
  

Nanomaterials 2020, 10, 924; doi:10.3390/nano10050924 www.mdpi.com/journal/nanomaterials 

Article 

Electrochemical DNA Sensor Based on the 
Copolymer of Proflavine and Azure B for 
Doxorubicin Determination 
Anna Porfireva 1 and Gennady Evtugyn 1,2,* 

1 A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, 
Russia; porfireva-a@inbox.ru 

2 Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira 
Street, 620002 Ekaterinburg, Russia 

* Correspondence: Gennady.Evtugyn@kpfu.ru 

Received: 6 April 2020; Accepted: 8 May 2020; Published: 10 May 2020 

Abstract: A DNA sensor has been developed for the determination of doxorubicin by consecutive 
electropolymerization of an equimolar mixture of Azure B and proflavine and adsorption of native 
DNA from salmon sperm on a polymer film. Electrochemical investigation showed a difference in 
the behavior of individual drugs polymerized and their mixture. The use of the copolymer offered 
some advantages, i.e., a higher roughness of the surface, a wider range of the pH sensitivity of the 
response, a denser and more robust film, etc. The formation of the polymer film and its redox 
properties were studied using scanning electron microscopy and electrochemical impedance 
spectroscopy. For the doxorubicin determination, its solution was mixed with DNA and applied on 
the polymer surface. After that, charge transfer resistance was assessed in the presence of 
[Fe(CN)6]3−/4− as the redox probe. Its value regularly grew with the doxorubicin concentration in the 
range from 0.03 to 10 nM (limit of detection 0.01 nM). The DNA sensor was tested on the doxorubicin 
preparations and spiked samples mimicking blood serum. The recovery was found to be 98–106%. 
The DNA sensor developed can find application for the determination of drug residues in blood 
and for the pharmacokinetics studies. 

Keywords: electropolymerization; poly(Azure B), poly(proflavine), DNA sensor; doxorubicin 
determination; electrochemical impedance spectroscopy 

 

1. Introduction 

Electropolymerization is an advanced tool of modern electrochemistry that is frequently used 
for the modification of the electrodes in the assembly of electrochromic devices and electrochemical 
biosensors [1,2]. In these reactions initiated by primary electron transfer, oligomeric products are 
formed and deposited on the electrode as a dense uniform film, whose properties are derived from 
those of the monomers [3–5]. In most cases, electropolymerized products play role of heterogeneous 
mediators of the electron transfer or of the matrix wiring the bioreceptors and the nanomaterials 
(metals, carbon nanoparticles) [6–8] and providing the immobilization of biochemical components 
[9,10]. They offer many advantages over conventional modifiers used for the same purpose. Among 
them, one-step synthesis, controlled electrochemical activity, simple modification with various 
functional groups, and quantification of the electrodeposition by the current or the charge transferred 
are mentioned. All the polymers obtained by the electrolysis are divided into three groups, i.e., 
electroconductive, electrochemically active, and inactive polymers. Polyaniline [11,12], polypyrrole 
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[13], polythiophene [14], and their derivatives are mostly used in electrochemical sensors and 
biosensors as electroconductive polymers.  

Polymeric forms of the phenazine and phenothiazine dyes have found application among 
electrochemically active polymers [15–17] and some functionalized polyphenols as inactive coatings. 
Methylene blue and Neutral red in polymeric form have been described in the assembly of the 
electrochemical sensors for the determination of many small organic molecules interesting for 
medicine, pharmacy, and environmental monitoring, e.g., catechin [18], nevirapine [19], paracetamol 
[20], vanillomandelic and homovanillic acids [21], catechol and hydroquinone [22], and ascorbic acid 
[23]. Methylene blue has found a broad application as a redox probe and diffusionally-free indicator 
in DNA- and aptasensors [24,25]. Neutral red was also implemented in the biosensor assembly for 
mediation of the electron transfer [26–28]. Although they show satisfactory characteristics of the 
electron transfer, their application can be limited by some drawbacks, e.g., very high non-specific 
adsorption of the Methylene blue and low selectivity of mediation by the Neutral red.  

Recently, other derivatives of the phenazine dyes (Azure A, Azure B) and proflavine able to 
change their electrochemical properties in the presence of the proteins and DNA have been 
introduced in the electroanalysis [29–32]. Thus, proflavine, an acridine dye, was successfully used for 
the detection of the DNA hybridization events due to the ability to intercalate double-stranded DNA 
helix and to influence the electron exchange conditions on the electrode interface [33]. Additionally, 
it was used for the assessment of the DNA melting point changed due to the ligand binding [34]. 
Azure B was electropolymerized on the Pt and glassy carbon electrode (GCE) in acidic media [30] 
and polycrystalline Au [35] showing reversible redox behavior both in monomeric and polymeric 
form. The only examples of the application of the polymeric proflavine and Azure B in the assembly 
of the DNA sensors were done in our previous works [29,31], where rather low efficiency of the 
electropolymerization referred to the low solubility of the monomers in neutral media. 

