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Abstract: Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing
to their exquisite features, such as excellent textural properties or biocompatibility. However, there are
various biological barriers that prevent their proper translation into the clinic, including: (1) lack
of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal
sequestration of the particles upon internalization. In addition, their open porous structure may lead
to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the
treatment. First, this review will provide a comprehensive and systematic overview of the different
approximations that have been implemented into mesoporous silica nanoparticles to overcome each
of such biological barriers. Afterward, the potential premature and non-specific drug release from
these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive
gatekeepers, which endow the particles with on-demand and localized drug delivery.

Keywords: mesoporous silica nanoparticles; cancer; drug delivery; targeting; biological barriers;
endosomal escape; stimuli-responsive; controlled drug release; nanomedicine

1. Introduction

In the last few decades, the application of nanotechnology to medicine, the so-called nanomedicine,
has attracted much interest among the scientific community, and it is expected to revolutionize the
biotechnological and healthcare industries in the near future [1–3]. In this sense, the efforts of many
nanotechnologists have been headed toward the development of nanoparticles for the treatment
and/or diagnosis of several diseases [4–6]. From a general point of view, those nanoparticles can be
classified as organic or inorganic. Organic nanocarriers include liposomes [7], polymeric micelles [8]
or polymeric nanoparticles [9], whereas examples of inorganic nanocarriers are metal [10], carbon [11]
and silica nanoparticles, which have attracted great attention owing to their excellent properties [12].

Bulk ordered mesoporous silica materials were first reported in the early 90s by researchers from
Waseda University [13] and the Mobil Oil Corporation [14]. They have been employed in a number of
fields, including catalysis [15,16] or energy storage [17,18], among others. In addition, these materials
have been extensively applied for biomedical purposes, especially since Vallet-Regí and coworkers
first reported these materials as convenient carriers for therapeutic payloads [19].

Nanomaterials 2020, 10, 916; doi:10.3390/nano10050916 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0001-9815-0354
https://orcid.org/0000-0002-6104-4889
http://dx.doi.org/10.3390/nano10050916
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/5/916?type=check_update&version=2


Nanomaterials 2020, 10, 916 2 of 49

Because these bulk mesoporous silica materials exhibited remarkable physico-chemical properties
and promising biomedical applications, their translation to the nanoscale dimension was promptly
achieved. These efforts led to mesoporous silica nanoparticles (MSNs) offering (a) tunable pore size
distributions and high pore volumes (2–30 nm and ca. 1 cm3/g, respectively), (b) high specific surface
areas (up to 1500 cm2/g), (c) high density of silanol groups on the surface, (d) robust silica framework
that allows harsh reaction conditions and (e) great biocompatibility [20,21].

Silica is “generally recognized as safe” by the US Food and Drug Administration (FDA) and
it is often used as dietary supplement and as excipient in drug formulations [12,22]. Silica can
be found as crystalline or amorphous materials, as MSNs are. Compared to the crystalline form,
amorphous silica is rapidly cleared from the lungs, which would account for its lower toxicity [23].
Amorphous silica nanoparticles can be engineered into porous or nonporous silica nanoparticles.
Both types of particles are hydrolytically degraded over time into water-soluble, biocompatible silicic
acid, which is eventually excreted in the urine [24]. However, it should be mentioned that porous
silica nanoparticles degrade faster than their nonporous counterparts, which would facilitate their
excretion. This phenomenon has been ascribed to presence of mesopores and the larger surface area of
the former [25]. Moreover, the degradation rate of porous silica can be tuned by functionalizing the
surface with different functionalities thanks to the creation of a protective barrier [26]. Furthermore, it
has been shown that MSNs can also be degraded within cells [27–29].

Given the suitability of MSNs to be applied for biomedical applications, much emphasis should
be placed on the surface, as it constitutes the frontline of the nanocarrier. It is involved in all the
interactions with the surrounding biological milieu and, consequently, it should be conveniently
engineered to avoid any potential issues derived from the administration of the particles. In this regard,
presenting a surface full of silanol groups is a feature of major importance, since they can be easily
derivatized to other functional groups (amine, carboxylic acid, thiol, etc.) to then introduce additional
molecular structures with many different functionalities.

As a result of all the excellent properties described above, MSNs have been applied for the treatment
of a number of diseases, such as infection and osteoporotic scenarios [30,31], heart diseases [32–34],
ophthalmological diseases [35,36] or diabetes [37,38], among others. In particular, most of the efforts
have been headed towards the development of nanocarriers for cancer treatment, which is one of the
leading causes of death worldwide [39].

Ideally, drug-loaded nanoparticles should accumulate only in the tumor. However, the several
barriers that nanoparticles have to face when administered may not only prevent their successful
translation into the clinic, but also reduce the efficacy of the treatments. In fact, a recent meta-analysis
argued that less than 1% of the administered nanoparticles finally reached the tumor [40]. Figure 1
illustrates relevant barriers that nanoparticles have to face when administered to a patient.

As observed in Figure 1, MSNs should be able to: (a) accumulate preferentially in the tumors,
(b) internalize selectively in cancer cells and (c) achieve endosomal escape to exert their therapeutic
action. In addition, drug-loaded MSNs should be able to release their cargo only inside the tumoral
cells. To obtain such behavior, researchers have focused on the development of stimuli-responsive
gatekeepers. These structures are able to block the pore entrances until some specific stimulus is
applied, leading to the drug release.

This review is intended to provide a description on how the surface functionalization of MSNs
influences their performance as drug delivery carriers for cancer treatment. The review is sequentially
organized according to the journey that MSNs would have when administered systemically to a
patient. First, different strategies to enhance the accumulation of MSNs in tumoral tissues will be
presented. Then, the different targeting moieties that confer the particles selective recognition of
tumoral cells will be described. Afterward, various strategies for achieving the endosomal escape will
be outlined. Finally, different strategies to prevent premature drug release and achieve on-demand
stimuli-responsive drug delivery will be presented.
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Figure 1. Schematic representation of relevant barriers that mesoporous silica nanoparticles (MSNs) 
have to face when administered to a patient. These barriers include potential premature release and 
different biological barriers, such as lack of accumulation in tumor tissues, lack of accumulation in 
cancer cells and sequestration in the endo-lysosomes. 

2. Targeting Tumor Tissues 

While achieving preferential cellular uptake in cancer cells is of major importance, maximizing 
the amount of nanoparticles delivered to the tumoral tissues still needs to be addressed. In this sense, 
the use of passive and active strategies to promote the accumulation of particles constitutes a 
promising tool for the effective delivery of chemotherapeutics to the tumors.  

2.1. Passive Targeting of Tumor Tissues 

2.1.1. Enhanced Permeability and Retention Effect 

The first steps towards the development nanocarriers for cancer treatment were the findings that 
Maeda and coworkers reported in 1986. They found that proteins above 40 kDa spontaneously 
accumulated in tumoral tissues and remained there for long periods of time [41]. They observed that 
solid tumors present impaired blood vessels, with 200–2000 nm endothelial cell-cell gaps, and poor 
lymphatic drainage, as a consequence of their rapid growth. As a consequence of such physiology, 
nanoparticles tend to leak out from the tumor vessels and accumulate in the tumors (Figure 2).  

This effect is known as enhanced permeability and retention (EPR) effect and it is the basis of 
some commercialized nanomedicines [42]. As observed in Figure 2, only tumor blood vessels show 
such impaired development and, consequently, the EPR effect constitute a differential feature for the 
delivery of nanoparticles to tumors [43]. 

Figure 1. Schematic representation of relevant barriers that mesoporous silica nanoparticles (MSNs)
have to face when administered to a patient. These barriers include potential premature release and
different biological barriers, such as lack of accumulation in tumor tissues, lack of accumulation in
cancer cells and sequestration in the endo-lysosomes.

2. Targeting Tumor Tissues

While achieving preferential cellular uptake in cancer cells is of major importance, maximizing
the amount of nanoparticles delivered to the tumoral tissues still needs to be addressed. In this sense,
the use of passive and active strategies to promote the accumulation of particles constitutes a promising
tool for the effective delivery of chemotherapeutics to the tumors.

2.1. Passive Targeting of Tumor Tissues

2.1.1. Enhanced Permeability and Retention Effect

The first steps towards the development nanocarriers for cancer treatment were the findings
that Maeda and coworkers reported in 1986. They found that proteins above 40 kDa spontaneously
accumulated in tumoral tissues and remained there for long periods of time [41]. They observed that
solid tumors present impaired blood vessels, with 200–2000 nm endothelial cell-cell gaps, and poor
lymphatic drainage, as a consequence of their rapid growth. As a consequence of such physiology,
nanoparticles tend to leak out from the tumor vessels and accumulate in the tumors (Figure 2).

This effect is known as enhanced permeability and retention (EPR) effect and it is the basis of
some commercialized nanomedicines [42]. As observed in Figure 2, only tumor blood vessels show
such impaired development and, consequently, the EPR effect constitute a differential feature for the
delivery of nanoparticles to tumors [43].
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Figure 2. Schematic representation of the enhanced permeability and retention effect. (A) Normal 
blood vessels do not present fenestrations and MSNs remain in the bloodstream. (B) Tumor tissues 
present defective blood vessels and MSNs can leak out from them through the endothelial gap-gap 
and accumulate in the tumor. 

2.1.2. Nanoparticle Features Affecting the Biodistribution of MSNs 

In order for the carriers to accumulate in the tumor, it is still necessary to avoid renal clearance 
and removal from the bloodstream by the mononuclear phagocyte system (MPS). Regarding 
clearance, in vivo animal studies have shown that MSNs are mainly excreted in the urine, especially 
during the first two days. Furthermore, 7-nm silica nanoparticles (c-dots) have been approved by the 
FDA for imaging purposes and the human clinical trials have demonstrated that they are well 
tolerated and mainly excreted through the kidneys [24]. 

Features such as their size, shape or surface characteristics directly affect the final fate of the 
particles. With regard to the size, it is agreed that particles must be at least 10 nm in diameter to 
bypass renal clearance and smaller than 400 nm, so they can extravasate and diffuse into the tumor. 
Nonetheless, the precise size to balance those factors along with the eventual cellular uptake of the 
carriers is controversial. In this respect, some authors consider a size of ca. 100 nm or below as the 
most effective [44], while others propose a size of ca. 300 nm [45]. 

The biodistribution and the interaction with cells are also influenced by the shape of the carriers. 
Unlike their spherical counterparts, rod-like nanoparticles circulate longer in the bloodstream, being 
at the same time more prone to diverge closer to the vessel walls, enhancing their extravasation 
[46,47]. Nonetheless, it is unclear whether non-spherical particles present greater cellular 
internalization than their spherical counterparts [48,49]. 

