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Abstract: Present work reports the enhancement in photocatalytic performance of Ag3PO4

nanoparticles through sulfate doping and anchoring on Polyacrylonitrile (PAN)-electrospun nanofibers
(SO4

2−-Ag3PO4/PAN-electrospun nanofibers) via electrospinning followed by ion-exchange reaction.
Morphology, structure, chemical composition, and optical properties of the prepared sample were
characterized using XRD, FESEM, FTIR, XPS, and DRS. The anchoring of SO4

2−-Ag3PO4 nanoparticles
on the surface of PAN-electrospun nanofibers was evidenced by the change in color of the PAN
nanofibers mat from white to yellow after ion-exchange reaction. FESEM analysis revealed the
existence of numerous SO4

2−-Ag3PO4 nanoparticles on the surface of PAN nanofibers. Photocatalytic
activity and stability of the prepared sample was tested for the degradation of Methylene blue (MB)
and Rhodamine B (RhB) dyes under visible light irradiation for three continuous cycles. Experimental
results showed enhanced photodegradation activity of SO4

2−-Ag3PO4/PAN-electrospun nanofibers
compared to that of sulfate undoped sample (Ag3PO4/PAN-electrospun nanofibers). Doping of SO4

2−

into Ag3PO4 crystal lattice could increase the photogenerated electron–hole separation capability,
and PAN nanofibers served as support for nanoparticles to prevent from agglomeration.

Keywords: electrospinning; SO4
2−-Ag3PO4 nanoparticles; organic dyes; photocatalyst; visible light

1. Introduction

The breakthrough work carried out by Yi et al. [1] opened a new door to engineer and synthesize
silver phosphate (Ag3PO4)-based photocatalysts with enhanced performance that can find potential
applications in dye photodegradation, hydrogen evolution, and killing microbes [2–5]. Ag3PO4 is
a narrow band gap (2.36 eV) semiconductor material, which can generate reactive oxygen species
(ROS) like OH• or O2

• − from electron–hole pairs under visible light irradiation. Thus, generated ROS
are responsible for its photocatalytic activities [6,7]. Application of Ag3PO4 as a visible light-driven
photocatalyst is limited due to poor chemical stability, when applied in absence of sacrificial agent [1,8].
Therefore, successive investigations have been carried out for designing and fabricating Ag3PO4-based
photocatalysts to overcome this limitation and improve their performance. In this regard, various
studies have been reported, such as fabricating composites [9–13], coupling with other semiconductor
materials [14,15] and doping suitable ions [16–18]. Out of these, doping of suitable ions into the
crystal lattice of semiconductor materials could be an alternate strategy to enhance their photocatalytic
property. It is reported that semiconductor material doped with suitable ions could prevent the
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recombination of photogenerated electron–hole pairs and consequently increases its stability and
photocatalytic performance [19].

On that note, various results regarding the enhanced photocatalytic performance of Ag3PO4

via cations doping into its crystal lattice have been reported [20,21]. On the contrary, photocatalytic
activities of Ag3PO4 doped with suitable anions have not been reported frequently. Meanwhile, a
recent report has demonstrated the enhanced photocatalytic activity of sulfur-doped Ag3PO4 on the
basis of hybrid density-functional calculation [22]; however, due to the strong P-O bond, doping of
sulfur into Ag3PO4 crystal lattice seems more difficult. Therefore, instead of sulfur, SO4

2− might be a
suitable anion as a dopant to replace PO4

3− from Ag3PO4 crystal lattice due to smaller radius of SO4
2−

(0.218 nm) compared to that of PO4
3− (0.230 nm) [23,24]. On the other hand, use of photocatalyst

nanoparticles in powder form creates a serious problem of agglomeration during photocatalysis, which
leads to a reduction of surface area and ultimately, a decrease in photocatalytic performance [25].
In addition, the separation process of photocatalyst from solution becomes more difficult after use.
To deal with these difficulties and avoid the loss of photocatalyst, polymer-electrospun nanofibers
are being widely used as supports for nanoparticles [26–28]. Due to its excellent characteristics, like
environmental stability, easy processability, and low density, PAN polymer is being extensively used
for the fabrication of nanofibers as flexible support for photocatalyst nanoparticles using simple and
versatile electrospinning technique [29,30].