In this work, a mixed copolymer of the proflavine and Azure B has been obtained for the first 
time and applied for the doxorubicin determination. It was shown that the use of the copolymer 
changed the mechanism of the signal formation and the permeability of the surface layer became 
more important than the electrostatic interactions in the doxorubicin determination. The DNA sensor 
developed made it possible to detect 0.01 nM doxorubicin with a satisfactory recovery demonstrated 
in artificial blood plasma.  

2. Materials and Methods  

2.1. Reagents 

Azure B (3-(dimethylamino)-7-(methylamino)phenothiazin-5-ium chloride, 97%), proflavine 
hydrochloride (3,6-Diamino-10-methylacridinium chloride, 95%), doxorubicin hydrochloride 
((8S,10S)-6,8,10,11-tetrahydroxy-8-(hydroxyacetyl)-1-methoxy-7,8,9,10-tetrahydrotetracene-5,12-
dione, 97%), low molecular double-stranded DNA from salmon sperm (average mol. mass 4.6 kDa 
[36]) HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), hydroquinone, and bovine serum 
albumin (BSA) were purchased from Sigma-Aldrich, Dortmund, Germany 
(https://www.sigmaaldrich.com/catalog). Other reagents were of analytical grade. Deionized 
Millipore® water (Simplicity® water purification system, Merck-Millipore, France, 
https://www.merckmillipore.com/) was used for the preparation of working solutions. The pH 
dependence of the polymer coating properties was monitored using Britton–Robinson buffer 
consisting of 0.04 M H3PO4, 0.04 M H3BO3, 0.04 M CH3COOH, 0.05 M Na2SO4). The DNA stock 
solutions (1 or 10 mg/mL) were prepared in 0.1 M HEPES containing 0.03 M NaCl, pH 7.0. 
Electropolymerization was performed in 0.025 M phosphate buffer (PB) containing 0.1 M KCl. 
Ringer–Locke’s solution was used for mimicking influence of blood electrolytes. It contained 0.45 g 
NaCl, 0.021 g KCl, 0.016 g CaCl2·2H2O, 0.005 g NaHCO3, 0.075 g of glucose, 0.015 g of MgSO4, and 
0.025 g of NaH2PO4·2H2O per 50 mL of water [37]. Doxorubicin preparations LANS® (“LANS-
Verofarm”, Belgorod, Russia, https://products.veropharm.ru/en) and TEVA (“Teva Pharmaceutical 
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Industries”, Petah Tikva, Israel, https://tevapharm.com) were purchased in the local pharmacy 
market.  

2.2. Apparatus 

Voltammetric and impedimetric measurements were conducted at ambient temperature with 
the potentiostat-galvanostat AUTOLAB PGSTAT 302N (Metrohm Autolab b.v., Utrecht, the 
Netherlands, https://www.metrohm.com/en/products/electrochemistry) equipped with the FRA2 
module. The electropolymerization and the DNA deposition were performed using the GCE (1.67 
mm2) as working electrode, Pt wire as auxiliary electrode and Ag/AgCl/3 M KCl as reference 
electrode (Metrohm Autolab b.v.). The electrochemical impedance (EIS) spectra were recorded at the 
equilibrium potential with the amplitude of applied sine potential of 5 mV and the frequency varied 
in the range from 100 kHz to 0.04 Hz in the presence of 0.01 M K3[Fe(CN)6] and 0.01 M K4[Fe(CN)6]. 
The equilibrium potential was calculated as the half-sum of the cathodic and anodic peak potentials 
of the [Fe(CN)6]3−/4− peak pair. The impedance parameters were determined by fitting with the 
equivalent circuit (RctC)1(RctC)2, where Rct is the charge transfer resistance and C the constant-phase 
element representing the non-ideal capacitance behavior. Indices 1 and 2 correspond to the outer and 
inner interfaces (electrode–film and film–solution). Equivalent circuit fitting was performed with the 
NOVA software (Metrohm Autolab b.v.).  

The pH measurements were performed with the EXPERT-001-1 digital pH meter-ionometer 
(Econix-Expert Ltd, Moscow, Russia, http://ionomer.ru/index.php?lang=english).  

Scanning electron microscopy (SEM) images were recorded on a field emission scanning electron 
microscope Merlin™ (Zeiss, Jena, Germany, 
https://www.zeiss.com/microscopy/int/products/scanning-electron-microscopes.html). The films 
obtained by electropolymerization were preliminarily coated with the Au/Pd layer in vacuum by a 
T150ES sputter coater (Quorum Technologies Ltd, Laughton, United Kingdom, 
https://www.quorumtech.com). 

2.3. Electropolymerization of Azure B and Proflavine and DNA Sensor Preparation 

The GCE was first mechanically polished to a mirror-like surface and cleaned with acetone and 
sulfuric acid. Then, it was immersed in the solution obtained by mixing 4.6 mL of 0.025 M PB, 385 μL 
of Azure B (1.03 mg/mL), and 22 μL of proflavine (15 mg/mL). Resulting concentrations of the dyes 
were equal to 0.25 mM of each. Then, 20 cycles of the potential in the range from −0.4 to 1.2 V were 
run with the scan rate of 100 mV/s. After that, the electrode was rinsed with deionized water. After 
drying, the electrode was fixed upside down and 2 μL of DNA solution (1 mg/mL) in 0.1 M HEPES 
containing 0.03 M NaCl, pH = 7.0, were spread on the working area. After drying, the electrode was 
washed several times with the PB and deionized water and used for electrochemical measurements. 