In addition to size and shape, the surface characteristics also play an important role. There are 
some plasma proteins, known as opsonins, whose function is to adhere to foreign bodies so they can 
be easily recognized by the organism and removed from the bloodstream by the MPS. In 
consequence, when nanoparticles are exposed to biological fluids, these proteins are rapidly 
deposited onto the surface, forming a protein corona that provides a biological entity to the particles 
and triggers their removal [50]. That protein adsorption can be minimized if the surface is 
conveniently engineered (Figure 3).  

Figure 2. Schematic representation of the enhanced permeability and retention effect. (A) Normal
blood vessels do not present fenestrations and MSNs remain in the bloodstream. (B) Tumor tissues
present defective blood vessels and MSNs can leak out from them through the endothelial gap-gap and
accumulate in the tumor.

2.1.2. Nanoparticle Features Affecting the Biodistribution of MSNs

In order for the carriers to accumulate in the tumor, it is still necessary to avoid renal clearance
and removal from the bloodstream by the mononuclear phagocyte system (MPS). Regarding clearance,
in vivo animal studies have shown that MSNs are mainly excreted in the urine, especially during the
first two days. Furthermore, 7-nm silica nanoparticles (c-dots) have been approved by the FDA for
imaging purposes and the human clinical trials have demonstrated that they are well tolerated and
mainly excreted through the kidneys [24].

Features such as their size, shape or surface characteristics directly affect the final fate of the
particles. With regard to the size, it is agreed that particles must be at least 10 nm in diameter to
bypass renal clearance and smaller than 400 nm, so they can extravasate and diffuse into the tumor.
Nonetheless, the precise size to balance those factors along with the eventual cellular uptake of the
carriers is controversial. In this respect, some authors consider a size of ca. 100 nm or below as the
most effective [44], while others propose a size of ca. 300 nm [45].

The biodistribution and the interaction with cells are also influenced by the shape of the carriers.
Unlike their spherical counterparts, rod-like nanoparticles circulate longer in the bloodstream, being at
the same time more prone to diverge closer to the vessel walls, enhancing their extravasation [46,47].
Nonetheless, it is unclear whether non-spherical particles present greater cellular internalization than
their spherical counterparts [48,49].

In addition to size and shape, the surface characteristics also play an important role. There are
some plasma proteins, known as opsonins, whose function is to adhere to foreign bodies so they can
be easily recognized by the organism and removed from the bloodstream by the MPS. In consequence,
when nanoparticles are exposed to biological fluids, these proteins are rapidly deposited onto the surface,
forming a protein corona that provides a biological entity to the particles and triggers their removal [50].
That protein adsorption can be minimized if the surface is conveniently engineered (Figure 3).
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As mentioned above, the EPR effect constitutes a reliable approximation to the passive 
accumulation of particles in tumors. However, its magnitude highly depends on the particularities 
of the patient and the tumor [64]. For instance, it is very pronounced in Kaposi sarcoma and multiple 
myeloma, whereas pancreatic cancer barely exhibits EPR-mediated accumulation [65]. That non-
universality of the EPR effect has fueled the development of active approaches to improve the 
delivery of nanoparticles to the tumor tissues. Examples of this strategy include the use of tumor-
tropic peptides and tumor-tropic cells, among others. 
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Figure 3. Schematic representation of the strategies employed to minimize protein adsorption and
subsequent nanoparticle removal from the bloodstream. Unmodified MSNs tend to adsorb plasma
protein, thereby triggering their clearance, whereas functionalized nanoparticles repel plasma protein
and achieve longer circulation time.

A common strategy consists in the use of polyethylene glycol (PEG), which is a hydrophilic
polymer that creates a hydration layer around the particles, reducing protein adsorption and improving
their colloidal stability [51], as demonstrated using MSNs [52,53]. An alternative strategy involves
functionalizing the surface with zwitterionic moieties (equal number of positive and negative charges).
In this manner, the surface presents zero net charge, which creates a hydration layer that prevents
opsonization [54], as it has been shown for different zwitterionic MSNs [55–57]. In addition to
those purely chemical approaches, the use of red blood cell membrane coatings onto MSNs has
been proved to be useful for preventing immune response and enhancing the circulation time [58].
Furthermore, coating the MSNs with cancer cell membranes not only enhances their circulation time,
but also promotes the internalization in such cancer cells [59–61]. Finally, functionalizing MSNs with
biocompatible proteins has been proved to reduce macrophage activation and minimize the immune
response [62,63].

2.2. Active Targeting of Tumor Tissues

As mentioned above, the EPR effect constitutes a reliable approximation to the passive
accumulation of particles in tumors. However, its magnitude highly depends on the particularities of the
patient and the tumor [64]. For instance, it is very pronounced in Kaposi sarcoma and multiple myeloma,
whereas pancreatic cancer barely exhibits EPR-mediated accumulation [65]. That non-universality of
the EPR effect has fueled the development of active approaches to improve the delivery of nanoparticles
to the tumor tissues. Examples of this strategy include the use of tumor-tropic peptides and tumor-tropic
cells, among others.

2.2.1. Tumor-Tropic Peptides

Tumor-tropic peptides are cyclic peptides that have been observed to trigger the spontaneous
accumulation of MSNs in tumoral tissues at the same time that promote their penetration toward inner
areas of the tumor [66–68]. This phenomenon is consequence of an existing endocytic transcytosis
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pathway in tumor endothelial cells that can be activated by such peptides. The most relevant example
is the iRGD peptide, which is composed by the integrin-binding RGD (arginine-glycine-aspartate)
peptidic sequence and the neuropilin-1 binding motif. The RGD sequence first binds the overexpressed
αβ integrin present on the membrane of tumor endothelial cells. After that, a proteolytic cleavage
exposes the neuropilin-1 motif (previously inactive), which interacts with the NRP-1 receptor and
initiates a trans-tissue transport pathway [69,70]. This approach is not restricted to using the RGD
motif, and it can be tuned to target alternative receptors (e.g., iNGR peptide [71]).

2.2.2. Cells with Migratory Properties

On the other hand, there are some types of cells with migratory properties, including different
bacteria and mesenchymal stem cells, among others [72–74]. For instance, there are bacteria that move
toward hypoxic areas, as inner areas of tumors are [75,76]. In this sense, it has been shown that MSNs
can be attached to the bacteria wall. Then, such bacteria can move toward inner areas of a 3D tumoral
matrix model, carrying the particles and showing great efficacy in killing cancer cells [77].

Mesenchymal cells show inherent migratory properties in response to injury or inflammation
and their main advantage is their low or non-immune response. In this manner, nanoparticles are
first internalized within these cells to then be spontaneously delivered to the tumoral tissues without
exposing them to the biological milieu, thereby minimizing any potential immune response against
the particles, as demonstrated using MSNs [78–80].

2.3. Enhanced Penetration in the Tumoral Mass

Aside from targeting the tumoral mass, nanoparticles should diffuse toward inner areas of the
tumor to reach and eliminate all cancer cells. The extracellular matrix is predominantly composed of a
highly interconnected network of collagen and other components such as hyaluronic acid (HA), elastin,
laminin and proteoglycans. Besides, tumors present elevated interstitial pressure [81,82]. As a result,
nanoparticles penetration and diffusion are hindered, thereby decreasing the efficacy of the treatment.

2.3.1. Proteolytic Enzymes

Some authors have proposed the use of proteolytic enzymes, as they are able to digest the
components of the extracellular matrix, therefore decreasing its stiffness and enhancing nanoparticle
penetration. For instance, the surface modification of MSNs with bromelain enhances their diffusion in
the tumoral mass, compared to the uncoated particles [83]. However, this strategy has some limitations,
as enzymes may degrade and lose their catalytic activity on their way to the tumor. In this regard,
our group recently reported the encapsulation of collagenase within a degradable polymeric mesh.
This coating remained unaffected at physiological pH, preserving the catalytic activity of the enzyme.
However, the capsule degraded at acid pH, releasing the enzyme and enhancing the penetration of
MSNs in a 3D tumoral matrix model thanks to the collagen digestion [84,85].

It is agreed that smaller nanoparticles penetrate deeper in the tumors, although those with larger
size present greater circulation time. For that reason, a nice strategy to address both concerns consists
in designing nanoparticles able to undergo a larger-to-smaller size change upon arrival to the tumoral
mass [86]. In this regard, a recent article proposed the synthesis of small 40 nm MSNs that were
then engineered as large nanocarriers through the use of 3-arm PEG. MSNs were connected using a
peptidic sequence (GPLGIAGQ) cleavable by metalloproteinases (MMPs), which are overexpressed
in the extracellular tumoral matrix. Hence, the particles only reduced their size once in the tumor,
enhancing the initial accumulation and subsequent penetration in the tumor [87].

2.3.2. Ultrasounds

An alternative strategy to enhance the penetration of particles in tumors consists in the use of
localized ultrasound (US) [88]. The rationale for using US relies on the inertial cavitation phenomenon.
Cavitation is the oscillation of gas bubbles in a fluid, which can be stable (expanding and contracting
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around a given radius) or instable if the pressure is high enough (inertial cavitation). In the latter
scenario, the bubbles grow unstably and collapse violently during compression, effect that can be taken
advantage of for impelling the particles, favoring their extravasation and subsequent penetration in
the tumoral mass [89]. It this sense, it has been observed that applying US leads to increased tumor
vascular disruption and deeper particle penetration [90]. However, our group has demonstrated that
too high pressure might be needed to obtain significant penetration. In this regard, it has been shown
that co-administering MSNs with submicrometric cavitation nuclei leads to enhanced diffusion of the
particles in an agarose model upon application of clinically suitable US frequency [91].

3. Targeting Cancer Cells

As stated above, the shape and size of nanocarriers not only determine their extravasation but
also affects their interaction with cells. In addition to these parameters, the surface charge also plays
an important role. Because of the negatively charged cell membrane, cationic nanoparticles show
greater uptake, albeit being more prone to undergo opsonization and subsequent clearance [92,93].
However, there is evidence that positive nanoparticles tend to accumulate in the periphery of the
tumor whereas those negatively charged tend to penetrate deeper owing to the repulsion with cell
membranes [94]. Nonetheless, even if the previously mentioned factors were optimized, nanoparticles
might still be internalized by healthy cells. For that reason, there has been much research on how to
specifically recognize cancer cells as well as on how to optimize intracellular trafficking.

A widely employed strategy for the selective targeting of cancer cells consists in the
functionalization of the surface targeting ligands that are able to bind specific receptors that are
overexpressed only on the membrane of tumoral cells. The ligand density on the particles is a
parameter of key importance. For instance, too high ligand density would account for (a) reduced
particle stealth character (i.e., increased clearance), (b) increased particle size (i.e., reduced accumulation
in the tumor via EPR effect), (c) steric hindrance of closely packed ligands (i.e., reduced nanoparticle
binding ability) and (d) high number of cells receptors used per particle (i.e., reduced cellular
uptake) [95]. Examples of such targeting agents include antibodies, aptamers, peptides, proteins,
saccharides and small molecules (Figure 4).Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 48 
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Such targeting agents can be implemented into MSNs following different configurations, endowing
the particles with many different targeting possibilities. A schematic representation of the strategies
most commonly employed to target cancer cells with MSNs is shown in Figure 5.Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 48 
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3.1. Single Targeting

The simplest approximation involves the direct attachment of those targeting ligands to the surface
of MSNs. In this manner, the targeting ligands are permanently exposed and can interact with the
surrounding environment.