Hence to realize the synergistic effect of sulfate-doped Ag3PO4 nanoparticles and PAN-electrospun
nanofibers as support, our work is focused on the fabrication of SO4

2−-Ag3PO4/PAN-electrospun
nanofibers by combining electrospinning and ion-exchange reaction. Visible light photocatalytic
activity of as fabricated sample was evaluated by observing photodegradation of MB and RhB dye
solutions. Finally, we hope this visible-light-driven photocatalyst would be a promising candidate for
the degradation of organic dyes from waste water to avoid negative effects to the dependent living
ecology. To the best of our knowledge this type of work has not been reported so far.

2. Materials and Methods

2.1. Chemicals

The chemicals used in this work are Polyacrylonitrile (PAN, MW-150000, Sigma-Aldrich, St. Louis,
MO, USA), Disodium hydrogen phosphate dihydrate (Na2HPO4.2H2O, Sigma-Aldrich, St. Louis,
MO, USA), Silver nitrate (AgNO3, Sigma-Aldrich, St. Louis, MO, USA), Sodium sulfate (Na2SO4,
Sigma-Aldrich, St. Louis, MO, USA), Methylene blue (MB, Sigma-Aldrich, St. Louis, MO, USA),
Rhodamine B (RhB, Sigma-Aldrich, St. Louis, MO, USA) and N, N-dimethylformamide (DMF,
SAMCHUN PURE CHEMICAL, Mogok-dong 117, Gyeonggi-d, Korea). All the chemicals were of AR
grade and used without further purification. Distilled water was used to prepared aqueous solutions.

2.2. Fabrication of Na2HPO4/PAN Nanofiber

First, fine powder of Na2HPO4 (0.46 g) was dispersed in DMF (14 mL) and ultrasonicated for 1h.
Then 1.5 g powder of PAN polymer was added to the above dispersion and magnetically stirred for
12h to prepare electrospinning solution. Electrospinning of the prepared solution was carried out by
loading into a plastic syringe fitted with plastic micro-tip. The applied voltage and distance between
needle tip to collector were set as 18 kV and 12 cm, respectively. The developing nanofibers were
collected on rotating drum collector connected to DC motor. Thus obtained Na2HPO4/PAN-electrospun
nanofibers were vacuum dried for 12 h at 70 ◦C.

2.3. Fabrication of SO4
2−-Ag3PO4/PAN-Electrospun Nanofibers

SO4
2−-Ag3PO4/PAN-electrospun nanofibers were prepared following ion-exchange reaction.

Briefly, Na2HPO4/PAN nanofiber mat (0.1 g) was immersed in 500 mL of AgNO3 solution containing
SO4

2− ions for 30 min. Concentration of AgNO3 and Na2SO4 was maintained at 0.02 M and
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0.01 M, respectively. Change in color of nanofibers mat from white to yellow during ion-exchange
reaction indicated the anchoring of SO4

2−-Ag3PO4 nanoparticles on the surface of PAN nanofibers.
For comparison, Ag3PO4/PAN-electrospun nanofibers were also fabricated without adding SO4

2− ions
into the AgNO3 solution under similar conditions. The resulting nanofibers mats were washed
with deionized water and dried at 60 ◦C for 6 h before characterization. The schematic for
the fabrication of SO4

2−-Ag3PO4/PAN-electrospun nanofibers is illustrated in Scheme 1. For the
convenience of description, different samples are named as pristine PAN, AP/PAN, and SAP/PAN
corresponding to pristine PAN-electrospun nanofibers, Ag3PO4/PAN-electrospun nanofibers, and
SO4

2−-Ag3PO4/PAN-electrospun nanofibers, respectively.
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2−-Ag3PO4/PAN- electrospun nanofibers.