2.4. Doxorubicin Determination 

The doxorubicin solution was mixed with the 10 mg/mL DNA solution in the 9:1 ratio (v:v). 
Then, 2 μL of the mixture were placed on the working surface of the GCE covered with the Azure B–
proflavine copolymer and dried at ambient temperature. The electrode was washed with deionized 
water to remove unbound reactants and transferred to the cell containing 4.5 mL of 0.025 M PB with 
0.1 M KCl, pH = 7.0, and 0.5 mL of 0.1 M equimolar mixture of K3[Fe(CN)6] and K4[Fe(CN)6]. After 
magnetic stirring, the EIS spectrum was recorded and the Nyquist diagram plotted to determine the 
charge transfer resistance as a measure of the doxorubicin concentration. 

3. Results 

3.1. Copolymerization of Azure B and Electrochemical Properties of the Polymerization Product 

The cyclic voltammograms obtained in a multiple cycling of the potential in the mixture of 
monomeric Azure B and proflavine are presented in Figure 1. Most changes on the voltammograms 
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have been finished to the 20th cycle. Thus, in the following experiments, the electropolymerization 
was performed using this number of potential cycles. 

At the first scan, high anodic peak (a1 on voltammogram) appears at −0.13 V. In the second cycle, 
it was decreased about twice and shifted to less negative potential (−0.04 V). Meanwhile, the second 
anodic peak (a2) appeared at −0.20 V. In the following scans, anodic peak (a1) disappeared and the 
second one was shifted to 0.35 V and insignificantly decreased in height. 
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Figure 1. (a) Multiple cyclic voltammograms recorded on glassy carbon electrode in 0.025 M PB, pH 
= 7.0, containing 0.03 M NaCl, 0.25 mM Azure B, and 0.25 mM proflavine, scan rate 100 mV/s (20 
cycles). Arrows indicate direction of the changes observed with increasing number of the cycles. (b) 
Cyclic voltammograms recorded with glassy carbon electrode covered with Azure B–proflavine 
copolymer (20 cycles) in 0.025 M PB with no monomers. 

In the opposite direction of the potential scan, changes in the peaks recorded in the same 
potential range were quite different. On the first scan, two small cathodic peaks appeared on 
voltammogram, from which one (c1) derived from the peak a1 and second one (c2) was probably 
related to the anodic peak a2 though it appeared on the next cycles. Additionally, these two pairs of 
reversible peaks, a high irreversible anodic peak was observed at the potentials higher than 0.93 V. 
This peak decreased in height and shifted to about 1.0 V to the 20th cycle. As for other phenothiazine 
dyes, this peak can be attributed to the formation of di-cation initiating the polymerization of the 
monomeric dye [15]. Indeed, if the cyclic voltammograms were recorded in the range from −0.3 to 0.5 
V, no changes in the position and height of reversible peaks were observed indicating no 
polymerization of the monomers. Moreover, transfer of the electrode in a fresh PB with no monomers 
resulted in sharp decrease of the above peaks down to the background currents typical for supporting 
electrolyte. Thus, the adsorption of monomeric dyes on bare GCE is rather weak and reversible and 
cannot result in reproducible peaks on appropriate voltammograms. After four cycles of the 
potential, two peaks remained on the voltammogram (Epc = −0.07 V and Epa = −0.27 V), in which the 
height slowly increased in the following cycling of the potential.  

It is interesting to compare the peaks with those of individual dyes in similar experimental 
conditions. Previously we reported about electropolymerization of Azure B and proflavine taken 
alone in the same range of potentials. Azure B was oxidized in 0.1 M HEPES, pH = 6.9, with formation 
of the broaden peak pair at −0.11 and −0.09 V and of one irreversible anodic peak at the potentials 
higher than 0.8 V [29]. However, the Azure B peak pair at low potentials remained on 
voltammograms during the whole period of potential cycling (20 cycles) whereas the anodic 
irreversible peak was decreased with the number of cycles similarly to that observed here for the 
mixture of dyes. Regarding proflavine [31], it formed quasi-reversible pair of the peaks with the peak 
potential difference (0.22 and −0.13 V) higher than that discussed above for the Azure B polymer and 
the Azure B–proflavine copolymer. In this pair, cathodic peak was slowly increased with the number 
of potential cycles and anodic one was quite stable. The behavior of irreversible anodic peak initiating 
polymerization was similar to that reported for individual dyes polymerized in similar conditions.  
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The comparison of the voltammograms obtained earlier for individual dyes and that, in their 
mixture, made it possible to conclude that the polymerization starts with the Azure B, which anodic 
peaks dominated in first 2–3 cycles. The implementation of proflavine became significant in the next 
cycles and resulted in general simplification of the voltammograms and in the shift of the peaks in 
the low potential range to higher potentials. The coverage of the surface with the polymer was mainly 
finished after the fourth cycle. The following deposition of the polymer increased the thickness of the 
layer and suppressed the access of both monomers to the electrode surface. As a result, the electron 
exchange became less effective and the equilibrium potential was slightly shifted to its higher value. 
The involvement of both monomers is confirmed by appropriate peak potentials and existence of two 
peaks referred to individual products at first cycles of the potential. 