3.1.1. Antibodies

Antibodies bind specific antigens located on the membrane of cancer cells with extremely high
specificity. For instance, trastuzumab, an FDA-approved monoclonal antibody that targets the HER2
receptor, has been extensively conjugated with MSNs, endowing them with remarkable targeting
ability toward SK-BR3 [96–98] and BT-474 [98–100] breast cancer cells. Similarly, the FDA has also
approved a monoclonal antibody for targeting the CD44 receptor, whose grafting to MSNs results in
enhanced cellular uptake in MCF-7 breast cancer cells [101].

TRC105, a monoclonal antibody in clinical trials that binds the CD105 membrane protein, has
also proved to be useful for improving the internalization of MSNs 4T1 breast cancer cells [102–104].
A monoclonal antibody for targeting the EpCAM transmembrane protein has also been FDA-approved,
and it has been grafted to MSNs to enhance their efficacy against Y79 retinoblastoma cells [105].
Another monoclonal antibody that is currently in clinical trials is TAB-004. This compound targets the
MUC1 transmembrane glycoprotein, which is overexpressed in most of cancer cells, and its conjugation
with MSNs has yielded excellent results targeting murine breast cancer cells expressing the human
form of MUC1 [106].

Finally, cetuximab, which is a monoclonal antibody also approved by the FDA, has been grafted to
MSNs to selectively target overexpressed EGFR receptors in MCF-7 breast cancer [107], PC9 non-small
lung cancer [108] and in a number of pancreatic cancer cell lines [109]. Even though they are highly
effective in binding such receptors, their high production cost and potential undesired immune response
have fueled the research of alternative targeting agents.
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3.1.2. Aptamers

Aptamers are single-stranded DNA, RNA or unnatural oligonucleotides able to adopt tertiary
conformations that exhibit affinity for various types of targets. These structures show specificity
comparable to that of antibodies, besides being non-immunogenic and easy to synthesize [110].
For instance, the EpCAM protein can also be targeted using conveniently engineered aptamers. In this
regard, modifying the surface of MSNs with such aptamer increases their selectivity toward Huh-7
liver cancer cells [111], HepG2 hepatic cancer cells [112] and different colon cancer cells [113,114].
Similarly, the MUC1 protein can also be targeted using aptamers, increasing the ability of MSNs
to inhibit the proliferation of MDA-MB-231 [115] and MCF-7 breast cancer cells [116]. The AS1411
aptamer was the first aptamer to enter clinical trials, and it has been proved to be effective in targeting
the nucleolin receptor of HeLa [117], SKOV-3 ovarian cancer cells [118] and MCF-7 breast cancer
cells [119–121] with MSNs. Additional examples of aptamer-targeted MSNs are those using the YQ26
or HB5 aptamers, which show high selectivity for END-positive [122] and HER2-positive [123] cancer
cells, respectively.

3.1.3. Peptides

The use of cell-penetrating peptides has attracted much attention owing to their ability to cross
biological membranes [124]. The exact mechanism remains not fully understood but there are some
proposed mechanisms [125]. For instance, the functionalization of MSNs with the TAT peptide provides
great cellular uptake and further targets the nanoparticles to the cell nucleus [126]. Another example is
the functionalization of MSNs with the KALA peptide, which is able to mediate the internalization
and subsequent endosomal escape of nanoparticles [127].

The examples described so far rely on nonspecific internalization mechanisms, meaning that
those particles could be internalized by both tumoral and healthy cells. For that reason, researchers
have focused on identifying specific peptidic sequences that provide specific binding of overexpressed
cellular receptors. For instance, functionalizing the surface with the RGD peptide is useful for
promoting the internalization of MSNs in cells overexpressing αβ-integrin, such as many cancer
cells [128–132] or the tumor endothelium [133]. The CD13 receptor, which is upregulated in glioma
cells, can be efficiently targeted using NGR-functionalized MSNs [134,135]. Moreover, MSNs bearing
this peptide are more prone target brain endothelial cells and cross the blood-brain-barrier [136].
In addition to those wide spectrum peptides, MSNs can be functionalized with peptides that show
affinity for receptors present only on very specific cell lines. Examples of these peptides include
NAPamide (targets the melanocortin-1 receptor of melanoma cells) [137], Bld-1 (targets formyl peptide
receptor-1 of bladder cancer cells) [138] or IL-13 (targets the IL-13R-α2 receptor of glioma cells) [139].

3.1.4. Proteins

Proteins also have a relevant role in targeting cancer cells. For instance, transferrin is a protein
that mediates iron cellular uptake and its receptor is highly overexpressed in many cancer cells. In
this sense, transferrin-targeted MSNs show enhanced cellular uptake in HT1080 fibrosarcoma [140],
HepG2 hepatocellular carcinoma [141], Huh-7 liver cancer cells [142], MDA-MB-231 breast cancer
cells [143], C6 glioma cells [144] and MIA PaCa-2 pancreatic cancer cells [145]. A unique feature
of pancreatic cancer cells is the presence of upregulated urokinase plasminogen activator receptors,
which can be efficiently targeted by modifying the surface of MSNs with the serine protease urokinase
plasminogen activator [146]. Lectins show affinity for aberrantly overexpressed carbohydrates on the
membrane of cancer cells. In this regard, concanavalin A-coated MSNs present superior internalization
in cells overexpressing sialic acid residues [147], whereas Aleuria aurantia promotes the internalization
of MSNs in colon adenocarcinoma cells upregulating the sialyl-Lewis X antigen [148].
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3.1.5. Carbohydrates

These biomolecules have also been explored as targeting agents owing to their ability to interact in
a very specific manner with overexpressed lectin proteins present on the cell membrane. For instance,
the asialoglycoprotein receptor can be targeted using MSNs functionalized with galactose [149] or
lactobionic acid [150–153]. In addition, the conjugation of glucose derivatives with MSNs are useful
for targeting overexpressed GLUT receptors [154,155]. The CD44 receptor can also be targeted using
carbohydrates, and it has been shown that modifying the surface of MSNs with HA [156–159] or
chondroitin sulfate [160–162] promotes the cellular uptake in CD44-positive cancer cells.

3.1.6. Small Molecules

There are also some small molecules that are commercially available or easy to synthesize that
can be employed to target overexpressed cellular receptors. For instance, cancer cells need huge
amounts of vitamins as a consequence of their accelerated metabolism and many of their receptors
are highly overexpressed [163]. Examples are the use of folic acid (vitamin B9) [164–172] and biotin
(vitamin B7) [173–175], whose conjugation with nanoparticles enhances their cellular uptake in a
number of cancer cell lines. Additionally, it seems that cobalamin (vitamin B12) could have a role in
enhancing cellular uptake [176].

Commercially available boronic acids bind sialic acid residues [177]. For that reason, they can
be employed to target MSNs to HepG2 cells showing aberrant overexpression of such residues [178].
Besides, boronic acid-functionalized MSNs are useful for detecting the presence of glycosylated proteins,
which have a role in the initiation and progression of tumors [179]. In addition, highly specific cancer
cell targeting can be accomplished by synthesizing small molecules with great affinity for a very specific
receptor. For instance, the norepinephrine transporter is highly overexpressed in neuroblastoma cells
and can be efficiently targeted using MSNs containing benzylguanidine analogues [180]. A summary
of all the above-mentioned approximations is shown in Table 1.

Table 1. Summary of all the targeting agents implemented into MSNs.

Targeting Agent Membrane Receptor Cell Line Reference

Antibodies

Trastuzumab HER2 SK-BR3, BT-474 [96–100]
Anti-CD44 CD44 MCF-7 [101]

TRC105 CD105 4T1 [102–104]
Anti-EpCAM EpCAM Y79 [105]

TAB-004 MUC1 MMT [106]

Cetuximab EGFR MCF-7, PC9, AsPC-1, PANC-1, MIA
PaCa-2 [107–109]

Aptamers

EpCAM EpCAM Huh-7, HepG2, SW620, SW480 [111–114]
MUC1 MUC1 MDA-MB-231, MCF-7 [115,116]
AS1411 NCL HeLa, SKOV-3, MCF-7 [117–121]
YQ26 END HEK293 [122]
HB5 HER2 SK-BR-3 [123]

Peptides

TAT Importin α/β HeLa [126]
KALA - A549, HeLa [127]

RGD αvβ3-integrin MDA-MB-231, HeLa, UMR-106, PC-3,
4T1, HUVEC [128–133,181]

NGR CD13 C6, NCI-H1299, BCEC [134,135]
NAPamide Melanocortin-1 #17 (melanoma cancer cells) [137]

Bld-1 FPR-1 HT-1376 [138]
IL-13 IL-13R-α2 U87 [139]
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Table 1. Cont.

Targeting Agent Membrane Receptor Cell Line Reference

Proteins

Transferrin TfR HT1080, HepG2, Huh-7,
MDA-MB-231, C6, MIA PaCa-2 [140–145]

Urokinase
plasminogen activator UPAR S2-VP10 [146]

Concanavalin A Sialic acids HOS [147]
Aleuria Auranti Sialyl-Lewis X antigen DLD-1 [148]

Carbohydrates

Galactose
ASGPR HepG2, SMMC-7721 [149]

Lactobionic acid [150–153]
Glucose derivatives GLUT Y79, HeLa, A549 [154,155]

Hyaluronic acid
CD44 MDA-MB-231, HCT-116, HeLa,

MCF-7
[156–159]

Chondroitin sulfate [160–162]

Small Molecules

Folic acid FR-α PANC-1, LS174T, LnCAP, KB, HeLa,
Y79, A549, NCI-H1299 [164–172]

Biotin BR A549, HeLa, NB-4 [173–175]
Boronic acid Sialic acids HepG2 [178]

Benzylguanidine
derivatives NET NB-1691 [180]

