as discussed below. Below 200 cm−1, there are two narrow absorption resonances
located at ~155 and ~176 cm−1 whose parameters (frequency position and intensity) do not depend
noticeably on the sample density. A few more resonances are observed above 800 cm−1, most intensive
at ~3500 cm−1. Origin of observed narrow absorptions seems to be related to the presence of impurities
such as hydrogen [21].
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Figure 6. Terahertz spectral characteristics of aero-Ga2O3 samples with two different densities of
70 mg/cm3 and 110 mg/cm3, and aero-GaN sample with the density of 15 mg/cm3 (data from [22]):
transmission coefficient Tr (a), real ε′ (b) and imaginary ε” (c) parts of dielectric permittivity. Open dots
on panels (b) and (c) present THz data for permittivity. Inset in panel (a): spectrum of transmission
coefficient measured at frequencies up to 7000 cm−1. Inset in panel (b): spectra of reflection coefficient
calculated basing on measured spectra of real and imaginary parts of dielectric permittivity using
standard Fresnel expressions [14].

In Figure 6b,c we present the spectra of real and imaginary permittivity of the two samples,
together with the reflection coefficient. It is seen that THz characteristics of our aero-Ga2O3 material
drastically differ from those of parent bulk Ga2O3 crystal as well as from any other bulk semiconductor.
For example, typical semiconductors Ge, GaAs and Si have refractive indexes at 300 GHz n = 3.99,
3.59 and 3.43, respectively [23], while the refractive index of aero-Ga2O3, n ≈ 1.07 (sample with
density 70 mg/cm3, Figure 7), only slightly exceeds that of vacuum (n = 1). From Figure 6b,c one can
see that there is pronounced difference between terahertz response of aero-Ga2O3 and previously
studied aero-GaN [22]. While in aero-Ga2O3 real permittivity ε′ is dispersionless and imaginary
permittivity ε” is small and approaches zero with frequency decrease, both indicating absence of
any absorption process, aero-GaN demonstrates strong increase of ε′ and ε” toward low frequencies.
The origin of corresponding pronounced absorption is associated with the polarizability of the 3D
architecture of mutually interpenetrated GaN aerotetrapods, with the ZnO-GaN interfaces, and finally
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with dynamics of relatively big complexes of tetrapods. No such contribution exists in the present
Aerogallox nanomaterial. Aero-Ga2O3 is characterized by very small imaginary permittivity ε” and
dielectric losses tanδ = ε”/ε′ (Figure 7a) that are responsible for radiation absorption, and by real part of
permittivity ε′ and real part n of complex refractive index n* = n + ik (Figure 7b) close to 1. Both factors
lead to a very low reflection coefficient (inset in Figure 6b) R =

[
(n− 1)2 + k2

]
/
[
(n + 1)2 + k2

]
≈[(√

ε′ − 1
)2
+ k2

]
/
[(√

ε+ 1
)2
+ k2

]
that is as small as R ≈ 0.1% and can be made close to R ≈ 0.01%.

We can compare these extremely low reflectivity values with those of typical bulk semiconductors,
mentioned above, Ge (n = 3.99), GaAs (n = 3.59) or silicon (n = 3.43); corresponding reflection coefficients
fall in the range 30–36%. Along with high value of transmissivity, this low reflectivity of the material
may be beneficial for future applications of Ga2O3.
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n + ik and dielectric loss tangent tanδ (panel a, triangles).

4. Conclusions

We developed a highly porous ultra-lightweight three-dimensional nanoarchitecture consisting of
interconnected microtubes of Ga2O3 with nanometer thick walls, and demonstrated that the gallium
oxide skeleton is of crystalline β-phase with almost stoichiometric composition. The new nanomaterial
is shown to exhibit ultra-low reflectivity and high transparency in an extremely wide range of the
electromagnetic spectrum, covering the X-band and THz region, up to 3 THz. The disclosed novel
properties of aero-Ga2O3 open possibilities, in premiere, for the use of gallium oxide in IoT applications.
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