The resulting film is rather stable and exerts redox activity being transferred in a fresh PB with 
no monomers (Figure 1b). On this voltammogram, the anodic peak (0.28 V) is closer to that of the 
proflavine and the cathodic peak (−0.08 V) to that of poly(Azure B). The voltammograms of all three 
reactants, i.e., Azure B, proflavine, and their mixture, are rather close to each other so that variation 
in the molar ratio of the dyes in the mixture did not result in quantitative changes of appropriate 
voltammograms. The ratio used in this work corresponded to the maximal difference in the peaks 
related to individual dyes and their mixture. The only conclusion was that lower quantities of Azure 
B decreased the relative height of the peak a1 at first scan. This confirms the attribution of the peak to 
this monomer. 

The stability of the coating was confirmed in the series of voltammetric measurements with 
individual sensors in the PB with no monomers. The range of the potential scan (from −0.4 to 0.8 V) 
excluded polymerization of the monomers that could be entrapped in the surface film. Contrary to 
electropolymerization, the runs of the potential were separated by a certain period of switched-off 
voltage (5 min.), in which the solution was magnetically stirred. The anodic peak current was 
stabilized after the 2–3 cycle, whereas the cathodic current with no stirring was constant starting from 
the first run (Figure 2b).  

In addition to the peak currents, the charge passed was determined by integration of the current–
voltage curves. As could be seen from the Figure 2c, the charge passed was stabilized to the third 
measurement with no stirring. However, magnetic stirring resulted in a regular increase of the charge 
during the whole measurement series. This might be due to the elimination of small particles of the 
coating that are weakly attached to the surface and leave them between the measurements. This 
would increase the specific surface of the electrode interface. The charge passed also tends to increase 
with the scan rate to the limit similar to that reached in consecutive potential cycling (compare Figure 
2c,d). At a low scan rate, oxidized forms of the dyes preferably determine the charge passed, which 
is negative and corresponds to a predominantly cathodic process of the oxidized dyes reduction. This 
coincides well with the fact that the dyes are commonly present in the oxidized (salt) form in aqueous 
solutions containing dissolved oxygen. However, at a scan rate higher than 40 mV/s, the charge 
passed becomes positive indicating the prevalence of the anodic reactions over the cathodic ones. 
This can result from the formation of rather dense film and low rate of electron exchange in the 
polymer layer. In such conditions, changes in the overall charge passed are less compensated for by 
the movements of the negatively-charged counter ions and, hence, less affect the charge passed in the 
cathodic branch of the voltammogram. 

The electrode modified with the Azure B–proflavine copolymer was tested after stabilization at 
various scan rates to determine the nature of the rate-limiting stage. In the bilogarithmic plots, the 
slope of the linear graph was found in-between 0.5 (surface confined reactions) and 1.0 (diffusion 
limitation) [38] in the range from 10 to 500 mV/s. Appropriate regression equations are presented in 
Equations (1) and (2). Here, Ipa and Ipc are the anodic and cathodic peak currents, respectively, and ν 
is the potential scan rate. 

Anodic peak current: log(Ipa, μA) = (0.77 ± 0.01) + (0.67 ± 0.01) × log(ν, mV/s), R2 = 0.9961, n = 14 (1)

Cathodic peak current: log(Ipc, μA) = (1.04 ± 0.01)+ (0.64 ± 0.01) × log(ν, mV/s), R2 = 0.9946, n = 14 (2)
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The dependence of the peak currents on the scan rate was investigated in the absence of the 
monomers in solution so that diffusional transfer of redox species was impossible. In these 
conditions, the decrease of the slope against the value typical for the surface reactions (1.0) can be 
referred to the influence of the counter ions transfer mentioned above or to the slow electron 
exchange between the oxidized and reduced monomer items within the layer. Similar behavior was 
found earlier for the polymeric Neutral red [39]. The transfer coefficient α = 0.83 was determined 
using Laviron’s theory from the dependence of the peak potential on the scan rate (Equation (3)) 
[40,41]: 

0' ln lnet
pc

RTkRT RTE E v
nF nF nFα α α

= + −  (3)

Here, E0’ is the formal redox potential, α is the transfer coefficient, n is the number of the electrons 
transferred, F is the Faraday constant, R is the universal gas constant, T is the temperature, K, and kel 
is the heterogeneous constant of the electron transfer. 
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Figure 2. The dependency of cathodic (a), anodic (b) peak currents and charge passed (c) on the 
number of consecutive measurements separated by magnetic stirring of solution or by its equalization 
in open circuit mode. 0.025 M PB, pH = 7.0, scan rate 100 mV/s; (d) The dependence of the charge 
passed in the whole potential cycle between −0.4 and 0.8 V on the scan rate.  