Membrane receptors. HER2 (Human epidermal growth factor receptor 2); CD44 (Cluster of differentiation
44, glycoprotein); CD105/END (Endoglin protein); EpCAM (Epithelial cell adhesion molecule); MUC1 (Mucin
1 protein); EGFR (Epidermal growth factor receptor 1); NCL (Nucleolin protein); CD13 (Aminopeptidase N
enzyme); FPR-1 (Formyl peptide receptor 1); IL-13R-α2 (Interleukin-13 receptor α2); TfR (Transferrin receptor);
UPAR (Urokinase plasminogen activator receptor); ASGPR (asialoglycoprotein receptor); GLUT (Glucose
transporter); FR-α (Folic acid receptor); BR (Biotin receptor); NET (Norepinephrine transporter). Cell lines.
Breast. SK-BR3 (adenocarcinoma); BT-474 (ductal carcinoma); MCF-7 (invasive ductal carcinoma); MDA-MB-231
(adenocarcinoma); 4T1 (mouse breast cancer that simulates stage IV human breast cancer); MMT (mouse breast
cancer). Lung. PC9 (adenocarcinoma); A549 (adenocarcinoma); NCI-H1299 (large cell carcinoma). Pancreas.
AsPC-1 (ductal adenocarcinoma); PANC-1 (ductal carcinoma); MIA PaCa-2 (ductal carcinoma); S2VP10 (ductal
adenocarcinoma). Colon. SW620 (adenocarcinoma); SW480 (adenocarcinoma); DLD-1 (adenocarcinoma); HCT-116
(carcinoma); LS174T (adenocarcinoma). Liver. Huh-7 (hepatocellular carcinoma); HepG2 (hepatoblastoma). Ovary.
SKOV-3 (ovarian serous cystadenocarcinoma). Prostate. PC-3 (carcinoma); LnCAP (carcinoma). Endocervix.
HeLa (papillomavirus-related endocervical adenocarcinoma); SMMC-7721 (papillomavirus-related endocervical
adenocarcinoma); KB (papillomavirus-related endocervical adenocarcinoma). Bone. HT-1080 (fibrosarcoma); HOS
(osteosarcoma); NB-4 (acute promyelocytic leukemia); UMR-106 (rat osteosarcoma). Brain. NB-1691 (neuroblastoma);
BCEC (brain capillary endothelial cells); C6 (rat malignant glioma). Eyes. Y79 (retinoblastoma). Kidney. HEK293
(embryonic human kidney cells). Bladder. HT-1376 (carcinoma). Endothelium. HUVEC (human umbilical vein
endothelial cells).

3.2. Dual Targeting

The previously mentioned active targeting agents can be combined in a single carrier so that the
final nanoparticle presents exceptional targeting capacities for various cellular receptors. Nanoparticles
synthesized following this philosophy are referred to as dual-targeted nanocarriers. In this manner,
MSNs can be engineered so they show selectivity not only for tumoral cells but also for the tumor
vasculature or certain subcellular compartments.

3.2.1. Membrane Dual Targeting

The first strategy consists in using only membrane targeting agents. For instance, the combined
use of HA and the RGD peptide has been shown to promote the cellular uptake of MSNs in ovarian
cancer thanks to the simultaneous targeting of CD44 and αβ-integrin [181,182]. Similarly, targeting
HeLa cells using both biotin and folic acid results in slightly better internalization rates than each one
alone [183]. Besides, grafting the monoclonal antibody bevacizumab to MSNs bearing the EpCAM
aptamer provides superior cellular uptake compared to the group containing only the aptamer [184].
However, our group recently demonstrated that using heterogeneous double targeting moieties
not always provides the best results. In this case, a benzylguanidine analog with high affinity for
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the norepinephrine receptor of neuroblastoma was implemented in a Y-shaped, flexible scaffold,
demonstrating extraordinary targeting capacity compared to any other combination [185].

3.2.2. Sequential Dual Targeting

Another approach involves the use of targeting agents showing not only selectivity for cancer cells
but also for other parts of the tumor. For instance, the co-conjugation of both RGD and TAT peptides
on MSNs leads to sequential vascular-membrane-organelle targeting. In this manner, nanoparticles
first bind the tumor vasculature to then be internalized by the tumoral cells owing to the cooperative
behavior of both targeting agents. Once inside the tumoral cell, TAT drives the MSNs into the nucleus
to achieve great cytotoxicity [186]. Another strategy to accumulate the particles in the nucleus consists
in modifying the surface of MSNs with folic acid and dexamethasone. In this manner, folic acid first
triggers the cellular uptake of the particles, which then undergo nuclear translocation thanks to the
dexamethasone molecules [187]. Mitochondria can also be targeted using small molecules. For instance,
MSNs can be engineered to first target the CD44 receptor using HA, which would then degrade
in the lysosomes, exposing a triphenylphosphonium (TPP) derivative with strong mitochondrial
affinity [188].

3.2.3. Janus Dual Targeting

In addition to the previous approaches, in which the targeting agents were randomly distributed
along the surface, the use of Janus nanoparticles (nanoparticles that present two hemispheres, each one
with different reactivity) provides further possibilities. For instance, it is possible to decorate one
hemisphere with HA to target CD44 and the other one with masked positive charges that are only
exposed at the acid pH of the tumoral matrix, improving the internalization in A549 lung cancer
cells [189]. Besides, our group recently reported Janus MSNs with one hemisphere bearing folic
acid and the other one presenting a TPP derivative, demonstrating superior cell internalization and
subsequent mitochondrial targeting [190].

3.3. Hierarchical Targeting

As stated in Section 2.1, nanoparticles are usually modified with PEG to endow them with stealth
properties. However, the targeting moieties are usually attached to the end of the PEG chain in many
of the available systems. This strategy entails two main issues. First, despite the fact that normal cells
do not show overexpressed levels of the previously mentioned receptors, they still present some of
them. In consequence, nanoparticles bearing the targeting moieties anchored to the PEG chains might
lead to non-specific targeting of healthy tissues. Second, because those targeting agents are directly
exposed to the surrounding biological milieu, they might decrease the stealth character of the particles,
consequently triggering their clearance.

Considering the facts exposed above, some researchers have explored the use of hierarchically-targeted
nanocarriers, where the targeting agents are masked by PEG chains. In this manner, the stealth character
of the nanoparticles is preserved on their way to the tumor. In addition, PEG chains difficult the cellular
internalization of nanoparticles, so off-target is minimized [191]. Finally, PEG chains are detached upon
arrival to the tumoral mass, thereby exposing the targeting agents and triggering the drug release.

3.3.1. pH-Responsive Hierarchical Targeting

The most extended approximation is based on using benzoic imine bonds, which are known to be
hydrolyzed at the slightly acidic pH of the tumoral matrix (pH 6.4–6.8) [192]. A common approach
consists in forming acid-labile benzoic imine bonds between MSNs presenting free NH2 groups and an
aldehyde PEG. In this way, the positively charged groups are exposed only in the tumor, triggering the
cellular uptake through electrostatic interactions [193–195]. This method can also be employed to mask
the RGD peptide, combining stealth properties and subsequent pH-mediated active targeting [196].
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Similarly, positive charges can be generated using a thermally-cleavable bond between PEG and the
amino groups on the surface [197].

3.3.2. Enzyme-Responsive Hierarchical Targeting

As stated in Section 2.3, levels of MMPs are upregulated in the tumoral matrix and can be employed
for cleaving specific peptidic sequences. For instance, MSNs can be decorated with HA and further
functionalized a MMP-sensitive PEGylated gelatin. In this way, the particles would accumulate in the
tumor and then MMPs would cleave the PEGylated gelatin, exposing the targeting to CD44 to trigger
the cellular uptake [198]. A similar strategy can be employed to engineer hierarchical folic acid-targeted
MSNs [199]. The RGD peptide can also be masked using a MMP-sensitive peptidic sequence,
which would be cleaved along with the stealthy coating only in the tumor tissue, thereby triggering
the specific binding of αβ-integrin [200,201].

The different strategies for achieving dual and hierarchical targeting described in Sections 3.2
and 3.3 are summarized in Table 2.

Table 2. Summaryofthedifferentstrategies implementedintoMSNsforachievingdualorhierarchical targeting.

Targeting Agents Approach Cell line Reference

Dual Targeting

Hyaluronic acid + RGD Two different membrane targeting
agents

SKOV-3 [181,182]
Biotin + Folic acid HeLa [183]

Bevacizumab + EpCAM aptamer SW480 [184]

Benzylguanidine derivatives Y-shaped scaffold using the same
membrane targeting agent NB-1691 [185]

RGD + TAT
Sequential

vascular-membrane-organelle
targeting

HeLa [186]

Folic acid + Dexamethasone Sequential membrane-organelle
targeting

HeLa [187]
Hyaluronic acid +

Triphenylphosphonium MGC-803 [188]

Hyaluronic acid + Positive charge Janus dual membrane targeting A549 [189]

Folic acid + TPP Janus membrane-organelle
targeting LnCAP [190]

Hierarchical Targeting

Positive charge pH-responsive benzoic imine
bond

HepG2, HeLa [193–195]
RGD U87 [196]

Positive charge Thermally-cleavable bond HOS [197]

Hyaluronic acid MMP-2-degradable gelatin MDA-MB-231 [198]
Folic acid HT-29 [199]

RGD RGD masked with
MMP-2-clevable peptide sequence 4T1, HT-29 [200,201]

Cell lines. Breast. MDA-MB-231 (adenocarcinoma); 4T1 (mouse breast cancer that simulates stage IV human
breast cancer); MMT (mouse breast cancer). Lung. A549 (adenocarcinoma). Colon. SW480 (adenocarcinoma);
HT-29 (adenocarcinoma). Liver. HepG2 (hepatoblastoma). Ovary. SKOV-3 (ovarian serous cystadenocarcinoma).
Prostate. LnCAP (carcinoma). Endocervix. HeLa (papillomavirus-related endocervical adenocarcinoma); Bone.
HOS (osteosarcoma). Brain. NB-1691 (neuroblastoma); U87 (glioblastoma). Stomach. MGC-803 (adenocarcinoma).

4. Achieving Endosomal Escape

In addition to being preferentially internalized, nanoparticles should be able to release their
payload properly in the cytoplasm. However, nanoparticles that are taken up through the endocytic
pathway may be sequestered in the acid endo-lysosomes, which might degrade nanoparticles payload.
Besides, membrane impermeable and/or poorly membrane permeable therapeutics need to be properly
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released into the cytoplasm to exert their action. In this sense, the development of nanoparticles with
ability to achieve endosomal escape has received much attention (Figure 6) [202].
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Figure 6. Schematic representation of the most employed strategies employed to induce the endosomal
escape of MSNs. (A) The protonable species on the surface of the particles capture the protons of the
vesicle. To counteract that basification, cell influxes protons, chloride ions and water, which induces
the swelling and eventual endo-lysosomal rupture. (B) MSNs functionalized with photosensitizers are
able to generate reactive oxygen species (ROS) upon light irradiation. These ROS can oxidize the lipid
membrane of the endo-lysosomes, leading to a loss of stability and enhancement of the permeability of
the lipid bilayer, triggering nanoparticle escape.

4.1. Internally-Triggered Endosomal Escape

4.1.1. Proton Sponge Effect

The first approach consists in taking advantage of the acidic environment found in the endocytic
pathway (pH 4.5–6.5) [203]. MSNs can be functionalized using macromolecules that show buffering
capacity at that acidic pH, which would lead to the disruption of the endosomes/lysosomes via the
“proton sponge effect”. This membrane rupture would be consequence of the cell influxing protons
along with chloride ions and water to counteract the capture of protons by the particles. In this manner,
the water molecules would make the endo-lysosomes to swell, eventually leading the release of the
particles into the cytoplasm [202].