2.4. Characterization

Crystalline nature of the samples was investigated using X-ray diffractometer (XRD, Empyrean,
PANAlytical, Eindhoven 5651 GH, Netherlands) with Cu Kα (λ = 1.540 Å) radiation over Bragg angles
ranging from 10◦ to 80◦. Field emission scanning electron microscope (FESEM, GeminiSEM 500,
Carl Zeiss Microscopy GmbH, 73447, Oberkochen, Germany) equipped with energy dispersive X-ray
spectroscopy (EDS) was used to study the morphology and elemental composition of the samples.
Bonding configuration of the samples was characterized applying Fourier-transform infrared (FT-IR,
FT/IR-4200, Jasco international Co., Ltd., 4-21, Sennin-cho 2-chome, Hachioji, Tokyo 193-0835, Japan)
through attenuated total reflectance mode (ATR). Furthermore, the surface element composition
analysis of SO4

2−-doped/undoped samples was studied using X-ray photoelectron spectroscopy (XPS,
AXIS-NOVA, Kratos Analytical Ltd., Manchester, M17 1GP, UK), and the light absorption properties of
the prepared samples was evaluated from UV-vis diffusive reflectance spectra (DRS) obtained from
UV-vis spectrophotometer (UV-2600 240 EN, SHIMADZU CORPORATION, Kyoto, Japan).

2.5. Investigation of Photocatalytic Activity

To investigate the photocatalytic performance, as fabricated samples (pristine PAN, AP/PAN,
and SAP/PAN) were utilized as visible-light-driven photocatalysts for the degradation of MB and RhB
solutions at 10 ppm using a solar simulator having an internal xenon lamp (DYX300P, DYE TECH
Co., Seoul, Korea) equipped with a UV cutoff filter. The experiments were carried out in a glass vial
containing dye solution (50 mL) and photocatalyst (100 mg). Prior to irradiation, the suspension was
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magnetically stirred under dark conditions for 30 min to establish adsorption/desorption equilibrium.
Afterward, visible light obtained from the 200-W xenon lamp was irradiated under continuous
magnetic stirring. Aliquots were taken at regular time intervals (10 min) and the concentration of
the dye solution was measured spectrophotometrically by recording the absorbance using a UV-vis
spectrophotometer (HP 8453 UV–vis spectroscopy system, Hudson, MA, USA). The total organic
carbon (TOC) content in residual solution was determined with a TOC analyzer (multi N/C 3100,
Analytik Jena, Konrad-Zuse-Strasses 1 07745 Jena, Germany).

3. Results and Discussion

XRD analysis was applied to investigate the crystallinity and effect of sulfate doping into Ag3PO4

crystal lattice. Figure 1a displays XRD patterns of pristine PAN, AP/PAN, and SAP/PAN. A broad and
noncrystalline peak at 2θ of 20–30◦ in all formulations was assigned to the (110) crystal plane of PAN
polymer [29]. Besides, the diffraction peaks at 2θ of 20.89◦, 29.69◦, 33.31◦, 36.51◦, 42.42◦, 47.74◦, 52.66◦,
55.10◦, 57.29◦, 61.63◦, 65.71◦, 70.06◦, 71.89◦, and 73.78◦ in AP/PAN and SAP/PAN were attributed to
the crystal planes of (110), (200), (210), (211), (220), (310), (222), (320), (321), (400), (411), (420), (421),
and (332) of Ag3PO4, respectively (JCPDS card No: 06-0505). Effect of sulfate doping into Ag3PO4

crystal lattice was examined by observing the magnified XRD patterns of AP/PAN and SAP/PAN
(Figure 1b). The gradual shift of peaks corresponding to (210) and (211) crystal planes of SAP/PAN
towards higher 2θ angle was observed. Such shifting might be attributed to the decrease in crystal
lattice constant due to SO4

2− ions entering into Ag3PO4 crystal lattice by replacing PO4
3− ions since

SO4
2− has a smaller ionic radius than that of PO4

3− [24,31].
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Figure 1. (a) XRD diffraction patterns—pristine PAN, AP/PAN, and SAP/PAN; and (b) magnified peaks
of (210) and (211) crystal planes.