3.2. The Comparison of the Redox Properties of Poly(Azure B), Poly(proflavine) and Their Copolymer 

Although the behavior of the dyes used was very similar to each other, there is a difference, 
which can be related to the intrinsic processes of the electron exchange and counter ions transfer. To 
simplify the consideration, some of the changes observed are summarized in the Table 1 based on 
this work and our previous investigations performed in similar experimental conditions. 

Among other properties, the pH dependence of the equilibrium potential is most sensitive to the 
monomer mixing. All three coatings mentioned in Table 1 exert a linear response toward pH 
according to the Nernst equation with the slopes of 29 mV/pH for poly(Azure B) and 59 mV/pH for 
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the poly(proflavine) that correspond to the transfer of one H+ ion, two electrons, and two H+, two 
electrons, respectively. In case of the copolymer, the pH dependence is more complicated. Cathodic 
peak potential shows the pH dependence similar to that of Azure B (slope 53 mV/pH), whereas the 
anodic dependence formally corresponds to the transfer of 1.5 H+ ions per electron. Appropriate slope 
(43 mV/pH) is in between those obtained for the poly(Azure B) and poly(proflavine). In the same 
dependencies involving equilibrium potential corresponded to the half-sum of peak potentials, the 
copolymer showed maximal range of linearity (pH from 2.0 to 9.0), whereas the poly(proflavine) 
changed this potential only in basic media (pH from 6.0 to 9.0) and that of poly(Azure B) in weakly 
acidic conditions (pH from 3.0 to 6.0). It can be concluded that the copolymer combines the pH 
sensitivity areas of individual dyes and exerts better reversibility of electron/H+ exchange. The 
nominal transfer of 1.5 H+ per electron can be explained by simultaneous redox reactions of both 
monomers resulting in averaging of the stoichiometry of equilibrium. 

Table 1. The comparison of the properties of electropolymerized coatings of the phenazine dyes 
obtained by multiple cycling of the potential. 

Property Poly(Azure B) [29]   Poly(proflavine) Copolymer 
[31] 

Stability of redox 
parameters 

The currents regularly decrease 
in consecutive measurements 

Stable Stable to 2-3 
cycle 

logIp – logν slope 
Oxidation: 1.1 (polymer), 0.83 

(monomer) 
Reduction: 0.96 (monomer) 

Oxidation: 0.81, 
Reduction: 0.64  

Oxidation: 
0.67 

Reduction: 
0.64 

Transmission 
coefficient 0.56 (polymer) 0.57 0.83 

3.3. DNA Deposition on the Copolymer of Azure B and Proflavine 

Polyelectrolyte complexes of the redox active polymers and DNA have been successfully 
applied for the detection of specific biochemical interactions of the DNA influencing redox equilibria 
of the support [3]. For this purpose, polyaniline [42], poly(Neutral red) [27,43], poly(Methylene blue) 
[43], poly(Methylene Green) [43], poly(Azure B) [29], and poly(proflavine) [31] have been used. In 
this work, the DNA solution was applied on the working surface of the electrode covered with the 
copolymer and either dried or left capped with plastic tube preventing drying for a certain time. In 
voltammetric experiments, the contact with the DNA resulted in 10–15% decrease of the oxidation 
peak current irrespective of the DNA quantities and application protocol. However, incubation 
resulted in much higher deviation of the signal. For this reason, drying DNA solution was used in 
other experiments described. Taking into account low sensitivity of the voltammetry to such changes 
of the surface layer, the deposition of DNA was confirmed by SEM and EIS. 

3.3.1. SEM Monitoring of the Surface Layer Assembling 

Figure 3 represents the morphology of the electrode surface on the stages of the 
electropolymerization and the DNA casting. 

Polished glassy carbon showed smoothen surface with randomly positioned mechanical 
scratches. Deposition of the copolymer resulted in the formation of rough surface covered with the 
angular fragments. Their main fraction (60%) has the size of 40–55 nm. In comparison with individual 
dyes, which electropolymerization was studied earlier, the surface morphology is similar to that of 
proflavine. The latter one also forms aggregates covered with roundish particles [29], whereas 
poly(Azure B) had a uniform structure with elongated parallel inclusions [31].  

Deposition of the DNA onto the copolymer surface changed its morphology. First, angular 
fragments distinguishable on the surface folds, disappear. Instead of them, well-defined roundish 
DNA aggregates with diameters of about 25–30 nm fill the hollows and the surface of the film. They 
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are much better discernible than those described on the poly(proflavine) film and are about twice 
smaller. 

(a) (b) (c) 

Figure 3. SEM microimages of bare glassy carbon electrode (a), of the copolymer of Azure B and 
proflavine prior to (b) and after DNA adsorption (c). 

Disappearance of the fragments visible on the copolymer film prior to the DNA application can 
be referred to their leaching from the surface to the solution. Negatively charged DNA molecules 
promote such a leaching for the weakly attached particles due to neutralization of their positive 
charge by the negatively-charged phosphate groups of the DNA skeleton. Different aggregation of 
the DNA molecules adsorbed on the surface of the poly(proflavine) and of the copolymer of Azure B 
and proflavine can be explained by the difference in the specific surface charge and in the 
hydrophobicity of both coatings. 