For instance, coating the surface of MSNs with poly(amidoamine) dendrimers results in the
endosomal escape of the particles, owing to their great buffering capacity [204]. A similar example
consists in the use of polyethyleneimine (PEI), a macromolecule with a huge number of protonable
amino groups that can mediate the endosomal escape of MSNs [205,206]. However, it should be
mentioned that it remains unclear whether PEI-mediated escape is actually consequence of its buffering
capacity [207]. Because PEI-coated MSNs are positively charged, PEI can be employed to first load
negatively charged nucleic acids within the polymeric mess and then induce the endosomal escape for
effective therapeutic action. Examples of nucleic acids transfected using this approach include small
interfering RNA (siRNA) [208–210] and short hairpin RNA (shRNA) [211]. In addition, it is known that
PEI can be cytotoxic, depending on their molecular weight and conformation (linear, branched) [212].
For that purpose, PEI-coated MSNs can be further coated with poly(methyl vinyl ether-co-maleic acid)
to yield more biocompatible nanoparticles with endosomal escape capabilities [213].
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Amino acids and peptides also find application in the field of endosomal escape. For instance
histidine, whose imidazole ring has a pKa of ca. 6 [214], shows buffering capacity at the pH of the
endocytic pathway. For instance, it can be polymerized to engineer a pH-responsive gatekeeper for
MSNs with potential endosomal escape capabilities [215]. Similarly, the surface of the particles can
be modified with only the imidazole motif, which allows the effective delivery of plasmids into the
cytoplasm [216]. Additionally, histidine can be incorporated within other sequences of amino acids.
For instance, histidine-rich fusogenic peptides promote the destabilization of the vesicle membrane by
both the proton sponge effect and fusion events with the peptide [217,218]. In addition, histidine motifs
can be engineered with RGD targeting peptides to achieve both membrane targeting and endosomal
escape of MSNs [219].

4.1.2. Other Mechanisms for Destabilizing the Endo-Lysosomal Membrane

As stated in Section 4, cell-penetrating peptides are able to cross biological membranes. For that
reason, the KALA peptide can also be employed as a means of crossing the endo-lysosomal
membrane [127]. Besides, it is possible to mask their positive charge so the surface of MSNs is
negatively charged in the bloodstream and clearance is minimized. However, at the acid pH of the
endo-lysosomes the positive charges are recovered, triggering the endosomal escape. Examples include
the use of masked polylysine [220] and TAT peptide [221]. Another approach involves the use of MSNs
functionalized with lysine-containing α-helical peptides, which are able to act at the same time as
gatekeepers and endosomolytic agents [222]. Finally, the escape of MSNs can also be accomplished
by functionalizing the surface with TPP derivatives, which are highly cationic and lipophilic small
molecules able to destabilize the endo-lysosomal membrane. [190,223,224].

4.2. Externally-Triggered Endosomal Escape

A second strategy for inducing endosomal escape consists in grafting macrocycles (porphyrins and
phthalocyanines) to the surface of the particles to then irradiate the MSNs with a given wavelength.
When these materials are exposed to light, those macromolecules generate reactive oxygen species
(ROS), which are known to destabilize the membrane of the endo-lysosomes [225]. Examples of
photosensitizers are porphyrins and phthalocyanines. The porphyrin PpIX generates ROS upon 405 nm
ultraviolet light irradiation, and it has been proved to mediate the endosomal escape of MSNs coated
with biocompatible supported lipid bilayers [226,227]. Porphyrins can also generate ROS upon visible
light application [228]. Similarly, the phthalocyanine AsPCs2a generate ROS upon irradiation with
639 nm near-infrared light, and its grafting to MSNs has been shown to be effective in triggering their
endosomal escape [229,230]. Finally, indocyanine green can be loaded within the mesopores of MSNs
and generate ROS upon 780 nm light excitation, leading to the endosomal escape of the particles [231].

5. Functional Groups Determine Drug Loading and Release

The outstanding textural properties of MSNs allow the loading of large amounts of therapeutics,
process easily accomplished thanks to their open porous structure. However, for the very same reason,
the loaded molecules might prematurely diffuse out of the pores and affect healthy tissues. Both the
loading and release kinetics are governed by the interactions between such molecules and the silanol
groups of the particles. Hence, tuning the functional groups present in the particles provides a first
manner to improve drug loading and control premature release. In consequence, mesoporous silica
matrices should be conveniently modified according to the drug to be stored.

Overall, the loading process of polar drugs can be improved using polar functional groups.
Conversely, the loading of hydrophobic compounds increases in the presence of nonpolar moieties [232].
For instance, NH2-functionalized mesoporous silica materials provide considerably higher loading
and more sustained release of alendronate [233,234]. Similar behavior is found for erythromycin when
the particles are functionalized with long alkyl chains [235] and ipriflavone in the presence of phenyl
groups [236], thanks to the appearance of hydrophobic interactions.
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With regard to antitumoral drugs, introduction of SH groups increases the storage of cisplatin [237]
and mitoxantrone [238]. Doxorubicin loading in MSNs is enhanced after functionalization with COOH
or PO3

− groups, although that of paclitaxel is not improved after modifying the particles with phenyl
groups [239]. Moreover, functionalization with NH2 or CN groups provides the greatest loading of
5-fluorouracil in MSNs [240]. In addition, the amount of gemcitabine loaded increases if MSNs are
modified with a carboxylic acid derivative of piperazine [241].

Periodic mesoporous organosilica nanoparticles (PMONs), which are composed of bridged
organoalkoxysilanes, offer increased loading capacity of antitumoral drugs owing to their higher
hydrophobicity and isoelectric point. For instance, PMONs containing porphyrin-ethylene bridged
moieties provide extraordinary loading of gemcitabine [242]. Similarly, the use of precursors
bearing ethylene-bis(propyl)disulfide [243] or oxamide-phenylene moieties [244] yields PMONs
with remarkable DOX loading capacity.

6. Stimuli-Responsive Drug Delivery

Modifying the interactions between the silica matrix and the guest molecules provides a first
manner to diminish premature release. A step head involves the use of stimuli-responsive gatekeepers,
which are structures able to open the mesopores on-demand in response to the application of a
particular stimulus (Figure 7).
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Figure 7. Schematic representation of how stimuli-responsive mesoporous materials work. The gatekeepers
close the pore entrances and avoid premature release until some specific stimulus is applied. The stimuli
can be applied from inside (e.g., pH, redox species, enzymes) or outside the patient (e.g., light, US,
magnetic fields).

As shown in Figure 7, the origin of stimuli can internal or external. The use of internal stimuli
relies on some relevant biological markers being upregulated/downregulated in tumor tissues (e.g., pH,
redox species, enzymes). In this manner, the pore entrances of the particles would remain closed under
physiological conditions, whereas the tumor microenvironment (inside or outside cancer cells) would
trigger the drug release. On the other hand, external stimuli-responsive MSNs only allow drug release
when the stimulus is applied from the outside using specific equipment (e.g., light, US, magnetic fields).

6.1. pH-Responsive MSNs

A unique feature of tumor tissues is the slightly acidic pH of the tumoral matrix, which has been
quantified to be within the range 6.4–6.8 [192]. This subtle acidification is consequence of a process
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known as Warburg effect, which states that most cancer cells (or any proliferating cell) produce energy
through the aerobic glycolysis process regardless of the presence of oxygen, leading to the secretion
of large amounts of acidic lactate [245]. Such acidification plays a major role in cancer progression
because (a) it promotes cancer cell migration ad radioresistance, (b) it disturbs the metabolism and
function of T-cells and (c) it provokes chronic inflammation in tumor tissues by enhancing interleukin
production by macrophages and T-cells [246].

In addition, there are some intracellular compartments and organelles that present slight differences
in pH with respect to that of the cytoplasm, which is nearly neutral. In this sense, nanoparticles can
be internalized in cells through the endocytic pathway, which results in the formation of vesicles
containing the particles. These vesicles, whose function is degrading compounds no longer useful
for the cells, are acidic in nature and evolve from the endocytic vesicles (pH 6.5) to the lysosomes
(pH 4.5–5) [247].

Such differences in pH can be employed to trigger the drug release from pH-responsive mesoporous
nanoparticles. The most common strategies to design such systems involve the use of: (1) acid-labile
bonds, (2) pH-degradable gatekeepers, (3) pH-operated nanovalves, (4) polymers that undergo
conformational changes upon variations in pH, (5) biomolecules that vary their charge or conformation
upon changes in pH and (6) polyelectrolytes.

6.1.1. Acid-Labile Bonds

The simplest approximation consists in grafting different types of gatekeepers through acid-labile
bonds. These linkers are stable at physiological pH but rapidly hydrolyze when pH drops. For instance,
hydrazone bonds are cleaved at pH 5 and can be employed to close the mesopores with gold
nanoparticles [248,249], HA [250] or charge-reversal polymers [251]. Acetal bonds hydrolyze at
pH 5 as well and find application as acid-responsive linkers between MSNs and small metal
nanoparticles [252,253], graphene quantum dots (QDs) [254], polymeric coatings [255,256] and
proteins [147]. Boronate esters are also interesting because they are known to undergo reversible
hydrolysis at acid pH [257] and can be employed to design MSNs with on-off release behavior using
small gold [258] and Fe3O4 nanoparticles [259], ZnS nanocrystals [260] or lactobionic acid [261] as
gatekeepers. Imine bond-based compounds find application as crosslinking agents and allow the
formation of acid pH-responsive protective layers that disassemble when pH drops. Examples are
the combination chitosan with dialdehyde starch [262], dextrin with tetraethylenepentamine [263] or
glutaraldehyde with polyethyleneimine [264].

6.1.2. pH-Degradable Gatekeepers

Another approach is based on the use of acid-degradable gatekeepers that close the mesopores
at physiological pH and degrade in the acidic subcellular compartments, triggering the drug release.
For instance, small degradable nanoparticles can be employed as pore blockers. Examples include ZnO
QD, whose degradation generates cytotoxic Zn2+ ions [265–268] and MnO nanoparticles that generate
manganese ions upon dissolution that can be used for imaging [269,270]. In addition, MSNs can be
coated with a layer of MgAl-hydrotalcite, which is known to degrade at acid pH [271].