Figure 2a–c show the typical FESEM images of Na2HPO4/PAN electrospun nanofibers, AP/PAN,
and SAP/PAN fabricated by electrospinning. All samples exhibited bead-free, continuous, and randomly
oriented nanofibers having an average diameter of 430 nm. Na2HPO4/PAN nanofibers could serve
as both support and source to subsequent ion-exchange reaction to fabricate sulfate undoped/doped
Ag3PO4/PAN nanofibers. After the growth of nanoparticles by ion-exchange reaction, the surface
of nanofibers (AP/PAN) (Figure 2b) and (SAP/PAN) (Figure 2c) was no longer smooth compared to
Na2HPO4/PAN nanofibers. The nanoparticles with some agglomerations were uniformly anchored on
PAN nanofiber surface, which was evidenced through the color change of Na2HPO4/PAN nanofibers
mate from white to yellow after ion-exchange reaction (insets Figure 2a−c). In order to elucidate the
stability of photocatalyst, FESEM characterization of used SAP/PAN was performed. As depicted in the
Figure (inset of Figure 2d), the used sample could keep its integrity even after three cycle tests without
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distinct loss of nanoparticles. Furthermore, elemental composition of SAP/PAN was investigated by
FESEM-EDS (Figure 2d). The EDS spectra indicated the presence of considerable amount of C, O, P, S,
and Ag in SAP/PAN without other impurities, justifying the sample being composed of sulfate-doped
Ag3PO4 and PAN. Similarly, existence of sulfate-doped Ag3PO4 nanoparticles on PAN nanofibers was
further confirmed, observing spatial distribution of O, P, S, and Ag elements by elemental mapping of
SAP/PAN (Figure 3). As shown in the mapping images, all the elements are almost homogeneously
distributed on PAN nanofiber surface, specifying the presence of sulfate-doped Ag3PO4 nanoparticles.
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Figure 2. FESEM images; (a) Na2HPO4/PAN nanofibers, (b) AP/PAN, (c) SAP/PAN. Panel (d) represents
the corresponding EDS of (c). Insets in Figure (a–c) are digital photograph of corresponding nanofibers
and inset in Figure (d) is FESEM image of used SAP/PAN.

Figure 4 represents the FTIR spectra of pristine PAN, AP/PAN, and SAP/PAN. The absorption
band centered at about 2243 cm−1 in all samples is assigned to the nitrile group (C≡N) of PAN. Similarly,
all samples possessing characteristics bands attributed to aliphatic CH group vibrations of different
modes in the methylene group of PAN were located in the regions 1220–1270 cm−1, 1350–1380 cm−1,
1450–1460 cm−1, and 2870–2931 cm−1 [32]. Moreover, the absorption bands located at about 1600 cm−1

and 3400–3500 cm−1 were assigned to stretching vibration of H-O-H and bending O-H to denote
the presence of physically absorbed water molecules [33]. Furthermore, absorption bands located
at about 550 cm−1 and 981 cm−1 in AP/PAN and SAP/PAN were due to the molecular vibration of
PO4

3− [30,34]. However, the absorption band that locates at about 983 cm−1 [35,36] corresponding to
SO4

2− in SAP/PAN was not apparent, which could be due to overlapping with the absorption band
of PO4

3− or small amount of SO4
2−. Hence, all these FTIR results suggested SO4

2−-doped/undoped
Ag3PO4 nanoparticles were immobilized on PAN nanofibers.
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The coexistence of SO4
2− in Ag3PO4 and PAN in SAP/PAN was confirmed by performing XPS

analysis. As shown in survey spectrum (Figure 5a), P, S, Ag, and O elements coming from SO4
2−

-Ag3PO4 and C and N elements corresponding to PAN were clearly observed. Moreover, specific
nature of S in SAP/PAN and Ag, P, and O in both samples was obtained from high-resolution XPS
spectra. As depicted in Figure 5b, a peak located at around 168.38 eV in high-resolution spectra of S
2p in SAP/PAN was attributed to S6+ [37]. This result also indicated the incorporation of SO4