3.3.2. EIS Measurements  

EIS is a powerful tool of electrochemistry that is used for investigation of the charge transfer and 
for the monitoring of the interactions influencing the efficiency of electron exchange on the electrode 
interface. The Nyquist diagrams were obtained using 10 mM [Fe(CN)6]3−/4− as redox probe at the mid-
point potential calculated as the half-sum of the peak potentials (Figure 4). Here, R is the charge 
transfer resistance and C constant phase element, indices 1 and 2 correspond to the internal and 
external interface of the electrode-polymer layer. Roughness coefficient n specifying a non-ideal 
capacitance behavior of the constant phase element was found to be 0.78–0.90. Figure 3 represents 
the morphology of the electrode surface on the stages of the electropolymerization/DNA casting. 

The Nyquist diagram contains two semi-circles corresponding to the electrode–film (smaller 
one) and film–solution (larger one) interfaces. Most changes observed during the surface layer 
assembling related to the charge transfer resistance of the outer interface. This coincides well with 
the accessibility of this interface to the reactant addition and hence higher sensitivity to various stages 
of the layer assembling in comparison with the inner interface electrode – polymer, which remains 
about constant within the whole series of measurements. 

Electropolymerization of the Azure B and proflavine increased the R2 value from 4 ± 1 to 130 ± 5 
kΩ. Such changes can be attributed either to lesser electrostatic attraction of the oppositely-charged 
redox probe and cationic surface or to the denser coating (lower diffusion coefficient) of the 
ferricyanide ions penetrating the film. The increase in the number of the potential cycles and anodic 
polarization at the stage of the electrode modification did not significantly alter this value. This makes 
it possible to conclude that slower diffusion appeared to be more important than electrostatic 
interactions. The following application of the DNA molecules increased the R2 value to 170 ± 3 kΩ. It 
is interesting to note that the treatment of the DNA with doxorubicin, an anthracycline dye 
intercalating the DNA helix, increased this value to 215 ± 8 kΩ. The capacitance remains about 
constant during the DNA application and doxorubicin introduction. Its small value (about 1 μF) 
confirms a low charge separation on the electrode interface and the suggestion about the 
predominant influence of the diffusion factors on the EIS parameters. Doxorubicin molecules 
partially compensate for the negative charge of the phosphate residues in the DNA backbone and 
make weaker electrostatic interactions between them and the [Fe(CN)6]3−/4− ions of the redox probe. 
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Figure 4. The Nyquist diagram obtained with the glassy carbon electrode (1) covered with poly(Azure 
B–proflavine) prior to (2) and after (3) application of DNA (2 μL of 1.0 mg/mL solution in 0.1 M HEPES 
+ 0.03 M NaCl, pH = 7.0) or DNA – 1.0 nM doxorubicin aliquot (4). Measurements in 0.025 M PB + 0.1 
M KCl, pH = 7.0, in the presence of 10 mM [Fe(CN)6]3−/4−. Inset: equivalent circuit, C – constant phase 
element, R – charge transfer resistance. 

Thus, the modification protocol used provides the deposition of the polymeric film and 
adsorption of the DNA molecules, which affect the behavior of the sensor due to the variation of the 
permeability of the surface layer for small ions of redox probe. 

3.4. Determination of Doxorubicin 

3.4.1. Doxorubicin Oxidation on Glassy Carbon Prior to and After the Electropolymerization Stage 

In accordance with the literature data [44,45], hydroquinone and benzoquinone units of 
doxorubicin are involved in electrode reaction with formation of separated signals. The largest one 
is commonly observed at negative potentials (from −0.5 to 0.65 V depending on the electrode material) 
and another one, much lower, at positive potential (0.4–0.6 V). This information coincides well with 
the results obtained on bare GCE (Figure 5).  
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Figure 5. Cyclic voltammograms of doxorubicin recorded on glassy carbon, bare (a) and modified 
with copolymer of Azure B and proflavine (b). 0.025 M PB + 0.1 M KCl, pH = 7.0, scan rate 100 mV/s. 

With no modifier, an irreversible cathodic peak at −0.45 V and one irreversible anodic peak at 
0.55 V appear on the voltammogram. They are regularly increasing with the doxorubicin 
concentration. However, after the electrode modification, doxorubicin does not affect the signals of 
the underlying copolymer within the concentration range of five orders of magnitude (Figure 5b). 
Probably, the molecules of doxorubicin cannot reach the electrode or compete with the electron 



Nanomaterials 2020, 10, 924 10 of 16 

 

exchange chain within the surface layer. This might result from hydrophobicity of the analyte or 
steric limitation of its adsorption on the polymer layer. 