There are various examples of organic gatekeepers that decompose upon pH variations as well.
For instance, MSNs can be functionalized with a polydopamine layer that remains stable at physiological
pH but degrade when pH drops [272]. Another approximation consists in functionalizing the particles
with self-immolative moieties, which are molecules or macromolecules that present a cleavable trigger
that initiate the self-degradation of the structure upon application of a very specific stimulus [273].
Such self-immolative structures endow MSNs with responsiveness to either basic [274] or acid pH [275].
In fact, the latter have been recently implemented into pH-responsive mesoporous carbon nanoparticles,
validating in vivo the pH-responsiveness of such self-immolative polyurethanes [276].
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6.1.3. pH-Operated Nanovalves

There are some examples of MSNs gated using the so-called nanovalves, which are supramolecular
gatekeepers able to close the pores upon interaction with a stalk grafted on the surface. A first strategy
involves the use of triazine derivatives as stalks and 5-fluorouracil-based compounds as caps, which are
able to close the pore entrances thanks to hydrogen bonding interactions. However, at acid pH the
interaction weakens and cytotoxic 5-fluorouracil is released along with a loaded cytotoxic, leading to
high cytotoxicity [277]. Another strategy involves the use of biocompatible cyclodextrins (CD). They
present a hydrophilic outer surface and a hydrophobic cavity with which the stalk interacts. The
interaction is stable at physiological pH and the CD tightly close the pore entrances. However,
it weakens at acid pH, triggering the drug release. Examples of stalks employed to accomplish
pH-mediated drug delivery are amine-based stalks [278–280] and complementary base pairs [281].

6.1.4. Conformation-Changing Polymers

This kind of polymers are collapsed on the surface at a given pH, blocking the pore entrances.
However, upon a variation in pH the ionizable groups of the polymer acquire net charge and
repulsion forces among the chains appear. Hence, the polymeric layer changes its hydrophobicity
and adopt a more extended conformation that permits the drug release. Cationic polymers showing
this behavior protonate at acid pH and can be employed to design gates that open only in the
acidic endo-lysosomes. Examples include amino-based acrylates and methacrylates [282,283],
polyamine-based polymers/dendrimers [284–286] and poly(n-vinylpyridine) [230,287,288]. On the
other hand, anionic polymers, such as poly(acrylic acid) and poly(methacrylic acid), protonate at
neutral pH, closing the pores at acid pH and being excellent candidates for oral drug delivery [289–291].

6.1.5. pH-Responsive Biomolecules

Likewise, some biomolecules undergo reversible changes upon variations in pH. For instance,
MSNs can be functionalized with polypeptides containing protonable groups that would only
allow drug release at a given pH. In this sense, poly(L-histidine) [215] protonates at acid pH,
whereas poly(L-aspartic acid) [292] and succinylated poly(ε-lysine) [293] protonate at physiological
pH and might be useful for oral drug delivery. Additionally, such pH variations can reversibly modify
the 3D structure of peptides, proteins and DNA strands to allow the drug release only at acid [294–297]
or physiological pH [298,299].

6.1.6. Polyelectrolytes

Another approach consists in the use of polyelectrolytes, which are polymers bearing ionizable
cationic or anionic groups. Such polyelectrolytes can be directly deposited on the surface, forming a
single polymeric layer that interacts with the nanoparticle surface. In this manner, variations in pH
would lead to electrostatic repulsions that would weaken the interaction with the surface, opening
the pores. The surface must be accordingly functionalized, i.e., positively charged for anionic
and negatively charged for cationic polymers. Examples include coating the surface with PEI,
poly(2-diethylamino ethyl methacrylate) [300], poly(vinyl pyridine) [301], polyanionic poly(acrylic
acid-co-itaconic acid) [302] and chitosan, which is particularly interesting because it swells reversibly
at acid pH, leading to on-off systems [303–306]. Furthermore, polyelectrolytes can be disposed forming
multilayers that are destabilized upon variations in pH, initiating the drug release. Examples are the
combination of poly(allylamine hydrochloride) with poly(styrene sulfonate) [307,308] and chitosan
with sodium alginate [309,310]. Table 3 summarizes the different pH-responsive approximations
described in Section 6.1.
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Table 3. Different strategies implemented into MSNs for achieving pH-responsive drug delivery.

Approach Description Reference

Acid-Labile Bonds

Hydrazone bond pH-responsive bonds that find application as linkers
between MSNs and different gatekeepers

[248,249,251]
Acetal bond [147,252–256]

Boronate ester bond [258–261]

Imine bond pH-responsive bond useful as cross-linking agent [262–264]

pH-Degradable Gatekeepers

Inorganic nanoparticles Small nanoparticles that degrade at acid pH, generating
different ions with therapeutic applications [265–271]

Polymers Polymeric coatings that decompose into their building
blocks upon changes in pH [272,274–276]

pH-Operated Nanovalves

Stalk + Cap Supramolecular structures that close and open the pores
thanks to the interaction with stalks grafted on the surface [277–281]

Conformation-Changing Polymers

Cationic Polymers that are collapsed on the surface of the particles
when deprotonated (pores closed) and undergo a

conformational change when pH varies (pores open)

[230,282–288]

Anionic [289–291]

pH-Responsive Biomolecules

Polypeptides Large peptidic chains containing protonable groups that
exhibit collapsed-to-extended behavior upon pH variations [215,292,293]

Nucleic acids and
proteins

Macromolecules that modify their 3D structure upon
variations in pH [294–299]

Polyelectrolytes

Monolayers Charged polymers that close the pores by forming a
monolayer through electrostatic interactions [300–306]

Multilayers Arrangement of multiple charged layers on the surface of
the particles to close the pore entrances [307–310]

6.2. Redox-Responsive MSNs

Unlike healthy cells, where the production of reactive oxygen species (ROS) and antioxidants
is balanced, ROS levels in cancer cells are upregulated due to the altered metabolism, some genetic
mutations and mitochondrial dysfunction. To counteract this and prevent apoptosis, cancer cells
present elevated levels of ROS scavengers, being the most representative the tripeptide glutathione
(γ-glutamyl-cysteinyl-glycine, GSH) [311], although the redox-active nature of the endocytic pathway
has also been reported [312]. GSH, which participates in the metabolism of many molecules in healthy
cells [313], also plays an important role in cancer progression and may contribute to increase radio-
and chemoresistance of cancer cells [314]. GSH is mainly located in the mitochondria and cytoplasm,
and its upregulated levels (2–10 mM in the cytosol vs. 2–20 µM in the extracellular microenvironment)
can be employed to trigger the drug release from redox-responsive mesoporous nanoparticles [315].

Such systems are commonly engineered using different gatekeepers grafted using GSH-cleavable
disulfide bonds. In this manner, the pores remain closed outside the cells (bloodstream and tumoral
matrix), whereas the overexpressed GSH triggers the release once in the cytoplasm. Examples of
gatekeepers attached using disulfide bonds are: (1) proteins, (2) small nanoparticles and nanovalves
and (3) polymers and small molecules. In addition to being useful as cleavable linkers for
grafting gatekeepers, disulfide bonds can be introduced throughout the framework of PMONs,
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yielding biodegradable silica nanoparticles in which drug release and degradation are triggered by the
presence of overexpressed reductive species [243,316,317].

6.2.1. Proteins

Owing to their large size, proteins are effective in blocking the mesopores when grafted
viaredox-responsive bonds. For instance, biocompatible bovine serum albumin (BSA) can be
doped with Gd to act at the same time as gatekeeper and magnetic resonance imaging agent [318].
Similarly, transferrin can be employed as both gatekeeper and targeting agent [142]. Cytochrome c,
which is an apoptotic protease, can be employed as gatekeeper as well, leading to enhanced doxorubicin
delivery and protein-mediated therapeutic effect [319].

6.2.2. Small Nanoparticles and Nanovalves

The pore entrances of MSNs can additionally be sealed by grafting small nanoparticles (4–6 nm)
to the surface via disulfide bond. Examples of this approach are the use of carbon dots [320,321],
gold nanoparticles [322], silver nanoparticles [323] and cerium oxide nanoparticles [324] as gatekeepers.

The stalks that interact with supramolecular nanovalves can be grafted to the surface of the
particles through disulfide bonds, yielding pH- and redox-responsive MSNs. In this manner, enhanced
drug release can be observed when MSNs reach the cytoplasm and GSH completely removes the
β-CD caps [325,326]. A nice feature of β-CDs is that not only they serve as gatekeeper, but also
provide possibilities for further functionalization, including PEGylation [327] and grafting of targeting
agents [149,201,328,329].

6.2.3. Polymers and Small Molecules

Disulfide bonds can also be employed to graft bulky polymers to the surface of MSNs. In this regard,
cationic polymers such as chitosan [330] and PEI [209,331] have been grafted through redox-responsive
bonds to engineer gatekeepers that also serve as gene transfection vectors. Additional examples of
gatekeepers grafted through disulfide bonds are naturally occurring polymers, such as HA [158,332]
and collagen [152], and synthetic polymers, such as poly(acrylic acid) [333] and poly(glycicyl
methacrylate) [334].

Similarly, the pore entrances can be sealed using small disulfide-bridged molecules [335].
Besides, grafting peptides containing hydrophobic / bulky components and targeting units through
disulfide bonds provides on-demand drug release and selective recognition of cancer cells [135,196,336,337].
An additional strategy involves grafting stearic acid molecules using GSH-sensitive bonds because
such molecules can directly close the mesopores through hydrophobic interactions among them [338].
Moreover, stearic acid can be employed to attach an amphiphilic targeting peptide thanks to their
hydrophobic nature, providing both gatekeeping and targeting features [339].

6.3. Enzyme-Responsive MSNs

A characteristic feature of tumor environments is the overexpression of certain enzymes with
proteolytic behavior. For that reason, designing mesoporous nanomatrices functionalized with
gatekeepers degradable by such enzymes has attracted much attention. These materials would avoid
premature release in the bloodstream, whereas the payload would be release once in the tumor
microenvironment upon enzymatic degradation of the pore blockers. The most targeted enzymes are:
(1) cathepsin b (CatB) and (2) various metalloproteinases (MMPs). Besides, (3) the use of some other
proteolytic enzymes has also been explored.

6.3.1. Cathepsin B

CatB is a lysosomal proteolytic enzyme which is overexpressed in many cancer cells [340].
In consequence, it can be employed to trigger the drug release from MSNs once they have been
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internalized through the endocytic pathway. In this sense, MSNs can be capped using large peptides
containing repeating units of a CatB-sensitive sequence (GIVRAK) [341]. Similarly, a short CatB-sensitive
peptidic sequence (PGFK) can be employed to mask a cationic cell penetrating peptide with a negative
complementary chain. In this manner, such interacting chains close the pore entrances until CatB
cleaves the sensitive bond along with the negative chain, exposing the positively peptide and targeting
the cell nucleus [342]. In addition, such CatB-responsive sequences can be employed for attaching
bulky gatekeepers to the surface of MSNs. Examples of such linking sequences are GFLG for attaching
α-CDs [343] and CRRGGKKGGKKRK for grafting gold nanoclusters [344]. Besides, MSNs can be
coated with poly(glutamic acid), which is able to prevent drug release unless the polymeric coating is
degraded by lysosomal CatB [345].