2− into
Ag3PO4 crystal lattice during synthesis process. In case of Ag 3d and P 2p peaks of SAP/PAN, slight
shifting of these peaks to higher values of binding energies was observed compared to that of AP/PAN
(Figure 5c,d). This shifting might happen due to doping of SO4

2−, which could decrease electron
density around Ag and P due to higher electronegativity of S [38]. Similar behavior was observed for O
1s peak of SAP/PAN compared to AP/PAN (Figure 5e). Hence, all these XPS results further confirmed
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measured to determine their light absorption behavior and the results are plotted in Figure 6. As seen,
two absorption bands presented in the range of 200–350 nm were assigned to the pristine PAN, which is
in agreement with the result of a previously reported study [39]. After loading sulfate undoped/doped
nanoparticles on PAN nanofibers, visible light absorption behavior could be observed. Both the
samples (AP/PAN and SAP/PAN) displayed continuous absorption in visible range (520–700 nm),
however the absorption intensity of SAP/PAN was found to be slightly increased. Therefore, these
results signified the visible light harvesting capability of AP/PAN and SAP/PAN.
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Photodegradation performances of different samples under visible light irradiation were
investigated using MB and RhB dye solutions and results are presented in Figure 7a,b.
The photodegradation is represented as the variation of (Ct/Co) with irradiation time, where Co

is the initial concentration and Ct is remaining concentration of dyes solution at time t. As presented
in figure, pristine PAN could show negligible capability of photodegradation of MB and RhB dye
solutions. In contrary, more than 95% of MB was degraded by SAP/PAN within 40 min, while only
88% of MB was degraded within this time period utilizing AP/PAN. Likewise, SAP/PAN could exhibit
superior performance over AP/PAN towards the photodegradation of RhB. In this case, SAP/PAN could
degrade 95% of RhB within 50 min, but within this time period, AP/PAN could degrade about 87% of
RhB. On the basis of these results, SAP/PAN was found to be a more advantageous visible-light-driven
photocatalyst over AP/PAN. Figure 7c,d show the time-dependent absorbance variations of MB and
RhB dye solutions utilizing SAP/PAN under visible light irradiation. Corresponding absorbance peaks
of MB at 665 nm and RhB at 554 nm are gradually diminished with the increase in irradiation time.
Importantly, the maximum wavelength of MB and RhB were not found to be shifted, which indicated
that benzene/heterocyclic rings were decomposed rather than decolorized due to adsorption of dye
molecules on the surface of photocatalyst [40,41]. Insets (Figure 7c,d) show gradual decline in color of
corresponding dye solution utilizing SAP/PAN.

The changes of TOC during photodegradation of MB and RhB utilizing SAP/PAN under visible
light irradiation are displayed in Figure 8. As displayed in the figure, TOC of MB with SAP/PAN
after 10, 20, 30, and 40 min of irradiation were 2.75, 2.3, 1.6, and 1.4 mg/L, respectively. Similarly,
TOC of RhB with SAP/PAN after 10, 20, 30, 40, and 50 min of irradiation were 3.97, 3.39, 3.19, 2.75,
and 2.5 mg/L, respectively. These results showed that TOCs were lower than that of original dye
solutions (MB = 3.9 mg/L and RhB = 4.56 mg/L). Furthermore, the rate of TOC change for both MB
and RhB dyes was lower compared to their photodegradation rate, which is assigned to the partial
decomposition of dye molecules into intermediate products resulting in the disappearance of color
and partial mineralization [42,43].
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Figure 8. Changes in total organic carbon (TOC) during photodegradation of (a) MB and (b) RhB with
SAP/PAN.

Photodegradation stability of SAP/PAN was examined by performing cycling experiments for MB
and RhB degradation under visible light irradiation (Figure 9a,b). For cycling experiments, the used
sample was separated, washed, and dried at room temperature then reapplied for photodegradation
under similar conditions. Experimental results showed good stability of SAP/PAN up to third cycle,
however slight decrease was observed in the performance during cycling experiments, which could
happen due to loss of photocatalyst during separation process. Furthermore, Langmuir–Hinshelwood
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model was applied to evaluate the photodegradation kinetics of MB and RhB solutions utilizing
AP/PAN and SAP/PAN.

r = −
dc
dt

=
krKC

1 + KC
. (1)
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Photodegradation Kinetics of MB (c) and RhB (d) solutions over different photocatalysts under visible
light irradiation.