3.4.2. Determination of Doxorubicin with DNA Sensor Based on Copolymer of Azure B and 
Proflavine 

The investigations were continued in the EIS mode, which is more sensitive than cyclic 
voltammetry to the surface-confined reactions. Doxorubicin intercalates the DNA helix with 
inclusion between the pairs of nucleobases. This reaction changes the volume and conformation of 
the DNA molecules and partially compensates for the negative charge of the DNA and its ability for 
electrostatic attractions with the positively-charged moieties. However, incubation of the electrode 
covered with the copolymer Azure B–proflavine and adsorbed DNA did not result in an increase of 
the charge transfer resistance. Contrary to that, the R2 value decreased to the level typical for the 
copolymer prior to the DNA application. This might be due to the lesser repulsion of the [Fe(CN)6]3–

/4–. For this reason, the following experiments were performed with preliminary treatment of the 
DNA with the doxorubicin solution performed prior to the DNA application on the electrode surface. 
After 20 min. of incubation, the mixture was applied on the electrode covered with the copolymer. 
After drying, the electrode was carefully washed with deionized water and then immersed in the 
working PB for EIS measurements. As was mentioned previously, all the changes of the surface layer 
affected mostly the impedimetric parameters on outer interface. The charge transfer resistance 
linearly increased with the doxorubicin concentration in the range from 10 nM to 0.03 nM. Figure 6 
shows appropriate changes of the Nyquist diagram. 
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Figure 6. The Nyquist diagram obtained on the glassy carbon electrode covered with poly(Azure B–
proflavine) and DNA previously mixed with doxorubicin solution (2 μL of the mixture containing 1.0 
mg/mL DNA in 0.1 M HEPES + 0.03 M NaCl, pH = 7.0). Measurements in 0.025 M PB + 0.1 M KCl, pH 
= 7.0, in the presence of 10 mM [Fe(CN)6]3-/4-. 

Thus, the sensitivity of the EIS parameters toward doxorubicin was much higher than that of 
voltammetry. The linear range of the concentrations determined was 3 × 10−11–1 × 10−8 M (calibration 
Equation (4)): 

Rct, kΩ = (380 ± 12) + (21 ± 1) log(c, M), R2 = 0.9673, n = 5 (4)

In the same concentration range, the capacitance of the outer interface increases with the 
doxorubicin concentration from 1.3 to 1.9 μF and remains constant after reaching 1 nM concentration. 
The limit of detection (LOD) corresponded to the S/N = 3 criterion was found to be 1 × 10−11 M. These 
characteristics are similar or better than those of other electrochemical sensors and DNA sensors 
described for doxorubicin determination. The comparison of the characteristics of such sensors is 
summarized in Table 2. 
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Table 2. Analytical characteristics of the determination of doxorubicin with electrochemical sensors 
and DNA sensors. 

Surface Layer/Electrode Concentration 
Range 

LOD, 
nM 

Ref 

Electrochemical sensors 
Carbon nanotubes 20–500 nM - [46] 

Ionic liquid/ZnO in carbon paste 0.07–5000 μM 9.0 [47] 
Mesoporous carbon nanospheres/reduced 

graphene oxide 
10 nM–10 μM 1.5 [44] 

Basal plane pyrographite 0.01–1 μM 10 [45] 
Fe2Ni@Au/reduced graphene oxide 5.5–9.2 μM 1460 [48] 

Electrochemical DNA sensors 
Poly(Azure B)/DNA 0.1 μM–0.1 nM 0.07 [29] 

Poly(proflavine)/DNA 1 nM–0.1 μM 0.3  [31] 
Polyaniline/DNA 1.0 pM–1 mM 0.0006 [49] 

Carbon nanotubes/polylysine/DNA 2.5 nM–0.25 μM 1.0 [50] 
Poly(Neutral red)/DNA 0.01–100 μM 0.1 [51] 

Poly(Azure B–proflavine) 0.03–10 nM 0.01 This 
work 

 

The only DNA sensor that showed higher sensitivity was comprised of the polyaniline with the 
physically adsorbed DNA. The advantage in its characteristics can be referred to a higher level of the 
redox activity of the polymer and higher sensitivity of its redox properties toward microenvironment 
than those of polyphenothiazines. Meanwhile, the electropolymerization of aniline requires strongly 
acidic media and is sensitive to the presence of the oxygen that can partially suppress the 
electroconductivity of the polymer formed. For this reason, only freshly distilled aniline is used in 
the electropolymerization. The incubation performed at pH 3.0 can also negatively affect the results 
if complex media is analyzed.  

For the selectivity assessment, the impedimetric signal of 1.0 nM doxorubicin was measured in 
the presence of 10 μM bovine serum albumin and 1.0 μM sulfamethoxazole. The variation of the 
charge transfer resistance averaged for six individual DNA sensors did not exceed 6%. This coincides 
well with the results obtained earlier for the polyaniline based DNA sensors with impedimetric and 
voltammetric signals [3,49]. 

The results obtained make it possible to conclude that impedimetric measurements allow for the 
sensitive determination of doxorubicin in the sub-nanomolar range of its concentrations.  

3.4.3. Measurement Precision and DNA Sensor Lifetime 

Sensor-to-sensor repeatability calculated from the EIS data was equal to 5.5% (six individual 
sensors, 1.0 nM doxorubicin). Each sensor was used only once because of irregular changes in the 
sensitivity observed in the next attempts of the signal determination. The GCE covered with the 
copolymer of the Azure B and proflavine can be stored in dry conditions at 4 °C for at least six months. 
In the following DNA application and doxorubicin signal measurement, the deviation tends to 
increase to 10% toward the end of the storage period.  