6.3.2. Metalloproteinases

Some MMPs are overexpressed in the tumoral matrix of certain tumors and can be employed to
cleave specific peptidic sequences. For instance, the use of peptides containing the MMP-2-responsive
PLGVR sequence as gatekeepers for MSNs results in significant drug release only the presence of that
enzyme [346,347]. In addition, such responsive sequences can be employed to graft gold nanoparticles
and inhibit premature drug release [348]. Similarly, a MMP-9-responsive sequence (RSWMGLP) can
be employed to attach avidin to the surface of MSNs, allowing the drug release only in the tumoral
matrix [349]. Besides, MSNs can be coated with a MMP-9-sensitive gelatin, so that drug release would
only take place upon enzymatic degradation of the polymeric layer [350]. Finally, the pore entrance of
MSNs can also be sealed by grafting BSA using a MMP-13-responsive sequence (PLGLAR), because this
enzyme has been found to be overexpressed in the tumor microenvironment of liver cancer [351].

6.3.3. Other Enzymes

Aside from serving as targeting agents for the CD44 receptor, HA [156,158,352] and chondroitin
sulfate [160,162] can be employed as gatekeepers for enzyme-responsive MSNs, as they are both
degraded by hyaluronidase, an enzyme that can be found in the lysosomes. Trypsin is an enzyme that
has been found to be overexpressed in liver cancer scenarios. In this respect, it has been shown that the
presence of trypsin can degrade BSA in BSA-coated MSNs, triggering the co-delivery of doxorubicin
and bilirubin [353].

Similarly, alkaline phosphatase is found in tumor scenarios and can be employed to degrade an
ATP coating covering the pores of mesoporous silica-based materials [354]. Finally, cancer cells present
elevated levels of esterases in the cytosol, which can hydrolyze ester-containing gatekeepers. Examples of
such esterase-responsive systems are the functionalization of MSNs with a poly(β-amino-ester) polymeric
layer [355] and ester-containing stalks for supramolecular nanovalves [356,357]. Table 4 summarizes
the different strategies applied for the design of enzyme-responsive MSNs.

Table 4. Strategies implemented into MSNs for achieving enzyme-responsive drug delivery.

Enzyme Description Reference

Peptides as Gatekeepers

CatB Large peptidic sequences that close the mesopores and allow
drug release upon enzymatic degradation

[341,345]
MMP-2 [346,347]

Peptide as Linkers

CatB
Short peptidic sequences employed to graft different types of

bulky gatekeepers (small nanoparticles, proteins, nanovalves) to
the surface of MSNs

[342–344]
MMP-2 [348]
MMP-9 [349]

MMP-13 [351]
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Table 4. Cont.

Enzyme Description Reference

Other Enzyme-Degradable Gatekeepers

MMP-9 MSNs covered with a gelatin that degrade in the presence of
MMP-9 [350]

Hyaluronidase
MSNs functionalized with large carbohydrates (hyaluronic acid,
chondroitin sulfate) that act simultaneously targeting agents and

gatekeepers

[156,158,160,
162,352]

Trypsin MSNs gated with BSA, which can be degraded by
overexpressed trypsin in liver cancer [353]

Alkaline
phosphatase

ATP-capped mesoporous silica-based materials that allow drug
release upon enzymatic degradation of ATP [354]

Esterases MSNs functionalized with ester-containing gatekeepers that are
degraded in the presence of such enzymes [355–357]

6.4. Light-Responsive MSNs

The use of light to unlock the pore entrances on MSNs has attracted much interest because of
the ease of it application, since only a specific light source is needed. Researchers have focused on
the use of ultraviolet (UV) (100–400 nm), visible (400–650 nm) and near-infrared (NIR) (650–1050 nm)
light. The energy and, consequently, the capacity to penetrate in tissues depends on the wavelength
employed. UV light presents the highest energy yet the lowest penetration capacity, which can
lead to radiation-induced cellular damage. Conversely, low energetic NIR-light exhibits the deepest
penetration capacity in living tissues, in addition to being harmless to the cells [358]. Overall, the design
of light-responsive MSNs relies on the use of: (1) breakable bonds upon light irradiation and (2)
conformational changes in molecules.

6.4.1. Light-Induced Cleavable Bonds

This kind of bonds can be employed as linkers to graft different gatekeepers to the surface of MSNs.
In this manner, the drug release would only take place when the target cells were irradiated by the
clinician, assuring lack of non-specific release to healthy cells. For instance, the o-nitrobenzyl group is
cleaved upon 365 nm UV-light irradiation and can be employed to close the pore entrances with a targeting
protein [140]. In addition, the pH-responsive polymer poly(2-(diethylamino)-ethyl methacrylate) has
also be grafted using this linker, endowing MSNs with both pH- and light-responsiveness [359].
Similarly, cationic poly((2-dimethylamino)ethyl methacrylate)) has been anchored to MSNs through
a 405 nm-sensitive coumarin group to achieve on-demand gene delivery [360]. Besides, it has been
shown that ruthenium bipyridine-based compounds can act as gatekeepers by forming a thiolated
coordination bond that can be cleaved upon 455 nm light irradiation [361]. Similarly, the mesopores can
be capped with thymine derivatives that undergo reversible formation and cleavage of a cyclobutane
dimer when irradiated with 240 nm and 365 nm light to open and close the pores, respectively [362].

As stated in Section 4, photosensitizers are compounds that generate ROS when irradiated
with a particular wavelength. In this sense, it is possible to engineer gatekeepers grafted through
ROS-responsive bonds that would only allow the release upon application of a given wavelength.
For instance, our group has reported the use of a visible light-responsive porphyrin acting as
gatekeeper through an aminoacrylate ROS-responsive bond. In this manner, the light irradiation would
generate ROS that would then detach the gatekeeper, allowing the drug release [228]. In addition
to porphyrins, the photosensitizer chlorin e6 generates ROS upon NIR-light irradiation (660 or
980 nm), and can be loaded in MSNs to mediate the cleavage of ROS-responsive bonds. For instance,
β-CD [363] and BSA [364] can be attached using (alkylthio)alkene-based bonds. In addition, it is also
possible to use small ROS-responsive thioketal-containing molecules as gatekeepers for MSNs [365].
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Finally, the photosensitizer AsPCs2a can be employed to generate ROS able to oxidize the double bonds
of the lipid bilayer of lipid-coated MSNs, modifying the permeability and triggering the release [229].

6.4.2. Light-Induced Conformational Changes

Another strategy for the design of light-responsive nanocarriers consists in functionalizing the
surface of MSNs with polymers that undergo conformational changes in response to light. This behavior
can be accomplished by introducing photoresponsive moieties throughout the polymer chain. In this
manner, the light-mediated cleavage of such groups would induce a change from the hydrophobic to
hydrophilic state, opening the pores and triggering the drug release. Examples of these groups are
perylene (cleaved using 450 nm visible light) [366] and spiropyran (cleaved upon 365 nm UV-light
exposure) [367]. A similar approach involves lowering the lower critical solution temperature (LCST)
of a thermo-responsive polymer by introducing the o-nitrobenzyl group. In this manner, the bond
cleavage upon UV light would increase the LCST of the polymer that would undergo a collapsed to
extended conformational change, triggering drug release [368].

Some molecules undergo reversible trans-to-cis conformational changes upon light irradiation,
behavior that many researchers have taken advantage of to engineer light-responsive nanovalves.
For instance, using a cinnamamide derivative as stalk for cucurbit[7]uril allows to open and close the
mesopores when irradiated with 300 nm and 254 UV-light, respectively [369]. Azobenzene derivatives
show similar behavior, and can be employed as stalks for α- [370] and β-CDs [371] that only allow
the drug release upon 365 nm UV-light irradiation. Similarly, azobenzene groups can be introduced
as pendant groups throughout a polymer chain. In this manner, such groups can interact with the
hydrophobic cavities of β-CD-coated MSNs, closing the pores. However, they undergo trans-to-cis
transition when irradiated with 365 nm [372] or 520 nm light [373], ceasing the interactions and allowing
the drug release. A nice approach to trigger the drug release consists in grafting fan-like azobenzene
derivatives within the mesopores. In this manner, the trans-to-cis transition acts as a nanoimpeller that
forces the payload diffusion outside the pores [374,375]. Table 5 summarizes the different strategies
applied for the design of light-responsive MSNs.

Table 5. Different strategies implemented into MSNs for achieving light-responsive drug delivery.

Approach Description Reference

Light-Responsive Bonds

o-nitrobenzyl group Cleavable using 365 nm light. Used as linker for the grafting of proteins
and pH-responsive polymers [140,359]

Coumarin group Cleavable using 405 nm light. Used as linker for the grafting of cationic
polymers for gene delivery [360]

Thiolated coordination
bond

Cleavable using 455 nm light. Coordination bond formed by ruthenium
bipyridine-based compounds that act as gatekeepers [361]

Thymine derivatives Reversible formation (365 nm) and cleavage (240 nm) of a cyclobutane
dimer. Used as on-off gatekeeper [362]

ROS-Responsive Bonds (ROS Generation upon Light Application)

Aminoacrylate bond Used as linker for the grafting of a porphyrin acting simultaneously as
gatekeeper and ROS generator upon visible light irradiation [228]

(alkylthio)alkene-based
bond

Used as linker for the grafting of nanovalves and proteins. Cleaved when
loaded photosensitizer chlorin e6 generates ROS upon NIR light irradiation [363,364]

Thioketal group Used as gatekeeper. Cleaved when chlorin e6 generates ROS upon NIR
light irradiation [365]

Double bonds Photosensitizer AsPCs2a generates ROS upon NIR light irradiation that
oxidize double bonds of the lipids and increase membrane permeability [229]
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Table 5. Cont.

Approach Description Reference

Light-Induced Conformational Changes

Perylene group Their removal from a polymer chain upon light irradiation, 450 nm
(perylene) or 365 nm (spiropyran and o-nitrobenzyl), induce a

conformational change that open the pores and triggers drug release

[366]
Spiropyran group [367]

o-nitrobenzyl group [368]

Cinnamamide derivative Used as stalks for grafting of nanovalves (grafted on the surface or as
pendant groups in polymers). Reversible trans-to-cis conformation

change when irradiated, in general, with UV light

[369]

Azobenzene derivatives [370–375]

6.5. Ultrasound-Responsive MSNs

US have long been applied in the clinic for the diagnosis and treatment of different pathologies.
The main advantages of US are that their application requires minimal equipment and their
non-invasiveness nature that allow deep and harmless penetration in living tissues. For that reason,
there has been growing interest in developing US-triggered MSNs that rely on: (1) enhanced drug release
owing to effects produced by US and (2) use bonds that can be disrupted by the action of this stimulus.

6.5.1. US-Enhanced Drug Release

Overall, the application of US leads to two main effects, namely acoustic cavitation (as noted in
Section 2) and thermal effects, and it has been shown that both effects can lead to significantly higher drug
release. In this regard, US can be effectively used to further enhance the effectiveness of functionalized
nanoparticles, such as poly(dimethylsiloxane)-coated MSNs [376], polydopamine-coated MSNs [377] and
β-CD-coated MSNs [378], achieving more amount of drugs released when used in combination with US.