Since the initial concentration of MB and RhB was very low (Co = 10 mg/L), equation (1) can be
considered a pseudo first-order kinetics equation [44] as

lnCo/Ct = kappt, (2)

where Co and Ct represent the initial concentration and concentration at time (t), respectively. kapp

is the apparent rate constant (min−1), which can be obtained by plotting ln (Co/Ct) vs. reaction time.
Hence, degradation kinetics of MB and RhB solutions were calculated by applying equation (2) and the
results are shown in Figure 9c,d. The linear relationship between ln (Co/Ct) vs. reaction time suggested
the pseudo first-order kinetics of photodegradation. From the results, apparent rate constants of MB
degradation utilizing AP/PAN and SAP/PAN were determined to be 0.057 min−1 and 0.075 min−1,
respectively. Similarly, the apparent rate constants 0.043 min−1 and 0.064 min−1 were determined for
RhB degradation utilizing AP/PAN and SAP/PAN, respectively. All these results indicated that sulfate
doping could provide significant capability to Ag3PO4 to enhance its photodegradation performance.

On the basis of above results, an overall mechanism is proposed for photodegradation of organic
dyes. Ag3PO4, being a semiconductor material, generates electron–hole pairs under visible light
irradiation. The photo-excited electrons travel to conduction band (CB) from valence band (VB) and
react with dissolved oxygen molecules to produce ROS, i.e., oxygen peroxide radicals (O2

• −), which
are strong oxidizing agents and degrade dye molecules effectively. On the other hand, holes at VB
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directly react with dye molecules [45]. In this way, these ROS and holes can photocatalytically degrade
organic dyes as

Organic dyes + O2
• −
→ CO2 + H2O + mineralization products. (3)

It is well known that semiconductor photocatalysts having improved separation capability and low
recombination rate of photoinduced electron–hole pairs can exhibit enhanced performances. Hence,
in this work the enhanced photocatalytic performances of SAP/PAN compared to that of AP/PAN can
be explained with the role of SO4

2− as dopant, which could play an important role to trap and transfer
photoinduced electrons to CB, thereby providing improved separation capability of electron–hole
pairs to SO4

2−-Ag3PO4 (Figure 10). Moreover, SO4
2−-Ag3PO4 could receive additional electrons due

to higher electronegativity of S than that of P. As a result, the Fermi level of SO4
2−-Ag3PO4 gets

shifted towards CB and possesses n-type conductivity. In this way, doping of SO4
2− into the Ag3PO4

crystal lattice can improve its separation capability and lower recombination rate of photoinduced
electron–hole pairs, which ultimately increases the production of ROS and enhances the photocatalytic
performance of SO4

2−-Ag3PO4 [22,46,47].
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4. Conclusions

In summary, SO4
2−-Ag3PO4/PAN-electrospun nanofibers were fabricated successfully by

combining electrospinning and ion-exchange reaction. Different characterization techniques were
used to study the morphology, structure, chemical composition, and optical properties of the samples.
Photocatalytic activity of the fabricated samples was investigated by photodegradation of MB and RhB
dye solutions under visible light irradiation. In both investigations, SO4

2−-Ag3PO4/PAN-electrospun
nanofibers could show enhanced performance compared to Ag3PO4/PAN-electrospun nanofibers.
We believe that the enhanced performances of SO4

2−-Ag3PO4/PAN-electrospun nanofibers were
attributed to the sufficient electron–hole separation capability of SO4

2−-Ag3PO4 nanoparticles to
produce ROS due to doping effect of SO4

2− ions into the Ag3PO4 crystal lattice. Therefore, thus fabricated
SO4

2−-Ag3PO4/PAN-electrospun nanofibers can find potential application as visible-light-driven
photocatalyst with good flexibility and reusability for wastewater treatment.
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