3.4.4. Real Sample Analysis 

The DNA sensor developed was tested in the determination of the doxorubicin content in two 
medications, i.e., Doxorubicin-TEVA ® and Doxorubicin-LANS ® ((lyophilizates for intravascular 
injection solutions). In both cases, the medications were dissolved first in deionized water and then 
in working buffer solution and mixed in 9:1 ratio with 10.0 mg/mL DNA to final nominal 
concentration of 1.0 mg/mL (see Section 2.4 for details). Then the mixture was applied on the electrode 
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surface and dried. Unbounded components were carefully removed with deionized water and PB 
and the EIS measurements were performed as described above. The recovery was assessed using the 
calibration TEVA, plot of the drug obtained in buffered media with standard drug solutions. For the 
doxorubicin- the recovery was equal to 99 ± 7% (six measurements) and that for the doxorubicin-
LANS 102 ± 10%. It should be mentioned that both preparations contained stabilizers (lactose and 
mannite, respectively). It is probably that the low activity of the polymer coating to oxidizable species 
showed, for doxorubicin itself, suppressed its influence on the biosensor signal. 

In a similar manner, the influence of serum proteins (for the example of bovine serum protein, 
see Section 3.4.3) and plasma electrolytes (Ringer–Locke’s solution) was estimated with 1 nM 
doxorubicin solution. The recoveries of 106 ± 8% and 102 ± 12% were found. Certainly, more attention 
should be paid to the assessment of the factors that affect the biosensor response with real blood 
samples. However, on this stage of “proof-of-concept” it can be concluded that the DNA sensor 
developed can find application for preliminary assessment of the concentration of doxorubicin in 
patients’ serum after further validation. 

4. Discussion 

The electropolymerization of an equimolar mixture of the Azure B and proflavine made it 
possible to modify the electrode with a layer that provides both reliable adsorption of the native DNA 
and determination of its interaction with anthracycline dye. Contrary to similar protocols previously 
elaborated for individual dyes, the mixed composition offered some advantages, i.e., a denser and 
durable film with a rough surface capable of electron exchange and DNA implementation. The size 
distribution of the polymer and DNA adsorbed was different from the polymeric dyes described 
elsewhere by lower size of the DNA aggregates and their narrow distribution. The comparison of the 
cyclic voltammograms and the SEM images with those of poly(Azure B) and poly(proflavine) showed 
the participation of both components in the electron exchange and related H+ transfer.  

Doxorubicin is one of the anthracycline antibiotics active against solid tumors and hematological 
malignancies [52]. Its application is limited by rather high cardiotoxicity [53]. For this reason, its 
monitoring in the biological fluids and preparations is extremely important in chemotherapy for 
individual dose establishment. Additionally, doxorubicin has found a broad application as a 
standard intercalator in investigations of electrochemical DNA sensors. In addition to intercalation it 
is involved in the generation of reactive oxygen species that damage DNA and produce 8-oxoguanine 
as an indicator of oxidative damage [54]. For this reason, new systems of doxorubicin determination 
based on polymer-DNA films exerting own redox activity are important for both pharmaceutical 
applications and DNA biosensors progress. 

For EIS measurements of DNA sensors, an [Fe(CN)6]3-/4- redox probe is mostly used. Due to the 
negative charge and repulsion from phosphate residues of the DNA backbone, the impedimetric 
signal becomes sensitive to any biochemical interactions that take place on the electrode interface 
with DNA molecules. Two main mechanisms are mostly considered to explain changes in the charge 
transfer resistance of these biosensors contacted with target analytes, i.e., (i) changes in electrostatic 
interactions caused by shielding phosphate groups of the DNA, and (ii) changes in the permeability 
of the surface coating for small ions due to denser packing and deposition of non-conductive 
molecules interacting with DNA [54].   

Considering the influence of doxorubicin on EIS parameters, one of the unexpected results was 
that electrostatic interactions mentioned played less significant role in the signal generation than 
usually for other DNA sensors based on the redox active polymers. Variation of the permeability of 
the surface layer for small ions (ferricyanide as redox probe) is most important factor explaining the 
performance of the biosensor. Changes in the DNA aggregation on the polymer film initiated by an 
intercalator could also suppress the transfer of the redox probe to the electrode but SEM data did not 
allow quantifying changes in the aggregation on the images. 

Although the copolymer synthesized showed reversible redox behavior, its activity was found 
to be too small for effective participation in the electron transfer to the diffusionally-free reactants. 
The attempts to determine doxorubicin by its mediated oxidation on the modified electrode showed 
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only minor variation of the current. However, this low activity can be considered as an advantage if 
the biosensor is applied for drug testing. Indeed, medications contain antioxidants to stabilize drugs 
and increase the drug storage period. In this work, no influence of such stabilizers was found for two 
different species (mannite and lactose). This makes biosensor also attractive for the drug residues 
detection in biological liquids with minimal sample treatment. Summarizing the specific properties 
of the DNA sensor, one could suppose, hydrophobicity of the electrode interface can be critical factor 
affecting the biosensor behavior and its high sensitivity toward doxorubicin. 
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