6.5.2. US-Cleavable Bonds

US can also be employed to weaken chemical interactions, leading to on-off systems upon
alternating application of US. Examples of this approach include alginate-coated MSNs that can
be cross-linked through the formation of coordination bonds between alginate and calcium ions
(COO—Ca2+) [379] and crown ether-modified MSNs that allow the drug release when hydrogen
bonding with the gatekeeper decreases upon US application [380].

Another approximation consists in employing US-cleavable bonds. In this sense, it has been
reported that PEG can be mechanically detached from MSNs after applying the stimulus [381].
Our group has reported the use of large co-polymers to seal the pore entrances of the particles.
Such polymeric layer contains an US-cleavable acetal, so that when the stimulus is applied the bond
is cleaved, leading to a phase transition from hydrophobic to hydrophilic that triggers the drug
release [382]. In addition, the versatility of the system can be increased by modifying the synthetic
procedure, as that allows the introduction of tunable targeting moieties [129].

6.6. Thermo-Responsive MSNs

The variation in temperature required for triggering the drug release from thermo-responsive
MSNs can be macroscopically applied or induced by a secondary source, such as an alternating
magnetic field or NIR light. The synthesis of this class of materials relies on using (1) gatekeepers
that disassemble when there is an increment of temperature and (2) polymers that undergo phase
transitions upon temperature variations. This stimulus is particularly interesting in some cases because
treating cancer cells with moderate heat (40–43 ◦C), also known as hyperthermia, results in enhanced
cell death and chemosensitivity [383]

6.6.1. Thermo-Responsive Disassembling Gatekeepers

A first strategy to endow MSNs with thermosensitive behavior consists in functionalizing the pore
entrances with DNA strands that undergo reversible dehybridization at a given temperature. It would be
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desirable that the MSNs increased the temperature locally by themselves, so external macroscopic heating
would be unnecessary and no surrounding tissues would be affected. In this regard, the DNA nanogates
can be grafted to MSNs containing superparamagnetic Fe3O4 nanoparticles able to generate heat upon
application of an alternating magnetic field [384]. Similarly, indocyanine green-loaded MSNs generate heat
upon NIR light irradiation, which can be employed to dehybridize DNA strands [231] or complementary
base pairs [385]. It has been shown that DNA strands are unable to close the pore entrances below a
certain size [386]. Nonetheless, such short sequences can be employed as linkers to block the mesopores
with proteins [387], small gold nanoparticles [388] and magnetic γ- Fe2O3 nanoparticles [389].

In addition to nucleic acids, there are also some examples of thermo-responsive peptidic
gatekeepers. For instance, the sequence Phe-Phe-Gly-Gly can be employed to seal the mesopores
of MSNs, as it self-assembles at physiological temperature and undergo disassembly when heat is
applied. Examples of this strategy include the use of superparamagnetic manganese- and cobalt-doped
iron oxide nanoparticles [390] or microwaves [391] to elevate the temperature and trigger drug
release. Similar behavior can be accomplished using poly(γ-benzyl-L-glutamate) as pore blocker [392].
Another example is based on using the heterodimeric peptide E/K, because it closes the pore entrances
at physiological temperature owing to the coiled coil conformation, which is lost at higher temperature,
triggering drug release [393].

MSNs can also be functionalized with thermo-responsive supramolecular nanovalves. For instance,
the pores can be sealed using cucurbit[6]uril. Then, the heat generated upon application of a magnetic
field is able to disrupt the stalk-nanovalve interaction, triggering the release [394]. Similarly, β-CDs
can be attached to the surface using a Diels-Alder-based stalk, which is able to thermally open and
close the pores on-demand upon application of the magnetic field [395].

6.6.2. Thermo-Responsive Polymers

There are several examples of polymers that undergo phase transition below and above their LCST.
Polymers with a LCST > 37 ◦C are hydrophobic above physiological temperature. Then, if attached
to the surface adopting a hairy conformation, the polymers will be hydrophobic above 37 ◦C,
closing the pores. However, when the polymer is cross-linked and the system is above the transition
temperature, that hydrophobic state leaves free spaces in the polymeric network that allow drug
release [396]. Among this type of polymers, poly(N-isopropylacrylamide) (pNIPAM) is the most
employed. Additional examples are MSNs functionalized with poly(urethane-amine) (LCST ca.
50 ◦C) [397] or p(MEO2MA-co-OEGMA) (LCST ca. 37 ◦C) [398].

With regard to p(NIPAM), it can be directly engineered as gatekeeper for MSNs, although its
coil-to-globule transition taking place at ca. 32 ◦C complicates its use in patients [399,400]. The LCST
can be tuned by introducing different types of monomers. For instance, copolymerizing NIPAM with
3-(methacryloxypropyl)trimethoxysilane) (MPS) raises the LCST of p(NIPAM-co-MPS) up to 36 ◦C, which
would entail better biological performance [401,402]. Similar behavior can be obtained introducing
methacrylic acid (MAA), which increases the LCST of p(NIPAM-co-MAA) up to 44.4 ◦C, endowing
magnetic MSNs with both pH- and thermo-responsiveness [403,404]. Our group recently reported
magnetic MSNs functionalized with NIPAM and N-(hydroxymethyl)acrylamide) (NHMA). Thermosensitive
p(NIPAM-co-NHMA) presented a LCST of ca. 42 ◦C, showing thermally controlled release and effective
hyperthermia treatment in vivo [405,406]. Similarly, p(NIPAM-co-NHMA) can be engineered as gatekeeper
for MSNs containing gold nanorods able to generate heat upon NIR light irradiation [137].

There are also polymers that present upper critical solution temperature (UCST). Polymers with UCST
> 37 ◦C are hydrophobic below physiological temperature. For instance, poly(acrylamide-co-acrylonitrile)
shows phase transition at 42 ◦C and can effectively block the pore entrances of MSNs at physiological
temperature [407]. Another example is poly(N-acryloyl glycinamide-co-N-phenylacrylamide)
(p(NAGAm-co-NPhAm)). This polymer undergoes phase transition at 45 ◦C and can be grafted to MSNs
to accomplish effective drug delivery when the particles generate heat upon NIR-light irradiation [408].
Table 6 summarizes the different strategies applied for the design of thermo-responsive MSNs.
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Table 6. Different strategies implemented into MSNs for achieving light-responsive drug delivery.

Approach Description Reference

Thermo-Responsive Disassembling Gatekeepers

DNA
Large DNA strands acting as gatekeepers that dehybridize above a certain temperature, triggering

drug release [231,384–386]

Short DNA strands used as linkers for grafting bulky gatekeepers (proteins, small nanoparticles)
that allow drug release when strands dehybridize upon heating [387–389]

Peptides
Peptide sequences used as gatekeepers that self-assemble at physiological temperature and undergo

disassembly when heated [390–392]

Heterodimeric peptide acting as gatekeeper that present a coiled coil conformation at physiological
temperature. That 3D structure is lost when heat is applied, triggering drug release [393]

Nanovalves Supramolecular nanovalves attached to the surface through thermo-sensitive stalks [394,395]

LCST Polymers (Hydrophobic if T > LCST)

poly(urethane-amine) LCST ca. 50 ◦C
Polymers form a polymeric network. Below LCTS
hydrophilic chains hamper drug release. When T >

LCTS, polymers become hydrophobic and the
polymeric network shrinks, facilitating drug release.

[397]
p(MEO2MA-co-OEGMA) LCST ca. 37 ◦C [398]

p(NIPAM) LCST ca. 32 ◦C [399,400]
p(NIPAM-co-MPS) LCST ca. 36 ◦C [401,402]
p(NIPAM-co-MAA) LCST ca. 44 ◦C [403,404]

p(NIPAM-co-NHMA) LCST ca. 42 ◦C [137,405,406]

UCST Polymers (Hydrophilic if T > UCST)

poly(acrylamide-co-acrylonitrile) UCST ca. 42 ◦C Polymers become hydrophilic above UCST, adopting an
extended conformation that triggers drug release

[407]
p(NAGAm-co-NPhAm) UCST ca. 45 ◦C [408]
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7. Future Perspectives

In the last decades, many researchers have taken advantage of the great physico-chemical
and biocompatible features of MSNs to design many different nanocarriers for the treatment of
different diseases, especially cancer. However, even though there are thousands of publications,
the bench-to-bedside translation remains the bottleneck of the field.

Related to the role of industry, an important issue that should be addressed concerns the scalability
and reproducibility of the synthesis of the particles. MSNs should be able to be produced on a large
scale while showing size and colloidal stability reproducibility. Otherwise, the results derived from
potential clinical studies would not have scientific relevance and consistency and health agencies
would probably reject such mesoporous silica nanodevices. In this regard, the drug loading in the
particles should be completely standardized, as it would be unacceptable that the amount of drug
administered varied from one batch to another.

Assuming that the particles could be properly produced, a mandatory step should be the evaluation
of these materials in humans, as no realistic translation might be accomplished until assuring the
intrinsic toxicity that MSNs might have. Nonetheless, we should be encouraged by the fact that: (a)
amorphous silica is “generally recognized as safe” by the FDA and (b) amorphous silica c-dots have been
proved to be well tolerated and to accumulate in tumors in human trials. In view of that, both academia
and industry should aim to validate in humans the remarkable preclinical results of these cost-effective
silica materials.

Once the large-scale production and human safety of MSNs is validated, the next steps should
be headed toward implementing the strategies described in this manuscript for overcoming the
different biological barriers. In particular, researchers should mainly focus on achieving significant
accumulation of nanoparticles in the tumors as, otherwise, they might not constitute a reliable
alternative to the systemic administration of free drugs. More importantly, we should bear in mind that
nanoparticle-based cancer treatments are not a magic bullet, meaning that they might not be applicable
to every single type of cancer. Hence, the physiology of all types of cancer should be completely
understood in order to decide whether it is worth treating them with nanomedicine.

In summary, the proper clinical translation of MSNs will require meeting, at least, the previous
objectives along with the collaborative and interdisciplinary efforts of scientists and industry.

8. Conclusions

Experimental and translational research should focus on the different biological barriers that
nanoparticles have to face upon administration, as they currently constitute a bottleneck that is
preventing many nanomedicines for achieving effective translation into the clinic. In this sense,
the great features that mesoporous silica nanoparticles offer have boosted their application for cancer
treatment. It has been shown throughout this review that mesoporous silica nanoparticles can be
conveniently engineered to enhance the accumulation in tumor tissues, improve the uptake by tumoral
cells and prevent endosomal sequestration. In addition to effectively overcoming such biological
barriers, mesoporous silica nanoparticles can be functionalized with many different stimuli-responsive
gatekeepers, endowing them with on-demand and localized drug delivery to cancer cells. Furthermore,
MSNs all well tolerated in vivo and it has been shown that they are mainly excreted through the urine.
In view of the evidences, even more emphasis should be place on mesoporous silica nanoparticles
research, as they are attractive candidates for clinic translation in the near future.
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